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A NON-ADDITIVE THERMODYNAMIC

FORMALISM AND DIMENSION THEORY

OF HYPERBOLIC DYNAMICAL SYSTEMS

Luis M. Barreira

A bstract . We develop a non-additive version of the thermodynamic for-
malism. This allows us to unify and extend many results of dimension the-
ory of hyperbolic dynamical systems. We obtain lower and upper bounds
for the dimension of a broad class of Cantor-like sets and hyperbolic sets.

Introduction

We begin with the description of a geometric construction in the real
line. We consider p positive numbers λ1, . . . , λp < 1, and choose p disjoint
closed intervals ∆1, . . . , ∆p with length λ1, . . . , λp. For each k = 1, . . . , p,
we choose again p disjoint closed intervals ∆k1, . . . , ∆kp ⊂ ∆k with length
λkλ1, . . . , λkλp. Iterating this procedure, for each integer n we obtain pn

disjoint closed intervals ∆i1···in
with length

∏n
k=1 λik

. We define the set

(1) F =
∞⋂

n=1

⋃
(i1···in)

∆i1···in .

In [M], Moran showed that the Hausdorff dimension of F is the unique
root s of the equation

(2)
p∑

k=1

λk
s = 1.

This result does not depend on the location of the intervals ∆i1···in
.

The next step is to consider intervals ∆i1···in with length ri1···in that may
satisfy no asymptotic behavior, and may depend on all the symbolic past.
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Let σ(i1i2 · · · ) = (i2i3 · · · ) be the shift map. If the sequence of functions
ϕn(i1i2 · · · ) = log ri1···in is sub-additive, that is, if ϕn+m ≤ ϕn + ϕm ◦ σn

for every n, m ≥ 1, we can prove, under mild additional assumptions, that
the Hausdorff and box dimensions of F satisfy

(3) dimHF = dimBF = dimBF = s,

where s is the unique root of the equation

lim
n→∞

1
n

log
∑

(i1···in)

ri1···in

s = 0.

It is remarkable that this holds for any location of the intervals ∆i1···in .
We can generalize the above constructions to the case of arbitrary sym-

bolic dynamics. Let Σ+
p be the compact set of one-sided sequences on

p symbols, and let Q ⊂ Σ+
p be a compact shift-invariant subset. We de-

fine a set F = F (Q) in a way similar to that in (1), where the union is
taken only over the Q-admissible tuples (i1 · · · in), that is, those tuples such
that (i1 · · · in) = (j1 · · · jn) for some (j1j2 · · · ) ∈ Q. In [PeW], Pesin and
Weiss showed that if the intervals ∆i1···in have length

∏n
k=1 λik

, then the
identities in (3) hold when we replace s by the unique root of Bowen’s
equation

(4) P (s ϕ) = 0.

Here ϕ is the function defined on Q by ϕ(i1i2 · · · ) = log λi1 , and P is the
topological pressure with respect to the shift map. We recall that for an
arbitrary continuous function ϕ on Q, we have

(5) P (s ϕ) = lim
n→∞

1
n

log
∑

(i1···in)
Q-admissible

exp sup

(
s

n−1∑
k=0

ϕ ◦ σk

)
,

where the supremum is taken over the sequences (j1j2 · · · ) ∈ Q such that
(j1 · · · jn) = (i1 · · · in). As this example illustrates, we can use the thermo-
dynamic formalism in complicated problems of dimension theory.

In [Bo], Bowen introduced equation (4). It has a rather universal charac-
ter: most equations used to compute or estimate dimensions are particular
cases of it. For example, if Q = Σ+

p then equation (4) is equivalent to
equation (2).

