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A COMPACTNESS RESULT FOR

GENERALIZED RADON TRANSFORMS

Patrick Gérard, François Golse, and Bernt Wennberg

Let X and Y be two C1 manifolds with dim X = m and dim Y = n. Let
Z be a C1 submanifold of the product X×Y with codim Z = l < inf(m, n).
It will be assumed that the restrictions to Z of the two canonical projections
associated to the product X × Y are submersions; they are denoted by p1

and p2 as follows:

(1)

Z
p2−−−−→ Y

p1

�
X

In the sequel, the fiber of p1 above x ∈ X is denoted by Z ′
x and that of

p2 above y ∈ Y by Z ′′
y . Let κ ∈ C0

c (| ∧ TZ|) be a compactly supported
continuous density on Z; we shall denote µ = p1∗κ, the push-forward of κ
under p1.

To the double submersion (1) is associated the generalized Radon trans-
form

(2) K : C0(Y ) �→ C0(X) , f �→ g such that p1∗((p∗2f)κ) = gµ .

Such operators have been considered for example in [G-S, Ph-St1-2-3, So-
St]; how they are related to the classical Radon transform is explained in
[G-S, pp. 336-337, He]. We recall that, in the notations above, p∗2f = f ◦p2

is the pull-back of f by p2; for a density α on Z whose restriction to each
fiber Z ′

x of p1 is compactly supported, the push-forward p1∗α is the density
on X obtained by integrating α on each fiber Z ′

x of p1. For example, in the
case where Z has codimension l = 1 in X ×Y = R

n ×R
n and is defined by

a C1 scalar equation Φ(x, y) = 0, the operator K can be put in the form

(Kf)(x) = lim
ε→0+

1
ε

∫
|Φ(x,y)|≤ε

f(y)a(x, y)dy
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for some C0 function a. For the general case, we refer the reader unfamiliar
with the notations used in (2) to formulas (10) and (17) which give the
expression of K in local coordinates.

The smoothing effect of these operators has been studied for example in
[G-S, So-St, Ph-St2-3]; these papers appeal to the theory of Fourier integral
operators and assume that all the objects X, Y , Z, µ and ν are C∞.
a] Assume that both projections π1 and π2 of T ∗(X × Y ) ∼ T ∗X × T ∗Y

map bijectively N∗Z \ {0} → T ∗X \ {0} and N∗Z \ {0} → T ∗Y \ {0}.
Then m = n and, as explained in [G-S, pp. 364-365], the operator K is
an elliptic Fourier integral operator of order (l − n)/2 associated to the
homogeneous canonical relation N∗Z (which is the graph of the canon-
ical transform π2 ◦ (π1|T∗X\{0})−1); hence K extends as a continuous
map L2

comp(Y ) → H(n−l)/2(X).
b] The same result is proved in [So-St] in the case where m ≥ n ≥ 2, l = 1

and Z is defined by a C∞ equation Φ(x, y) = 0, under the assumption
that the matrix

(3)
(

0 ∂Φ/∂xi

∂Φ/∂yj ∂2Φ/∂xi∂yj

)

has maximal rank on Z. In the case where the matrix (3) has a square
submatrix of maximal dimension whose determinant vanishes at infinite
order nowhere on Z, Sogge and Stein show the existence of p0 ∈]1,∞[
such that K extends as a continuous map Lp

comp(Y ) → W (n−l)/p,p(X)
for all p ∈]p0,∞[: see [So-St].

c] In [Ph-St2-3], the same type of problem is studied in the case where
n = m and l = n−1; the gain of regularity in the Sobolev scale of spaces
is related to the vanishing order of the system of equations defining Z.
For example, when n = m = 2, Φ(x, y) = x2 − x1 − S(x2, y2) with
S(x, y) = ajx

jyn−j + ... + akxkyn−k, 1 ≤ j < k ≤ n− 1, K extends to a
continuous map Lp

comp(R
2) → W 1/n,p(R2) provided that n/k < p < n/j,

and to a continuous map L2
comp(R

2) → H1/n(R2) provided that j = n/2
or k = n/2.
In the present note, we give a geometric criterion on the double fibra-

tion (1) which is equivalent to the compactness of the operator K in any
Lp space, 1 < p < ∞. This condition obviously encompasses all the situ-
ations described in a], b] and c] above and our result applies to much less
regular objects (C1 instead of C∞) because we do not use Fourier integral
operators. Instead, we use a compactness result on averages of solutions
of PDEs (theorem 2.5 of [Gé1]) which generalizes the Velocity Averaging
lemma established for kinetic models ([Ag], [GLPS]). The relevance of the
notion of generalized Radon transforms to establish a crucial compactness
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property in the Boltzmann equation was recognized first by P.-L. Lions [L].
Indeed, the ‘gain’ part of the Boltzmann collision integral is an average over
the surface of constant energy and momentum. Applications of the notion
of Radon transform within this context can be found in [W] and [An].

