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REGULARITY OF WEAK SOLUTIONS OF THE
NONLINEAR FOKKER-PLANCK EQUATION

Tamir Tassa

Abstract. We study regularity properties of weak solutions of the degen-
erate parabolic equation ut + f(u)x = K(u)xx, where Q(u) := K′(u) > 0
for all u �= 0 and Q(0) = 0 (e.g., the porous media equation, K(u) =
|u|m−1u, m > 1). We show that whenever the solution u is nonnegative,
Q(u(·, t)) is uniformly Lipschitz continuous and K(u(·, t)) is C1-smooth
and note that these global regularity results are optimal. Weak solutions
with changing sign are proved to possess a weaker regularity – K(u(·, t)),
rather than Q(u(·, t)), is uniformly Lipschitz continuous. This regularity
is also optimal, as demonstrated by an example due to Barenblatt and
Zeldovich.

1. Introduction

Consider the nonlinear parabolic equation

(1) ut + f(u)x = K(u)xx , (x, t) ∈ R × R
+ ,

subject to the Cauchy data

(2) u(x, 0) = u0(x) ∈ L1(R) ∩ L∞(R) ,

where f and K are smooth functions and K is strictly monotonic increas-
ing. This equation is usually called the nonlinear Fokker-Planck equation
due to its resemblance to the Fokker-Planck equation of statistical me-
chanics.

It is well known [8] that if (1) is uniformly parabolic, i.e., Q(u) :=
K ′(u) ≥ ε > 0, the Cauchy problem (1)–(2) admits a unique classical
solution. We, on the other hand, are interested here in the degenerate
case, where Q(u) may vanish for some value of u, say at u = 0:

(3) Q(u) > 0 ∀u �= 0 and Q(0) = 0 .
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Such degenerate equations arise in the study of several diffusion-advection
processes and the simplest example is the porous media equation,

(4) ut = (|u|m−1u)xx , m > 1 .

In the degenerate case classical solutions usually do not exist and, there-
fore, weak solutions in the sense of distributions are sought:

Definition 1.1. A bounded function u(x, t) is a weak solution of (1)–(2)
if it satisfies the following equality for every test function φ ∈ C∞

0 (R2):

(5)
∫ ∫

R×R+
[uφt + f(u)φx + K(u)φxx]dxdt = −

∫
R

u0φ(·, 0)dx

The existence and uniqueness of weak solutions to the Cauchy problem
(1)–(3), as well as the properties of these solutions, were studied in nu-
merous manuscripts, e.g. [3], [4] and [11]. See also the summary paper
of Kalashnikov, [6], and the references therein. In the present study we
concentrate on the question of regularity of weak solutions.

Since in most practical applications u is nonnegative, a large part of the
study of equation (1) concentrates on that case. The most recent results
here are summarized below [4, Theorems 1, 4 & 7]:

Theorem 1.1. (Gilding) Let f, K ∈ C[0,∞) ∩ C2+α(0,∞), α > 0, and
u0 be nonnegative, bounded and continuous. Then the Cauchy problem (1)-
(3) admits a unique weak solution, u = u(x, t). Moreover, the derivative
K(u)x exists, in the sense of distributions, and is uniformly bounded in
R× [τ, T ] for any 0 < τ < T ; if, in addition, K(u0) is uniformly Lipschitz
continuous, K(u)x is uniformly bounded in R × [0, T ] for any T > 0.

We note that the regularity result in Theorem 1.1 which states that1

(6) K(u(·, t)) ∈ Lip ∀t > 0

is not sharp. Indeed, nonnegative weak solutions of the porous media
equation, (4), were proved by Aronson [1] to possess a better regularity,
namely,

(7) Q(u(·, t)) ∈ Lip and K(u(·, t)) ∈ C1 ∀t > 0 .

The same type of regularity was established in [5] for nonnegative weak
solutions of the equation

(8) ut − (un)x = (um)xx m, n > 1 ,

1Lip denotes henceforth the space of functions which are uniformly Lipschitz con-
tinuous in R x
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which arises in the theory of infiltration. In §2 we revisit the question of
regularity of nonnegative weak solutions of (1)+(3) and improve (6) to (7),
under mild assumptions on Q(·). This global regularity is optimal in view
of explicit examples of weak solutions given in [1] and [5].