We can also consider geometric constructions modeled by arbitrary sym-
bolic dynamics, with intervals ∆i1···in with length ri1···in that may satisfy
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no asymptotic behavior, and may depend on all the symbolic past. If the
sequence {ϕn} defined above is sub-additive, we can prove, under mild ad-
ditional assumptions, that the identities in (3) hold when we replace s by
the unique root of the equation P (s {ϕn}) = 0, where P is an appropriate
generalization of the topological pressure. This new pressure may become
non-additive, in the sense that the function ϕn may substitute the sum∑n−1

k=0 ϕ ◦ σk in (5).
In [Ba1], we develop a non-additive version of the topological pressure,

for arbitrary sequences of functions {ϕn} that may neither satisfy additivity
nor even sub-additivity. We follow the approach of Pesin in [P1], to define
pressure as a Carathéodory dimension characteristic. The new pressure
generalizes the well-known notion of topological pressure on a compact set,
introduced by Ruelle in [R1] for expansive maps, and by Walters in [W] in
the general case.

Using the non-additive thermodynamic formalism, we unify and extend
many results of dimension theory of hyperbolic dynamical systems. In par-
ticular, we establish lower and upper dimension estimates for repellers of
continuous expanding maps, and for the intersection of basic sets of Ax-
iom A� homeomorphisms with stable and unstable sets. The main elements
of our approach are the use of Markov partitions to reproduce the structure
of the invariant sets, and a version of Lyapunov exponents for continuous
maps, that in the smooth case coincide with the Lyapunov exponents.

In the special case of smooth dynamical systems, we provide a straight-
forward approach, with proofs entirely based on the thermodynamic formal-
ism. In particular, we recover the formula giving the Hausdorff dimension
of basic sets of Axiom A surface diffeomorphisms, established by McCluskey
and Manning in [MM]. When we establish the dimension estimates along a
stable or unstable set, we need no information about the symbolic dynamics
in the transverse direction.

Non-additive thermodynamic formalism

Non-additive topological pressure. Let (X, ρ) be a compact metric
space, and f :X → X a continuous map. Let U be a finite open cover
of X. We denote by Wn(U) the collection of strings U = U0 · · ·Un of sets
U0, . . . , Un ∈ U, with length m(U) = n. For each U ∈ Wn(U), we define
the open set X(U) =

⋂n
k=0 f−kUk. We say that the collection of strings

Γ ⊂
⋃

n≥1 Wn(U) covers the set Z ⊂ X if
⋃

U∈Γ X(U) ⊃ Z.
We consider a sequence of functions ϕn:X → R and denote it by Φ. For

each positive integer n, we define

γn(Φ,U) = sup
{
|ϕn(x) − ϕn(y)| : x, y ∈ X(U) for some U ∈ Wn(U)

}
.
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We denote by |U | = sup{ρ(x, y) : x, y ∈ U} the diameter of the set U ⊂ X,
and by |U| = sup{|U | : U ∈ U} the diameter of the cover U. We assume
that the following property holds:

(6) lim
|U|→0

lim
n→∞

γn(Φ, U)
n

= 0.

We follow the approach in [P1] to define pressure as a Carathéodory
dimension characteristic. For each string U ∈ Wn(U), we write ϕ(U) =
supX(U) ϕn when X(U) 
= ∅, and ϕ(U) = −∞ otherwise. For each set
Z ⊂ X and α ∈ R, we define

(7) M(Z, α,Φ,U) = lim
n→∞

inf
Γ

∑
U∈Γ

exp
(
−α m(U) + ϕ(U)

)
,

where the infimum is taken over all Γ ⊂
⋃

k≥n Wk(U) that covers Z. Like-
wise, we define

M(Z, α,Φ,U) = lim
n→∞

inf
Γ

∑
U∈Γ

exp
(
−α n + ϕ(U)

)
,(8)

M(Z, α,Φ,U) = lim
n→∞

inf
Γ

∑
U∈Γ

exp
(
−α n + ϕ(U)

)
,(9)

where the infimum is now taken over all Γ ⊂ Wn(U) that covers Z. When
α goes from −∞ to +∞, each of the quantities in (7), (8), and (9) jumps
from +∞ to 0 at a unique critical value. Hence, we can define

PZ(Φ,U) = inf
{
α : M(Z, α,Φ, U) = 0

}
,

CPZ(Φ,U) = inf
{
α : M(Z, α,Φ,U) = 0

}
,

CPZ(Φ,U) = inf
{
α : M(Z, α,Φ, U) = 0

}
.