Theorem. A necessary and sufficient condition for K to extend as a com-
pact operator

(3) K : Lp
loc(Y ) �→ Lp

loc(X) , 1 < p < ∞ ,

is that

(4)
∀(x, ξ) ∈ S∗X ,

{z ∈ Z ′
x | (ξ, 0) ∈ N∗

z Z} is of measure 0 as a subset of Z ′
x .

Proof. We first show that the operator (3) is continuous under the only
assumption that (1) is a double fibration. Let 1 ≤ p < ∞. Let U be an
open set in X and χ a C0 function supported in U ; one has to show that,
for any relatively compact open set V ⊂ Y , there exists CUV > 0 such
that, for all f ∈ Lp(Y ) supported in V

(5) ‖χKf‖Lp(X) ≤ CUV ‖f‖Lp(Y ) .

Using partitions of unity to localize the problem, one can reduce the prob-
lem to the case where:

— On U and V , C1 local coordinates denoted respectively by x =
(x1, ..., xm) et y = (y1, ..., yn) are defined; one denotes further
y′ := (y1, ..., yl) and y′′ := (yl+1, ..., yn) one assumes that V = V ′ × V ′′

with V ′ ⊂ R
l and V ′′ ⊂ R

n−l. Similarly we shall use the notations
x′ = (x1, ..., xl) and x′′ = (xl+1, ..., xm). Since p1 is a submersion, one
also assumes Z ∩ U × V to be defined by the (system of) equation(s)

(6) y′ := (y1, ..., yl) = φ(x, y′′) .

Moreover, for all (x, y′′) ∈ U × V ′′, one can assume

(7) D(x, y′′) := det
(

∂φi

∂xj
(x, y′′)

)
1≤i,j≤l

�= 0 ;

(this condition expresses locally the fact that p2 is a submersion).
— On Z ∩ U × V , the density κ is in the form k(x, y′′)|dx||dy′′|.
Consider

(8) ψ :� (x, y′′) �→ (x′′, φ(x, y′′), y′′)
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which, by condition (7), defines a C1-diffeomorphism U ×V ′′ → ψ(U ×V ′′)
(which is open in R

m+n−l). Hence

(9) χ(p∗2f)κ = h|dx||dy′′|

with

(10) h(x, y′′) = f(φ(x, y′′), y′′)χ(x)k(x, y′′) .

Therefore∫
U×V ′′

|h(x, y′′)|pdxdy′′ =
∫

ψ(U×V ′′)
|f(y′, y′′)|p|χk(ψ−1(x′′, y′, y′′))|p|D(ψ−1(x′′, y′, y′′))|−1dx′′dy′dy′′

(11) ≤ Cχ sup
(x,y′′)∈U×V ′′

(|χ(x)k(x, y′′)|p|D(x, y′′)|−1|)‖f‖p
Lp(V ) .

(where Cχ is a positive constant depending only on the support of χ). In
other words, the map

(12) Lp(V ) � f �→ h ∈ Lp(U × V ′′) where h is defined by (10)

is continuous, which implies the continuity of (3).
Next, we assume that the geometric condition (4) is satisfied and proceed

to show that the operator (3) is compact. It suffices to prove compactness
in the case where p = 2; the general case follows by Hölder’s inequality. We
localize again x in U and y in V (the general case follows from a classical
argument involving partitions of unity).

Without loss of generality, we can assume that the function k is of class
C1. Indeed, if k is only continuous, one can pick a sequence kn of C1

functions converging uniformly to k on U×V
′′

and the compactness follows
from estimate (11) once it has been established in the case where k is
replaced with any of the kn.

Let (fε) be a bounded family of L2(Y ) supported in V and let (hε) be
the bounded family of L2(U ×V ′′) associated to (fε) by (12). If L(x, y′, ∂x)
is a differential operator of the form

(13)
L(x, y′′, ∂x) =

∑
1≤i≤m

ai(x, y′′)∂xi

such that Lφr = 0 on U × V , 1 ≤ r ≤ l
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then

(14) (L(x, y′′, ∂x)hε)(x, y′′) = fε(φ(x, y′′), y′′)L(x, y′′, ∂x)(χ(x)k(x, y′′)) .

