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A GEOMETRIC APPROACH TO THE LINEAR TRACE
HARNACK INEQUALITY FOR THE RICCI FLOW

BENNETT CHOW AND SUN-CHIN CHU

1. Introduction

In [H], Richard Hamilton proved a matrix Harnack inequality for the
Ricci flow, a consequence of which is the following trace Harnack inequality
Theorem A (Hamilton). If (M,g) is a complete solution to the Ricci
flow

0
(1.1) 5% = 28

with nonnegative curvature operator and bounded curvature, then for any
1-form V

(1.2) %R+ % +2VR-V +2R;;V'VI > 0.
In particular, taking V =0, we have %(tR) > 0.

This trace inequality turns out to be a special case of the following
linear Harnack inequality, which was later proved by the first author and
Hamilton [CH].

Theorem B. Under the same hypotheses as Theorem A , if h is a non-
negative symmetric 2-tensor satisfying

0
ot
where the Laplacian and curvature are with respect to the metric evolving
under the Ricci flow, then

(1-3) hij = Ahij + 2Rpithpq - Rithq - quhitv

. H
(1.4) Z:=div(div(h))+ Re-h+2div(h) -V + h;; V'V + o >0,
where H = g"jhij. In particular, taking h = Rc, we obtain Theorem A as
a special case.
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On the other hand, in [CC], the authors showed that Hamilton’s matrix
Harnack quadratic for the Ricci flow is actually the Riemann curvature
tensor of a connection on the space-time manifold M x [0,T) compatible
with a degenerate metric on space-time. In particular, recall the space-
time metric and connection defined in [CC]. The degenerate metric § on
the cotangent bundle T*M is defined by
G = g9 ifi,j>1

0 ifi=0o0rj=0.
Associated to this metric is the space-time connection V defined by
oy ifi, g k>1
0 ifk=0and,j>0
—R} ifi=0andjk>1
—3VFR ifi=j=0and k> 1.

~k B

This connection is compatible with the metric in the usual sense that

Vg=0.
Moreover, it has the special property that

%r;ﬂj = —§"(ViRj + VjRy — ViRi;),

which is formally the same equation as that satisfied by the Levi-Civita
connection V of the metric g evolving under the Ricci flow. In [CC] it was
shown that the Riemann curvature tensor of the connection V is the same
as Hamilton’s matrix Harnack quadratic. Similarly, the Ricci tensor of the
V is the same as the trace Harnack quadratic.

Theorem C. Given a I-form W; and a 2-form Usj, let

Q= [AR; — 3ViV R+ 2Ry;jiRi — Rii Ry | W, W
—2(ViRji, — ViR UiiWi + RijiaUij Uy
denote Hamilton’s Harnack quadratic. We have

Q=g R, T/ T},

where ,
4 Ul ifij>1
T =< W; ifj=0
0 ifi=0.

In this paper, we shall show that one can approach the linear trace
Harnack inequality from this point of view. In section 2, we observe that
the linear trace Harnack quadratic Z given by (1.4) is equivalent to h,
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the natural extension to space-time of the symmetric 2-tensor h given by
(1.3). We then recall the space-time formulation in [CC] and show that
the equation for Z (i.e., h) derived in [CH] is the heat equation, using
the Lichnerowicz Laplacian, in the space-time formulation. That is, the
evolution equation for £ is the exact space-time analogue of the evolution
equation for h. In section 3, we generalize the results of [CC] to the case
of the Ricci flow modified by an arbitrary one-parameter family of diffeo-
morphism. In particular we define a suitable space-time connection and
show that it satisfies the modified Ricci flow for degenerate metrics. The
space-time formulation needs to be done in this generality in order to lin-
earize the Ricci flow using DeTurck’s trick. In section 4, we linearize the
Ricci flow by considering a one-parameter family of Ricci flows modified
by DeTurck’s trick in the variation direction. We show that the variation
of the metric satisfies (1.3) and the variation of the space-time connection
satisfies formally the same equation as the Levi-Civita connection of the
space metric, where h and V are replaced by h and V. Both of these equa-
tions rely on using DeTurck’s trick. In section 5, we extend DeTurck’s trick
to the space-time connection and show that the variation of the modified
space-time Ricci tensor is given by the space-time Lichnerowicz Laplacian
of h. This supports the viewpoint that / is the variation of the pair (9, @)
Finally, in section 6, we show how the tensor h and its evolution arises
from taking the limit of Riemannian metrics on space-time.