Theorem 1. The following limits exist:

PZ(Φ) def= lim
|U|→0

PZ(Φ, U),

CPZ(Φ) def= lim
|U|→0

CPZ(Φ,U), CPZ(Φ) def= lim
|U|→0

CPZ(Φ, U).

We call PZ(Φ) the non-additive topological pressure, and CPZ(Φ) and
CPZ(Φ) the non-additive lower and upper capacity topological pressures of
the sequence of functions Φ on the set Z (with respect to f). We emphasize
that the set Z need not be compact nor f -invariant.
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In the classical thermodynamic formalism, we consider a continuous
function ϕ on X, and define the sequence of functions ϕn =

∑n−1
k=0 ϕ ◦ fk.

Using the uniform continuity of ϕ, one can show that property (6) holds.
We recover the notion of topological pressure introduced by Pesin and
Pitskel’ in [PP], and the notions of lower and upper capacity topologi-
cal pressures introduced by Pesin in [P1] for arbitrary sets. When Z = X,
we obtain the topological pressure for compact sets introduced by Ruelle
in [R1] in the case of expansive maps, and by Walters in [W] in the general
case.

In [Ba1], we establish a non-additive version and generalization of the
classical variational principle for the topological pressure.
Bowen’s equation. For each real number s we denote by s Φ the sequence
of functions {s ϕn}. Let h(f) be the topological entropy of f .

Theorem 2. If K1n ≤ ϕn ≤ K2n for all sufficiently large n, where K1, K2

are negative constants, and h(f) < ∞, then there are unique roots sP , sCP ,
and sCP of the equations PZ(sΦ) = 0, CPZ(s Φ) = 0, and CPZ(sΦ) = 0.

Each equation in Theorem 2 is a non-additive version of Bowen’s equation
P (s ϕ) = 0. Here P is the classical topological pressure with respect to
some continuous map f :X → X, and ϕ is a continuous function on X. This
equation establishes the connection between the thermodynamic formalism
and dimension theory: its unique root often gives the exact value or a
good estimate for dimension. A good way to think about the relation
between dimension and pressure is that both are Carathéodory dimension
characteristics (see [P1]).

Applications to dimension theory

A symbolic geometric construction in R
m is defined by:

(a) a compact shift-invariant set Q ⊂ Σ+
p for some p ≥ 1;

(b) a decreasing sequence of compact sets ∆i1···in ⊂ R
m for each se-

quence (i1i2 · · · ) ∈ Q, with diameter |∆i1···in
| → 0 as n → ∞.

The limit set of the construction is the compact set F =
⋂∞

n=1

⋃
∆i1···in ,

where the union is taken over all Q-admissible n-tuples, that is, all tuples
(i1 · · · in) such that (i1 · · · in) = (j1 · · · jn) for some (j1j2 · · · ) ∈ Q.

We notice that the sets ∆i1···in need not be disjoint for any fixed n.
Our constructions include as trivial examples any iterated function scheme
defined by a family of contraction maps. Our setting is much more general
and the limit sets that we consider may not be obtained using a family of
contraction maps.
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Generalized Moran constructions are constructions such that there exist
balls Bi1···in

and Bi1···in for each (i1i2 · · · ) ∈ Q and n ≥ 1 such that:

(a) Bi1···in
⊂ ∆i1···in ⊂ Bi1···in ;

(b) the interiors of Bi1···in
and Bj1···jm

are disjoint for any (i1 · · · in) 
=
(j1 · · · jn) and m ≥ n;