The case of solutions with changing sign is essentially different from
the case of one-signed solutions in more than one aspect. First, if one-
signed solutions are uniquely determined by their initial data, Theorem
1.1, it is not known to be true for solutions with changing sign. To this
end, entropy conditions are invoked in order to guarantee uniqueness [11].
The two cases differ also in the issue of regularity. In §3 we show that
solutions with changing sign are regular in the sense of (6). An example
due to Barenblatt and Zeldovich [2] demonstrates the sharpness of this
regularity result, as well as the difference between the cases of one-signed
and two-signed weak solutions.

2. Nonnegative solutions

Our objective in this section is to obtain improved and, in fact, optimal
regularity for nonnegative weak solutions of (1)+(3). We assume here that
f ∈ C2 and Q ∈ C3 for u > 0.

We start with the following Lemma which we prove by using a well
known technique due to Bernstein (e.g. [8]). In this Lemma we make the
distinction between two cases:
• Case 1: Q′(u) ↓ 0 when u ↓ 0.
• Case 2: Q′(u) ≥ Const > 0 when u ↓ 0.

When Q(u) behaves like a power for u ↓ 0, i.e. Q(u) ∼ up, p > 0, Case
1 corresponds to p > 1 and Case 2 corresponds to 0 < p ≤ 1.

Lemma 2.1. Let u = u(x, t) be a smooth positive classical solution of (1)
in R = (a, b) × (0, T ]. Assume that for all u ∈ (0, µ], µ = maxR u,

(9) Q′(u) > 0 ,

(10) α ≤ G(u) :=
(

Q(u)
Q′(u)

)′
≤ β , for some constants 0 < α ≤ β,

and
(11)

G′(u) ≤ θ ·



α
µ in Case 1

1+α
2Q(µ) · Q′(u) in Case 2

, for some constant θ ∈ [0, 1) .

Then for any proper subrectangle of R, R∗ = (a1, b1) × (τ, T ],

(12) |Q(u)x| ≤ C in R∗ ,
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where the constant C depends on f(·), Q(·), µ, a1 − a, b− b1, τ and is inde-
pendent of the lower bound of u. If, in addition, M := max[a,b] |Q(u0)x| <
∞, then (12) holds for R∗ = (a1, b1) × (0, T ], where C depends on M
instead of τ .

Proof. We first make the change of variables u �→ v = Q(u). Due to
assumption (9), this transformation is invertible and u = q(v), q = Q−1.
Equation (1) therefore translates to

(13) vt + f ′(q(v))vx =
(

q′′(v)
q′(v)

v + 1
)

v2
x + vvxx .

Let h(s) be defined as follows for 0 < s ≤ ν := Q(µ),

(14) h(s) =
{

q′(s) in Case 1
1 in Case 2 ,

and H(s) :=
∫ s

0
h(σ)dσ. Since, in view of (9),

(15) h(s) > 0 ∀s > 0 ,

H(s) is positive and monotonically increasing for s > 0. Next, we define
the function r = r(ψ) by

r =
∫ ψ

0

(2H(ν) − H(s))−1ds , 0 ≤ ψ ≤ ν .

Since dr
dψ = (2H(ν)−H(ψ))−1 ≥ (2H(ν))−1 > 0, the inverse function ψ =

ψ(r) exists and is smooth and monotonically increasing for r ∈ [0, r(ν)],

(16) H(ν) ≤ dψ

dr
= 2H(ν) − H(ψ) ≤ 2H(ν) , 0 ≤ ψ ≤ ν .

Hence, since 0 < v ≤ ν, the equation v = ψ(w) defines a smooth function
w = w(x, t) which takes values in the interval (0, r(ν)]. Substituting v =
ψ(w) in (13) yields the following equation for w:

(17) wt + f ′(q)wx =
(

q′′

q′
ψ + 1

)
ψ′w2

x + ψ
ψ′′

ψ′ w2
x + ψwxx .