2. The linear trace Harnack inequality

In this section we recall the computations in [CH] for the evolution of
the linear trace Harnack quadratic

(2.1) Z =div(div(h)) + Re- h+2div(h) - V + h; V'V,

and interpret them in terms of the connection and curvature tensor on
space-time defined in [CC]. In sections 3 and 4, we shall explain why this
interpretation holds.

From the computations in section 6 of [CH], we have

Lemma 2.1. Under the Ricci flow (1.1) and equation (1.3) for h,

% div(h); = Adiv(R); + 2hpgViRpg — 2hpgVypRy;
2RV phyi — Ry div(h),
% div(div(h) + Re-h] = A [div(div()) + Re- b] + 4Ry V; (div(h),)

1
+2hpq <Aqu — QVquR + 2Rpiquij> .
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We now interpret these computations in terms of the space-time formal-
ism for the Ricci flow. Let M = M x [0,T) be the space-time manifold.
Define a symmetric 2-tensor on M

i,j=0
i hy ifi,j>1
div(div(h)) + Rc-h ifi=j =0,

where {z?}"_, are local coordinates on M and x° = ¢ is the time coordinate.
We may now rewrite the linear trace Harnack quadratic (2.1) as

where V =V @ %. The conclusion of Theorem B may now be restated as
e 1
> hi(VIVT+ ) > 0,
i,j=0

for any space-time vector field V =V & XN/O%.
Using the space-time connection, we can state the following special
property of the symmetric 2-tensor h.

Lemma 2.2. For all 0 < i <n, we have
(2.2) hio = 3%V .

Proof. We only verify the case i = 0; the other case where ¢ > 1 is even
easier. Using the definitions of V and h, we compute

F*Vihw = ¢*V;div(h)y — gjkfé‘)oﬁkp
= div(div(h)) + ¢’* Rl hy,,
= hgo.
Remark. Formula (2.2) is analogous to the formulas Rﬁ»jo = gpqﬁp-é'lijq for

i,7,0 >0, and Ry = gjk@jﬁiki for i > 0, which were proved in [CC]. One
may consider these formulas as defining the extension of a space tensor
to the corresponding space-time tensor. In particular, we could have used
Lemma 2.2 to define h extending h.

The starting point for the space-time approach to the linear trace Har-
nack inequality is the following observation.
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Proposition 2.3. Under the Ricci flow, if h;; satisfies

0
(2.3) 8th = Ahij + 2Rpijghpg — Righjq — Rjghig,

then the associated space-time symmetric 2-tensor iLij satisfies

(2.4) Vohij = Ahjj + 2hy  R2,

pij’
or equivalently,

a 5 . _ I
(2.5) 1 hij = Ah;j + 2hquq quhjq Rjshiq,
for all i,j > 0, where A = GV, V and ng is the Riemann curvature
(3,1)-tensor of V.