(c) Bi1···in
and Bi1···in have radii C1ri1···in and C2ri1···in , for some pos-

itive number ri1···in and positive constants C1 ≤ C2.
We notice that the numbers ri1···in may depend on all the symbolic past,
and may satisfy no asymptotic behavior. A special class of generalized
Moran constructions is the class of Moran constructions, introduced in [M]
when Q = Σ+

p (see [PeW]).
We define the sequence of functions ϕn(i1i2 · · · ) = log ri1···in on Q, and

denote it Φ. Then property (6) holds for the shift map. We assume that
there exist K > 1 and δ > 0 such that, for each (i1i2 · · · ) ∈ Q and n ≥ 1,

(10) ri1···in
≤ K−n and ri1···in+1 ≥ δri1···in

.

By (10) and Theorem 2, there exist unique roots sP , sCP , and sCP of the
equations PQ(sΦ) = 0, CPQ(sΦ) = 0, and CPQ(s Φ) = 0.

Theorem 3. For a generalized Moran construction satisfying (10), we
have:

(a) sP ≤ dimHF ≤ dimBF ≤ dimBF ≤ sCP ;
(b) if Φ is sub-additive then dimHF = dimBF = dimBF = sP =

sCP = sCP = s, where s is the unique root of the equation

lim
n→∞

1
n

log
∑

(i1···in)
Q-admissible

ri1···in

s = 0.

In [Ba1], we construct an example which demonstrates that we may
have strict inequalities in Theorem 3a if the sequence Φ is not sub-additive.
In [Ba2], we establish extensions of Theorem 3 to classes of limit sets with
more complicated geometry.

Dimension of hyperbolic sets

Repellers of continuous expanding maps. Let (X, d) be a compact
metric space. A continuous map h:X → X is called expanding if it is a
local homeomorphism at every point, and there exist constants a ≥ b > 1
and r0 > 0 such that, for each x ∈ X and 0 < r < r0, we have

(11) B(hx, br) ⊂ h
(
B(x, r)

)
⊂ B(hx, ar).
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We then say that X is a repeller of h. One can show that a continuous
expanding map is locally Lipschitz (see (12) below).

Let R1, . . . , Rp be a Markov partition of X with transfer matrix A, and
Σ+

A the associated topological Markov chain. For each ω = (i1i2 · · · ) ∈ Σ+
A

and integers n, k ≥ 1, we define the lower and upper ratio coefficients
respectively by

λk(ω, n) = min inf
{

d(x, y)
d(hnx, hny)

: x, y ∈ Rj1···jn+k
, x 
= y

}
,

λk(ω, n) = max sup
{

d(x, y)
d(hnx, hny)

: x, y ∈ Rj1···jn+k
, x 
= y

}
,

where the minimum and maximum are taken over the Σ+
A-admissible tuples

(j1 · · · jn+k) with (j1 · · · jn) = (i1 · · · in), and Ri1···in
=

⋂n
k=1 h−k+1Rik

.
The ratio coefficients play the role of Lyapunov exponents for continuous

maps that may not be differentiable. Since the maps k �→ λk(ω, n) and
k �→ λk(ω, n) are respectively non-decreasing and non-increasing for each
fixed ω ∈ Σ+

A and n ≥ 1, we can define λ(ω, n) = limk→∞ λk(ω, n) and
λ(ω, n) = limk→∞ λk(ω, n). One can show that log λ(ω, n) and log λ(ω, n)
are respectively sup-additive and sub-additive cocycles (see [Ba1]). Hence,
if µ is a shift-invariant probability measure on Σ+

A, and log− λ( · , 1) and
log+ λ( · , 1) are µ-integrable on Σ+

A, then the limits

λ(ω) = lim
n→∞

1
n

log λ(ω, n) and λ(ω) = lim
n→∞

1
n

log λ(ω, n)

exist for µ-almost every ω ∈ Σ+
A. This follows from Kingman’s sub-additive

ergodic theorem. When h is smooth, the numbers λ(ω) and λ(ω) respec-
tively coincide with the inverse of the largest and smallest Lyapunov ex-
ponents of h at the point

⋂∞
n=1 h−n+1Rin , where ω = (i1i2 · · · ). Related

notions were first considered by Kifer in [K].
We define the sequences of functions

ϕk
n(ω) = log λk(ω, n) and ϕk

n(ω) = log λk(ω, n)

on Σ+
A, and denote them Φk and Φ

k
. One can show that

(12) a−n ≤ λk(ω, n) ≤ λk(ω, n) ≤ b−n

for each ω ∈ Σ+
A, n ≥ 1, and all sufficiently large k ≥ 1.