Here, q(i) = q(i)(ψ(w)) and ψ(i) = ψ(i)(w), 0 ≤ i ≤ 2. Differentiating (17)
with respect to x and multiplying by p = wx, we arrive at

(18)
1
2
(p2)t − ψppxx = F1 · p4 + F2 · p2px − (f ′′(q)q′ψ′p3 + f ′(q)ppx) ,

where
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(19) F1 = (ψ′)2 ·
[(

q′′

q′

)′
ψ +

q′′

q′

]
+ ψ′′ ·

[
2 +

q′′

q′
ψ

]
+ ψ ·

(
ψ′′

ψ′

)′
,

and

(20) F2 = ψ′ ·
[
3 + 2

q′′

q′
ψ

]
+ 2ψ

ψ′′

ψ′ .

Let η = η(x, t) be a C2(R) function such that η = 1 on R∗, η = 0 in
a neighborhood of x = a, x = b and t = 0, and 0 ≤ η ≤ 1. Set z = η2p2

and let (x0, t0) ∈ R be the point in R where z attains its maximal value.
Since zx = 0, zxx ≤ 0 and zt ≥ 0 in that point, we conclude that

(21) ηpx = −ηxp
∣∣∣
(x0,t0)

,

and (recall that ψ ≥ 0)

(22) ψzxx − zt ≤ 0
∣∣∣
(x0,t0)

.

Substituting z = η2p2 into (22) and rearranging, we get that

(23)
η2

{
1
2
(p2)t − ψppxx

}
≥

ψη2p2
x + 4ψηηxppx + ψη2

xp2 + ψηηxxp2 − ηηtp
2 .

Since |4ψηηxppx| ≤ ψη2p2
x + 4ψη2

xp2, (23) implies that

(24) η2

{
1
2
(p2)t − ψppxx

}
≥ −3ψη2

xp2 + ψηηxxp2 − ηηtp
2 .

We may now conclude, in view of (18), (21) and (24), that the following
inequality holds at (x0, t0):

(25)
−F1η

2p4 ≤− {
F2ηx + f ′′(q)q′ψ′η

}
p3η

+
{
3ψη2

x − ψηηxx + ηηt + f ′(q)ηηx

}
p2 .

Since (16) and (15) imply that

(26) ψ′′ = −h(ψ)ψ′ < 0 ,

we may divide inequality (25) by (−ψ′′) and get

(27)
F̃1η

2p4 ≤
{

F̃2ηx − f ′′(q)q′η
h(ψ)

}
p3η

− 1
ψ′′

{
3ψη2

x − ψηηxx + ηηt + f ′(q)ηηx

}
p2 ,
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where F̃i = Fi/ψ′′, i = 1, 2.
Our next step is estimating the coefficients in this inequality. We

start with some straightforward identities: since q′(v) = 1/Q′(u) and
q′′(v)/q′(v) = −Q′′(u)/Q′(u)2, we conclude, using the definition of G(u),
(10), that

(28) 1 +
q′′

q′
ψ = 1 +

q′′(v)
q′(v)

v = 1 − Q′′(u)
Q′(u)2

Q(u) = G(u)

and

(29)

(
q′′

q′

)′
ψ +

q′′

q′
=

(
q′′(v)
q′(v)

v

)′
=

d

dv

(
−Q′′(u)Q(u)

Q′(u)2

)

=
d

dv
(G(u) − 1) =

G′(u)
Q′(u)

.

Furthermore, equality (26) implies that

(30)
(

ψ′′

ψ′

)′
= ψ′′ · h′

h
.

Hence, in view of (19) and equalities (26), (29) and (30), we conclude that

(31) F̃1 =
F1

ψ′′ = −ψ′

h
· G′(u)
Q′(u)

+ 2 +
(

q′′

q′
+

h′

h

)
ψ .

In Case 1, h = q′ and therefore, by (31) and (28),

(32) F̃1 = −ψ′G′(u) + 2 ·
(

1 +
q′′

q′
ψ

)
= −ψ′G′(u) + 2G(u) .