Proof. When i,j > 1, equation (2.4) follows from (2.3) and the formula

Vohij = dohij — Thihp; — T2 iy 8at hij + RYhyj + RPhip.
For ¢ > 1 and j =0, (2.4) follows from Lemma 2.1, (i) and the equations
Vohoi = dohoi — Thohpi — T8, oy
= % div(h); + %Vpthi + R div(h),,
Al = z ¥ hor = Yy [V div(h)s + B2hy] — s

A le(h)z + §vahpz + 2quvphqi7

and

Rgm ViRl — VIR,
(see [CC], Theorem 2.2, (B4) for the last equation.) Finally, for i = j =0,
equation (2.4) follows from combining Lemma 2.1, (ii) with

Vohoo = - [div(div(h)) + Re - h] + VPR - div(h),

:®|Qv

Ahgy = VpVphoo

]
Il
—

=V, [V,(div(div(h)) + Re- h) + 2R2div(h),] — 2%V phao
= Aldiv(div(h)) + Rc- h] + 4RV, div(h),
+2Rp; Ryghpg + VPR div(h),
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and )
Rgoo =AR,, — ivquR +2RpijqRij — RprRyg

(see [CC], Theorem 2.2, (B5) for the last equation.) The proof of the
proposition is complete.

3. Space-time formulation of the modified Ricci flow

In this section we extend the results of [CC] to the case of the Ricci
flow modified by an arbitrary one-parameter family of diffeomorphisms.
The space-time formulation needs to be done in this generality in order to
linearize the Ricci flow using DeTurck’s trick (see [D].) We consider the
equation

0
mgij =
where V' = V/(¢) is an arbitrary one-parameter family of 1-forms. Recall

tha,t~]\~4 = M x [0,T) and the space-time metric g on the cotangent bundle
T*M is the degenerate metric given by

y iif g, 5> 1
i _ ) g7 iti g >
(3.2) g _{Oifz’:()orjzo,

(3.1) —2R;; +V;V; +V;V,,

where $O~ = t is the time coordinate. We now define the space-time con-
nection V by

(a) TF =T% if i,j,k > 1
(b) T = 0ifd,j>0
(c) 110 = —RF +V,VFifi k>1

(d) Thy = —IVE(R+ V) + g 2V, if k > 1.

This definition, which agrees with the definition given in section 1 when
V' =0, is natural for the following reasons. First, V is compatible with
the metric g

~ 0

Vig awzgjkjLFJgpk—i—Fk G =0

for all 4,5,k > 0.
Second, let

al l l P 1l
Ry, = ol — o, + 0,10 —Th T

ijk —

and Rjk = Rg ik denote the Riemann curvature and Ricci tensors of the

space-time connection V. Furthermore, extend the 1-form V to space-time
arbitrarily V.=V + h - dt (h is an arbitrary function,) i.e., Vo = h. We
then have
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Theorem 3.1. If g satisfies the modified Ricci flow (3.1), then the space-
time metric and connection satisfy the system

a .. e e o

(3.3) 519" = 3% 5" (2R — ViV = ViVi),
0 = -~ 1~ -~ 1~,~

(3.4) EF% = _vi(R§—§vjvk—§vk )
N R G
_ k_ ~ k _ ok

V,(R; 2VZV 2V 7)

1 1.

+HVE(Ryj = SViVy = 5V,Vi)

Remark. In [CC] we proved this result when V' = df is an exact 1-form

and V) = % f. There we conjectured that the result would hold when

V' is an closed 1-form whose cohomology class is independent of time and
9

where 5V = dVp. It turns out, as the theorem says, we do not need to

make any assumption on V' and Vo may be taken arbitrarily.

The proof of the theorem relies on the following computations.

Lemma 3.2.

- 1~ -~ 1~ - 1 9 10
(35)  Rjo— §VjV0 - §V0Vj = QVj(R'f_ VI —h)— Qavj
~ ~ 10
(3-6) Roo —VoVop = §E(R + |V|2 — Qh)

We first show that the lemma implies the theorem.

Proof of Theorem 3.1. Using (3.1) and (3.2), it is easy to see that (3.3)
holds for all 4,j > 0. As for (3.4), the only nontrivial cases are
Case 1: j=0and ¢,k >1
Case 2: i,j =0 and k > 1.
For case 1, we compute

—TIk = %(—Rf + V. V).