By (12) and Theorem 2, there exist unique roots sk and sk of the equa-
tions CPΣ+

A
(sΦk) = 0 and PΣ+

A
(sΦ

k
) = 0.
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Theorem 4. If X is a repeller of a topologically mixing expanding map
then sk ≤ dimHX ≤ dimBX ≤ dimBX ≤ sk.

The map h is called asymptotically conformal if for some k ≥ 1, given
ε > 0 we have λk(ω, n) ≤ eεnλk(ω, n) for all ω ∈ Σ+

A and all large n.

Theorem 5. If X is a repeller of a topologically mixing expanding map
which is asymptotically conformal, then dimHX = dimBX = dimBX = s,
where s is the unique root of the equation

lim
n→∞

1
n

log
∑

(i1···in)

Σ+
A-admissible

|Ri1···in |s = 0.

Repellers of smooth expanding maps. Let g be a C1 map on the
manifold M , and J a compact subset of M . We call g expanding and J a
repeller of g if:

(a) there exists a > 1 such that ‖dxgu‖ ≥ a‖u‖ for all x ∈ J and
u ∈ TxM (for some Riemannian metric on M);

(b) J =
⋂

n≥0 g−nV for some open neighborhood V of J ;
(c) g is topologically mixing on J .

Then gJ = J and g:J → J is expanding in the former sense.
A smooth map g is called conformal if dxg is a multiple of an isom-

etry for every point x ∈ M . Examples of repellers of conformal smooth
expanding maps are hyperbolic Julia sets and dynamically defined Cantor
sets (see [T]).

We show in [Ba1] that every conformal C1 expanding map is asymptot-
ically conformal. We define the function ϕ(x) = − log ‖dxg‖ on M , and
let Pg be the classical topological pressure with respect to g.

Theorem 6. Let J be a repeller of the conformal C1 expanding map g.
Then dimHJ = dimBJ = dimBJ = s, where s is the unique root of Bowen’s
equation Pg(s ϕ) = 0.

In [R2], Ruelle proved that the Hausdorff dimension of a repeller of
a conformal C1+α expanding map is given by Bowen’s equation. In [F],
Falconer showed that the Hausdorff and box dimensions of these repellers
coincide. The statement of Theorem 6 was also established by Gatzouras
and Peres in [GP], and by Takens in [T] for dynamically defined Cantor
sets.
Basic sets of Axiom A� homeomorphisms. Let f be a homeomor-
phism of the compact metric space (X, d). Given ε > 0, we define the local



HYPERBOLIC DYNAMICAL SYSTEMS 507

stable and unstable sets at the point x ∈ X respectively by

W s(x) =
{
y ∈ X : d(fny, fnx) ≤ ε for all n ≥ 0

}
,

Wu(x) =
{
y ∈ X : d(fny, fnx) ≤ ε for all n ≤ 0

}
.

We say that f is an Axiom A� homeomorphism (see [AY]) if there exist
constants λ ∈ (0, 1) and ε, δ > 0 such that:

(a) for each x ∈ X and n ≥ 0, we have d(fny, fnz) ≤ λnd(y, z) for all
y, z ∈ W s(x), and d(f−ny, f−nz) ≤ λnd(y, z) for all y, z ∈ Wu(x);

(b) for every x, y ∈ X with d(x, y) < δ, the set W s(x) ∩ Wu(y) con-
sists of a single point, which we denote [x, y]. We require the map
(x, y) �→ [x, y] to be continuous.