Using (11) and (16) to lower bound the first term on the right hand side of
(32) (note that H(ν) = q(Q(µ)) = µ) and (10) to lower bound the second
term, we conclude that

(33) F̃1 ≥ 2α(1 − θ)

in this case. In Case 2, h = 1 and therefore, by (31) and (28),

(34) F̃1 = −ψ′G′(u)
Q′(u)

+ 2 +
q′′

q′
ψ = −ψ′G′(u)

Q′(u)
+ 1 + G(u) .

Using (11) and (16) to lower bound the first term on the right hand side of
(34) (note that H(ν) = ν = Q(µ)) and (10) to lower bound the last term,
we conclude that

(35) F̃1 ≥ (1 + α)(1 − θ)
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in this case. Hence, we may summarize (33) and (35) as follows:

(36) F̃1 ≥ γ := (1 − θ) · min(2α, 1 + α) > 0 .

We now turn to estimate F̃2. By (20) and (28),

|F̃2| =
∣∣∣∣ F2

ψ′′

∣∣∣∣ ≤
∣∣∣∣ ψ′

ψ′′

∣∣∣∣ · (1 + 2G(u)) + 2
ψ

ψ′ .

By (26) and (15), ∣∣∣∣ ψ′

ψ′′

∣∣∣∣ =
1

h(ψ)
;

hence, since definition (14) implies that

1
h(ψ)

=
{ 1

q′(v) = Q′(u) in Case 1
1 in Case 2

,

we get that

(37)
∣∣∣∣ ψ′

ψ′′

∣∣∣∣ =
1

h(ψ)
≤ κ :=

{
sup0<u≤µ Q′(u) < ∞ in Case 1

1 in Case 2 .

Moreover, by (16),

0 <
ψ

ψ′ ≤
ν

H(ν)
.

Hence, using (10) and the above inequalities we conclude that

(38) |F̃2| ≤ κ · (1 + 2β) +
2ν

H(ν)
.

The last coefficient in (27) which needs special consideration is

(39)
f ′′(q)q′η

h(ψ)
.

Once again, we consider separately the two cases in (14) and show that
the term in (39) is uniformly bounded by a constant which depends on f ,
Q and µ, i.e.,

(40)
∣∣∣∣f ′′(q)q′η

h(ψ)

∣∣∣∣ ≤ Constf,Q,µ .

Indeed, in Case 1 h = q′ and, therefore,
∣∣∣ f ′′(q)q′η

h(ψ)

∣∣∣ = |f ′′(q)η| is uniformly
bounded by sup0<u≤µ |f ′′(u)|; in Case 2 q′ is uniformly bounded for 0 <
v ≤ ν, h ≡ 1 and, therefore, (40) holds in this case as well.
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The rest of the coefficients in (27) are also uniformly bounded since, by
(26), (16) and (37),

(41)
∣∣∣∣ 1
ψ′′

∣∣∣∣ =
1

h(ψ)ψ′ ≤
κ

H(ν)
.

Hence, returning to (27), we conclude by (36), (38), (40) and (41) that

(42) γη2p2 ≤ C1 + ηC2|p|
at (x0, t0), where C1 and C2 depend on f, Q, µ, a1 − a, b− b1 and τ . Using
the simple quadratic inequality

2ηC2

γ
|p| ≤ η2p2 +

C2
2

γ2
,

we conclude by (42) that

max
R

z(x, t) = η2p2
∣∣∣
(x0,t0)

≤ C3 :=
2C1

γ
+

C2
2

γ2
.

Hence, maxR∗ |wx| ≤ C
1
2
3 , and since vx = ψ′(w)wx and |ψ′| ≤ 2H(ν) , we

arrive at (12) with C = 2H(ν)C
1
2
3 .

This proves the first assertion of the Lemma. In order to prove the
second assertion we take η = η(x) to be a C2

0 [a, b]-function such that
η = 1 on [a1, b1] and 0 ≤ η ≤ 1, and proceed in the same manner.

Since the local bound on |Q(u)x|, given in Lemma 2.1, is independent
of the lower bound of u, we may conclude the same for nonnegative weak
solutions of (1)–(3) as well. To this end, we first state and prove the
following:

Lemma 2.2. Assume that Q(u) vanishes algebraically fast when u ↓ 0,

(43) Q(u) = cup + r(u) where c > 0 , p > 0 and r(u) = o(up) ,

and that

(44)
r(u)

up+min(p,1)
≥ Const when u ↓ 0 .