On the other hand, the RHS of (3.4) is given by
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O T U [ R
RHS1 = —V,(R} - §v0vk — 5v’“ o) — Vo(RF — §viv’f - §vkm)
- - 1~ - 1~ -~
+VFE(Rip — 5 ViVo = 5VoVi)
— v, ([avr R P —ny|- Lt Ly
L2 27 ot P
1 1 ) 1 1
P k__ = k _ “xk 7 k_ = k _ vk
T (Ry = 5 VpVh = SVIV,) = (B = S ViVE = SVIT)
1 1 . 1 1
G (R, = 5 VpVE = SVIV,) = TG, (RY = 5ViVP = SVPV)
10
Ef|ly. 2 _ _
+ ([1vre vE |- 3 2v)

~ 1
_gklrfo(Rip - §Vi‘/}1 - §vai)a

where we used Lemma 3.2, and the boxed terms cancel. Combining terms
and using definition (c) for I'¥), we obtain

1
RHS1 = 3 ;t( V) — (2Rkp — ViV, =V, Vi) ViV,
+2g (gl w)Va = 55;(V'V)
1 0
+—(2Rkp — ViV, =V, Vi)V, Vi — 5g (atrm)v
—%(Rk - —v vk —V’“V)
( Rf + VZVP)(QRkp — VkVp — Vka)
1 1
_(_QRkp + vkvp + vka)(Rip - Evi% - §vpVi)
(9 k k a rk
prnd _— i o —F s
m(R - ViV¥) 57k

since all of the rest of the terms cancel. This verifies (3.4) in case 1.
For case 2, we compute

72 _ ok kpa
r =57 < V(R+]V\)+g atvp>.
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The RHS of (3.4) is given by

- . 1~ -~ 1~ ~ - -
RHS2 = -2V (Rf - §vov’f — 5v’%) + V¥ (Roo — VoVp)
d [ )
= —h
2 (v - - g )

- 1 1
H2AG(Ry = 5V VE = SVHY)
ke oomp e mp leps 1, (0
—2T;, (R — VOV — VYY) + =VF [ =(R+|V|* = 2h)
—gklf;lno(QRop - @ovp - @p%)
Combining terms yields

RHS2 =2 [ LVRR+ V) + ’W%Vp}
L©2Ry, — ViV, — V Vi) V(R + [V* — 2h)

+ [AVP(R+ V) + 71 2 Va] (2Ruy — ViVy - V, W)
— (=2Rup + ViVp + Vi) (Vo (R+ VP — h) — £ 1,,)
= 2 [FAVRR+IVP) + g 2V, ] = T,

which proves case 2 of (3.4), and hence the theorem.
We now return to the
Proof of Lemma 3.2. First we compute
= Vi(-R,+V;V)) = V(=R + V;V')
= —ViR,+V,R, + Rj;,V".
Tracing implies

Ry = R0

1
gjo = 5 Vilt+ RjpV?,

where we used the contracted second Bianchi identity.
We also compute

0

ot

9 2
= V;h+ avj +2REV, — V; [V[”.

ViVo+ VoV, = Vih=THV,+ =V, =T}V,

Combining the two equations above,

~ 1~ -~ 1~ -~ 1 1 1 0

> Vit vyw,
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which is equivalent to formula 1.
Second, we compute

Rog = Rbyy =0, — 0Ty + T¢IP, — T4 I5,
1 0 0
= —=AR+|V p V, R Py
AR+ V) + VP (2V,) = = (<R + V7V;)
—(=R}+ V, V) (=R +V,V?)
1 0 2
- _Z PYy/a _
2AR+ 8tR+quV V4 —|Rc|”,
where to obtain the last equality we used the formula
0 », 0 -
_a(v Vp)=-V (8tvp) (2Rpq = VpVg = VqVp)VpVy+g (8tqu)V-
We also compute
=~ 0 b, O » 0
VoWo = ah P oVp = ath+ V(R+|V]) —g° 8tV Vi
0 10
= ahnL VpR Vi ———]V| + R, VPV,
where to obtain the last equality we used
0 10
_ — PY/4
1Yy V= =5 |V (B — TV VIV,

Combining the two equations above yields

10 0. 10 .
_ Zha -2
Roo = VoVo = 7R — 5-ht 5= [V[*,

which is the same as formula 2. The proof of the lemma is complete.