Then the set of non-wandering points is a finite union of disjoint closed
f -invariant sets, called basic sets.

Let f be an Axiom A� homeomorphism and Λ ⊂ X a basic set. We
consider a Markov partition R1, . . . , Rp of Λ with transfer matrix A, and
write Ri0···in =

⋂n
k=0 f−kRik

. Fix x ∈ Λ. For each ω = (i0i1 · · · ) ∈ Σ+
A

and integers n, k ≥ 1, we define

λu
k(ω, n) = min inf

{
d(y, z)

d(fny, fnz)
: y, z ∈ Wu(x) ∩ Rj0···jn+k

, y 
= z

}
,

λu
k(ω, n) = max sup

{
d(y, z)

d(fny, fnz)
: y, z ∈ Wu(x) ∩ Rj0···jn+k

, y 
= z

}
,

where the minimum and maximum are taken over the Σ+
A-admissible tuples

(j0 · · · jn+k) such that (j0 · · · jn) = (i0 · · · in). We assume that

(13) the map f |Wu(x) is expanding for every x ∈ Λ,

that is, the map f |Wu(x):Wu(x) → fWu(x) satisfies the inclusions in (11),
with h substituted by f , for some constants a(x) ≥ b(x) > 1. Furthermore,
we assume that limn→∞

(
a(fnx) · · · a(x)

)1/n is finite for every x ∈ Λ.
Fix x ∈ Λ. We define the sequences of functions ϕk

n(ω) = log λu
k(ω, n)

and ϕk
n(ω) = log λu

k(ω, n) on Σ+
A. By Theorem 2 and (13), there ex-

ist unique roots sk(x) and sk(x) of the equations CPΣ+
A
(s Φk) = 0 and

PΣ+
A
(sΦ

k
) = 0.

Theorem 7. Let Λ be a basic set of a topologically mixing Axiom A�

homeomorphism. Then sk(x) ≤ dimHWu(x) ∩ Λ ≤ dimBWu(x) ∩ Λ ≤
dimBWu(x) ∩ Λ ≤ sk(x).
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Property (13) is automatically satisfied when f is of class C1, but it may
not hold for arbitrary Axiom A� homeomorphisms. More generally, if the
map f is locally Lipschitz, then property (13) holds.

In a similar way, we can obtain dimension estimates for the stable sets.
Basic sets of Axiom A diffeomorphisms. Let f be a C1 diffeomor-
phism on the manifold M . An f -invariant set Λ ⊂ M is called hyperbolic if
the tangent bundle TΛM splits into stable and unstable bundles Es and Eu,
invariant under df . We say that f is an Axiom A diffeomorphism if the
set of non-wandering points is hyperbolic and is the closure of the set of
periodic points of f . We define the functions ϕs(x) = log ‖dxf |Es‖ and
ϕu(x) = − log ‖dxf |Eu‖ on Λ. Let ts and tu be the unique roots of the
equations Pf (t ϕs) = 0 and Pf (t ϕu) = 0.

Theorem 8. Let Λ be a basic set of a C1 Axiom A surface diffeomorphism,
with dimEs = dimEu = 1. Then dimHΛ = dimBΛ = dimBΛ = ts + tu.

In [MM], McCluskey and Manning proved that dimHΛ = ts + tu. The
coincidence of the Hausdorff and box dimensions was previously shown by
Takens in the case of C2 diffeomorphisms (see [T]), and by Palis and Viana
in [PV] for arbitrary C1 diffeomorphisms. The technique in [PV] differs
from the one in [Ba1] and is not based on the thermodynamic formalism.
In higher dimensional manifolds, the Hausdorff and box dimensions of basic
sets may not coincide (see [PoW] for examples).

In [Ba1], we also obtain lower and upper dimension estimates for basic
sets in higher dimensional manifolds. In [P2], Pesin gives a straightforward
treatment of the case where one of the maps df |Eu and df |Es is conformal.
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