Let aj
i (x, y′′) (1 ≤ i ≤ m, 1 ≤ j ≤ m − l) be C1 functions on U × V ′′ such

that

(15) Lj(x, y′′, ∂x) =
∑

1≤i≤m

aj
i (x, y′′)∂xi

satisfies (13) for 1 ≤ j ≤ m − l

and

(16)
∀(x, y′′) ∈ U × V ′′ ,

the family {(aj
i (x, y′′))1 ≤ i ≤ m | 1 ≤ j ≤ m − l} is free.

Formula (14) shows that, for all 1 ≤ j ≤ m−l, the family (Ljgε) is bounded
in L2(U × V ′′). To show that the family

(17) gε(x) =
∫

V ′′
hε(x, y′′)dy′′ is relatively compact in Lp(X)

we appeal to theorem 2.5 of [Gé1] which says that (17) holds provided that

(18)
∀(x, ξ) ∈ U × R

n \ {0} ,

meas ({y′′ ∈ V ′′ | ∀1 ≤ j ≤ m − l ,
∑

1≤i≤m

aj
i (x, y′′)ξi = 0}) = 0 .

According to (13) and (16), this is precisely equivalent to the condition

(19)
∀(x, ξ) ∈ U × R

m \ {0} ,

meas ({y′′ ∈ V ′′ | ξ ∈ span{∂xφr(x, y′′) , 1 ≤ r ≤ l}}) = 0 .

According to (7) et (16), condition (18) clearly is equivalent to (4) since, if
z = (x, φ(x, y′′), y′′), one has

(20) N∗
z Z ∩ T ∗

x X ⊕ 0y = span {∂xφr(x, y′′) , 1 ≤ r ≤ l} .

This shows the compactness of (3) when (4) holds. Conversely, if the op-
erator (3) is compact, (4) must hold because, as proved in [Gé2], (18) is a
necessary and sufficient condition for the compactness (17).

By a standard interpolation argument involving the Dunford-Pettis char-
acterization of weakly compact families in L1 spaces, the Theorem above
implies the following.
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Corollary. If condition (4) holds, the image by K of any weakly relatively
compact family of L1(Y ) is compact in L1

loc(X).

Remark 1. In some particular cases, the method used in the proof above
can also give the optimal Sobolev regularity for (3). For example, consider
the case where n = m = 2, l = 1, X = U and Y = V as in the proof above;
suppose that Z is given by the equation y1 = A(y2)x1 + B(y2)x2. Then,
the relevant operator L in (15) is

(21) L(x1, x2, y2, ∂x1 , ∂x2) = B(y2)∂x1 − A(y2)∂x2 .

According to [GLPS], K extends as a continuous operator L2
comp(V ) →

Hs
loc(U) with 0 < s ≤ 1/2 if and only if

(22) sup
(ξ1,ξ2)∈S1

meas ({y2 ∈ V ′′ | |A(y2)ξ1 + B(y2)ξ2| ≤ ε} = O(ε2s) .

The method in [GLPS] also shows that K extends as a continuous operator
Lp

comp(V ) → Ht
loc(U) when (22) holds provided that t < inf(2s/p, 1−2s/p).

Sharper regularity results in Lp spaces have been obtained in [DPLM].
Although this type of result is less general than those obtained by Phong

and Stein, the method of Velocity Averaging presented in [GLPS] gives
in this case the optimal Sobolev regularity (in the L2 case), whereas the
method used by Phong and Stein, which is based on a Van der Corput type
estimate (see [St, chapter VIII]), does not.
Remark 2. In the most general situation studied in the Theorem (with C∞

objects, though), one can obtain a sufficient condition for K to extend as
a continuous operator L2

comp(Y ) → Hs
loc(X) for 0 < s ≤ (n − l)/4: this

condition is a uniform estimate for the measure of some tubular subset of
the fiber Z ′

x for all x ∈ X, in the style of (22). This follows from the results
of [Gé3]. However, even if in some cases one can obtain in this way a better
Sobolev regularity than in [Ph-St2-3], it is known that this regularity is not
optimal. Indeed, when applied to the example (21)-(22), the result in [Gé3]
would only give Hs/2 regularity instead of Hs under assumption (22).
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