4. Linearizing the Ricci flow and the space-time connection

In this section, we linearize the Ricci flow. In doing so, we must be
careful to apply DeTurck’s trick (see [D]) of modifying by a Lie derivative of
the metric term (action of an infinitesimal diffeomorphism on the metric) in
the variation direction only. We then have the following properties relevant
to the linear trace Harnack inequality. The variation of the metric satisfies
(1.3) (see Lemma 4.1, (ii) below.) The equation for the variation of the
space-time Christoffel symbols T f] (defined in the last section) is formally
the same as the equation for the variation of the Levi-Civita connection,
where ¢, V, and h are replaced by g, V, and h (see Theorem 4.2 below.) In
the next section, using this setup, we explain why the linear trace Harnack
quadratic has such a nice evolution equation.
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Let gi;(t) be a solution to the Ricci flow

0
5% = —2Rij5,  gi;(0) = (90)4j

and h;;(t) be a solution to

0
(4.1) 57/ = Ahij + 2Rpijghpg — Righjq — Rjqhig,  hij(0) = (ho)ij-

The tensors h(t) may be considered as the variation of the metrics g(t) by
a family of solutions to the modified Ricci flow. In particular, consider a
2-parameter family of metrics g;;(t, s) such that

0
Egzj(t, s) = (—2R;; + V;W; + V;W;)(t,s), ¢(0,0) = go,

where
k _ g k k
(4.2) WE(L,s) = g (t, 8)(T35(t, s) — T55(¢,0))
(here Ffj (t,s) denote the Christoffel symbols of the metric g;;(¢, s),) and
3}
%gij(oao) = (ho)ij-

Lemma 4.1.

(i) 9i5(t,0) = gi; (¢)
(11) hij(t, 0) = %gzj (t, 0)
Proof.

(). This follows from the fact W*(t,0) = 0, g(0,0) = go, and the
uniqueness of solutions to the Ricci flow.
(ii). We compute

|

0 o 6 0 0
t(%gij)(t; 0) = %(agij)(to) = a(—QRz’j + ViW; + V; W) (¢,0)

Q

1o} 0 0 0
A(%gij) + 2Rkiji - eIk~ Ri - a0k~ Ry - 550k (t,0).

Since both Zg;;(t,0) and hy;(t) satisfy the same equation (4.1) and
29:7(0,0) = hy;(0), by the uniqueness of solutions to (4.1) with given
initial condition, we have % 9ij(t,0) = h;;(t), and the lemma is proved.
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Since the family {g(t,s)}¢cjo,r) for s fixed is a solution to the modi-
fied Ricci flow, we may associate to it the degenerate metric g(t,s) and
connection V(¢,s) on space-time M x [0,T) x {t} defined in section 3,

Nk Tk oip s -

Ly =13 ifi,5,k>1

T = 0if4,j>0

Tk = —RF +V,WFifi k> 1

Tk = —LVH R+ W) + g 2 W, it k > 1,

where W is given by (4.2).
The tensor h may be considered as the variation of the pair (g, V) in
the following sense.

Theorem 4.2. The space-time metric § and connection V. satisfy

o .. .
5597 =79 "5 b
and
0zp _ 1 e T B — R
%Fij =39 (Vihji + Vjihi — Vihij)

at any point in M x [0,T) x {0}.

Proof. The variation of the metric is obvious, so we consider the variation
of the connection. When ¢, j, k > 1, this follows from % 9i; = hi; and the
standard formula

For j =0 and i,k > 1, we compute

0 = 0 0 0
%Ffo = % [gkp(—Rip + Vsz)] = hkpRip — %Rzk + v@(%Wk),

where we use the fact that W (¢,0) = 0.
Now at any point in M x [0,7") x {0}, we have

0 0 |
—~ W, = WP = ij = P,
(43) aS k gkpas gkpg aSFzJ

1 .. . 1
59” (V,hjk + thik — thm) = le(h)k — §VkH
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We also compute

1
%Rik = §(quihkq + qukhiq — Ahg, — V,’VkH)

1 1
= §Vz' div(h)x, + §Vk div(h)i — Ryikphpq
1 1 1
—I—§Riphkp + §Rkphip — §Ahzk —V,;ViH.

Combining all of the above equations, we find that

0 ~
— Tk =
ds 10

1 1 1 1 1
§V1 le(h)k - §Vk le(h)Z + §Ahzk + sz‘kthq + §Riphpk - §Rkphpi-
Next we compute
Lovg i Lo b
29 (vzhOl + thzl vZhZO)

1 ~ o -
= §[Vz diV(h)k - Ffohpk + %hik — Pgihpk

~T8, hip — Vi div(h); + T2 hip)
1
= §[Vz diV(h)k — Vi diV(h)i + Ah;, + 2Rpikthq + R,‘phpk — Rkphpi]
o0 ~
— Tk
68 20
Finally, for ¢ = 7 = 0 and k > 1 we compute

9 1 1, (8 A

where we used W (t,0) = 0 and =W (¢,0) = 0.

Since
(4.4) %R — div(div(h)) — AH — Re-h
and

o (0 o (0 0 .. 1
75 (51%) = 71 (73%) = @0y = 5%

5/en VR — %vk [div(div(h)) — AH — Re- h] + %(div(h)k - %ka).
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Now from (4.1), we compute

(4.5) %H = AH +2Rc-h,

which implies

0 - 1 1 L a ..
%Flgo = §hkapR - ivk [div(div(h)) + Rc - h] + a(le(h))k-

On the other hand, we compute

1 .~ - o .
§gkl(vohoz + Vohot — Vihoo)

0, .. ~ PO
= E(dlv(h)k) - Fgohpk - ngh()p

1 .
—§Vk [div(div(h)) + Rc- h] + T}y hop

d 1 1 d -~
= a(div(h)k) + §vahpk — 5v,g [div(div(h)) + Rc- h] = %r’go.

The proof of the lemma is complete.

5. Linear trace Harnack quadratic and linearizing the
space-time Ricci tensor

In this section we linearize the space-time Ricci tensor ]:Zij, given a
solution to the Ricci flow % 9i; = —2R;;, and then consider the evolution
equation for the linear trace Harnack quadratic from this point of view.
We consider the same 2-parameter family of metrics {g(¢,s)} as before.
Again, we use DeTurck’s trick (now in space-time) and add a Lie derivative
of the metric term to the Ricci tensor and consider —2]%”- + @Z—WJ— +V j Wi.

Clearly, we want W to be an extension of W:
WH(t,5) = Wh(E,s) = g7 (£, ) (T (£ 8) = T (£,0)), for k> 1.

The key is to define Wy suitably, unlike in Theorem 3.1 for Vy, we cannot
prescribe Wy arbitrarily. The right definition is to let

Wo = i VW),
p=1
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or equivalently !

(5.1) Wo = gP1v,W,.
We then have

Theorem 5.1. On M x [0,T) x {0}

9 . 3 3
88( 2RZ] + V W + V W) Ahw + ZRg”h Rithq — R]’qhiq.

Proof. We first compute

DRy = i) - v i)
— %6p(61h]p+@jﬁw—?pl}zg) - %@z(@pﬁjp+@yﬁpp*@pﬁm)
- —%AIEU - Rgijﬁpq + %quﬁjq + % Rjghiq
+5 S ohip + 5 1V ey %Vﬁjﬁm

Hence the theorem will follow from showing that

0

ds
for j > 0. For j > 1, this is true by equation (4.3). For j = 0, this follows
from the computation

0 0
— P
35W0 v (85
where we used definition (5.1), W =0 on M x [0,T) x {0} , and (4.5).
The theorem is proved.
This theorem together with Lemma 2.1, says that

J - < - 0
(5.3) ahi]‘ = Aphi; = 88(

—W,; = Vyhj, — @jﬁpp,

(5.2) W?) = div(div(h)) — %AH = V,hop

2Ry + VW + ¥, W),

where by definition,

ALBi]’ = ABU + 2Rq ]~7J Riqﬁjq — quiliq.

pij

This formula further confirms that h should be thought of as the variation
of the pair (g, V). It also agrees with the equation obtained by comparing

11t is perhaps natural to propose that all covariant space tensors be extended this
way. In particular, extending the Riemann curvature and Ricci tensors of g this way
yield the Riemann curvature and Ricci tensors of the space-time connection V. In
addition, the extension of h to k is given in exactly this way.
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the mixed partial derivatives of the space-time connection in the time and
variation direction. In particular, first recall that

0 p e e -
%FZ = §gkl(vihﬂ + Vjhit — Vihiz).

Taking k > 1, we compute (omitting details:)

0,60 = - - -
(5.4) m(%FZ—) = ZRkl(vihjl + Vjhy — Vihij)

>1
+ Z(@léﬂ’ + ﬁJRJD - @pr)Bpk

p>1

1o @ P
43 [Tilgha) + V() - Val i)

Next, we compute the same quantity, except that we switch the order
of the partial derivatives. We have (again omitting the details of the
computation:)

0,0 = s s = -~ -~
(5.5) %(arfj) = Y hw(ViRj + VR — ViR;;)
1>1
+ Z(@Jz]p + @J ﬁ%p - @pkw)ﬁpk
p=>1

where
N P B S
= 5 (—2Rij + VW A+ Vsz-) N
Comparing (5.4) and (5.5), we obtain

0 ilij = S8ij) =0,

~ 0 - ~ ~ ~ ~ - 0
(5.6) v(at Jk Jkr)‘i'vj(at k k) Vk(at
for all 3,7 > 0 and k > 1. This agrees with (5.3); note however, (5.6)
doesn’t imply (2.5). To further understand the interpretation of h as a
variation of (g, V), we consider the approximation approach of the next

section.
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6. An approximation approach

In [CC], the authors showed that there is a family of Riemannian met-
rics g on M = M x [0,T) such that g—! limits to the degenerate metric
g on T*M and the Levi-Civita connection Ffj limits to the space-time

connection f‘f] Here, we adopt this approach to show that, corresponding
to the 2-parameter family of metrics {g(¢,s)} defined in section 4, there
is a family of Riemannian metrics g, parametrized by s and a sufficiently
large number N, on M which satisfy the above properties, and also the
additional property that the variation in the s direction of each metric g in
the family is the linear trace Harnack quantity . Furthermore, we derive
the evolution equation for h again using these approximate metrics.
In general, given a solution g(¢) to the modified Ricci flow

i = 720 + ViV + ViV,

and a function f : M x [0,7) — R, define the Riemannian metric g
(parametrized by large numbers N) on M = M x [0,T) by

Gij = Gij ifi,j>1
gio =Vi+V,f ifi>1

goo =R+ V[P +2%L + N,

where N is a sufficiently large positive real number to make g positive-
definite. 2 Clearly

lim g !
N—>oog

=g.

We shall show that for any function f, the Levi-Civita connections of this
family of Riemannian metrics converge (as N — o0) to the space-time
connection f‘f} We then apply this to the 2-parameter family of metrics
defined in section 4. First recall that if I denotes the n xn identity matrix,
X is a column n-vector, and b is real number greater than |X|*, then

-1 xxT 1
( . X) _< THine  —exrt )

2Conan Leung pointed out to us that this construction of a family of positive-
definite metrics (together with their Levi-Civita connections) limiting to a metric which
is infinite in certain directions is similar to a construction in work of Bismut [B].
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Hence the inverse of the metric g is given by

(VI+Vif)(VI+V7f)

99 =9+ s @ v vy izl
~0 _ (V'+V'y) s

g = R+2( S5 —(V£,V))—-|VfI2+N iti=1
§OO 1

T R2(Z—(VEV))-IVFPHN

Using the standard formula
~ 1 e R R N
Iy = 3 ngl (9igjt + 9i9u — D1Gij) ,
1=0

we compute that the Christoffel symbols are given by (the details of the
proof are omitted:)

Lemma 6.1. Fori,j, k > 1, we have

(VF+VEf) (Rij + ViV, f)
R+2(%—<Vf,v>) — V4N
Yy = —-RF+Vv,V*
(VE+V5f) (SViR+V Ry + V5~ V' (~Ra+ VW)

Tk _ k

R+2 (30— (V1, V)= VI[P +N
(VE+VFf)
R+2 (%-(W, v>> —|VfP+N

1 — 10R <
*(gzwvlm S+ > RV
=1 ;

~ 0
w9
N

l—%v’“ (R+|V]2) -

2 0ot

1,7=1
0 1 o (0f
_v! Yy 2 o (df
Vf<6tvl 281(R+|V|>>+8t<8t>>
& 1
3 i iV
R+2 (% —(V1V)) = [V + N
0 =

R+2(%—(Vf,v>) — V24N
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IS VIVIR+ 2R+ RV,
R+2(W —(Vf,V>> — V2 + N

=0 _
F00 -

V(5 Wit Vi) + 3V (R V2 +29))
 R+2(Y VAV - I N

It follows that

Lemma 6.2. For N sufficiently large

ij  ~ij 1 Sk ok 1 ! 1
ggzga+o<ﬁ>, Fij=F¢j+0<N>’ R, = RJHo(N)

for alli,j,k > 0. In particular,
Jim g = g4, Jim I =Tk, Jim R”k =R,

Now let {g(t,s)} denote the 2-parameter family of metrics defined in
section 4, which satisfy the modified Ricci flow in the ¢ direction

&gij = —QRZ']‘ + vin + VjWi,
where W is defined by (4.2). Furthermore, take
1 det g(t, s) dV(t,s)
= Zlog IS5 0, SX S
1= 318 Getg(t,0) ~ 8 qv(z,0)"
so that
9ij = Yij
N 1 det g(t, s)
o = Wi+ ;Vilog ————=
g0 * 2V ©8 det g(¢,0)
~ (9 det g(t, s
goo = R+[W[+ - t)

ot log det g(t,0)

In addition to the properties of Lemma 6.2, we now have that the variation
of g is the linear trace Harnack quantity h

Lemma 6.3. Fori,j >0, 2g,; = hi;.

Proof. We have for i,j > 1, by definition

0 . 0 ~
9591 = 59 = hij = hij.
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For i > 1, we compute using equation (4.3) that

o oW, 1_ . . -
%gio — 88 + §VZH — dlv(h)z — han

and using equations (4.4) and (4.5) that

0 . OR O0H o -
ggoo = s + vl div (div(h)) + Re - h = hgp.

We also have, to first order in s, that the time-derivative of § is the
modified space-time Ricci tensor.

Lemma 6.4.

EIR N o
191 = —2R;j + V;W; + V;W; + o(s),
where 3
— o(s) = 0.
0s|,_q

Using Theorem 5.1 and Lemmas 6.3 and 6.4, we can give the following
alternate proof of Lemma 2.1 (or equivalently Proposition 2.3.) On M x
[0,T) x {0}

O; 00 9. 0
ot = otos 7 T 9507 T s,

(285 + VW + VWi ) = B .
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