Then there exists µ > 0 such that (9)-(11) hold for u ∈ (0, µ].

Remarks.

(1) Q(u) = mum−1, the viscosity coefficient of the porous media
equations (4) and (8), satisfy the conditions of the Lemma with
p = m − 1 and r(u) = 0.
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(2) The above conditions are satisfied by any Q(u) of the form Q(u) =
usQA(u) where 0 ≤ s < 1 and QA(u) is a real analytic function
at u = 0.

Proof. Condition (9) is clearly satisfied by Q(u) in (43) for sufficiently
small u > 0. Since

G(u) =
(

Q(u)
Q′(u)

)′
= 1 − Q(u)Q′′(u)

Q′(u)2
= 1 − c2p(p − 1)u2p−2 + o(u2p−2)

c2p2u2p−2 + o(u2p−2)
,

limu↓0 G(u) = 1/p and, therefore, (10) holds near u = 0 with any 0 < α <
1/p < β . Hence, it remains to prove (11). For the sake of simplicity,
we assume that r(u) takes an algebraic form, namely r(u) = duq + o(uq)
where q > p. Then, by a simple calculation,

(45) G′(u) = − (q − p)2(q − p + 1)
p2

· d

c
· uq−p−1 + o(uq−p−1) .

Assume that d > 0. Then (45) implies that G′(u) < 0 when u ↓ 0 and,
therefore, condition (11) is satisfied for small u > 0 with θ = 0. If, on
the other hand, d < 0, we deal separately with the two cases which we
introduced earlier:

In Case 1 p > 1. Therefore, by (44), duq−p−1 is bounded from below
for u ↓ 0. As d is negative, we conclude that q − p − 1 ≥ 0. Hence, in
view of (45), G′(u) remains bounded when u ↓ 0. Since the bound on the
right hand side of (11) tends to infinity when µ ↓ 0, we may choose µ > 0
sufficiently small so that (11) holds for all u ∈ (0, µ].

In Case 2 0 < p ≤ 1. Since, by (44), duq−2p is lower bounded for u ↓ 0
and d < 0, we conclude that q−2p ≥ 0. Therefore, in view of (43) and (45),
G′(u)/Q′(u) ∼ uq−2p remains bounded when u ↓ 0. Hence, a sufficiently
small µ > 0 may be chosen so that (11) will hold for all u ∈ (0, µ] in this
case as well.

We may now state and prove the main result of this section:

Theorem 2.1. Assume that Q(u) satisfies the assumptions of Lemma 2.2
and let u = u(x, t) be the weak solution of (1)–(3), where u0(x) is bounded
and nonnegative. Then:
(1) u(x, t) is C∞-smooth in the neighborhood of points in R× (0,∞) where
it is positive;
(2) Q(u(·, t)) is locally Lipschitz continuous for all t > 0;
(3) The derivative K(u)x exists and is continuous as a function of x for
all t > 0; moreover, K(u)x = 0 whenever u = 0.

Proof. As in [9], we let uδ(x, t) denote the (classical) solution of (1)–(3)
with the uniformly positive Cauchy data uδ(x, 0) = u0(x) + δ, δ > 0. By
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the maximum principle, this sequence of functions is uniformly lower and
upper bounded,

0 < δ ≤ uδ(x, t) ≤ 1 + sup
R

u0 δ ↓ 0 , (x, t) ∈ R × R
+ .

Since this sequence of smooth functions is also monotonically decreasing,
Dini’s Theorem implies that it converges uniformly on compact domains
to a continuous function u(x, t), which is the weak solution of (1)–(3).

(1) Since, as argued above, u is continuous in R × (0,∞), each point
(x, t), t > 0, in which u(x, t) > 0 has a neighborhood where u > 0 and
hence Q > 0. In this neighborhood, equation (1) becomes uniformly
parabolic and, therefore, u is C∞-smooth there.

In view of Part (1) of the theorem, we restrict our attention in the proof
of Parts (2) and (3) to points (x, t), t > 0, where the parabolic equation
degenerates, i.e. u(x, t) = 0.

(2) In view of Lemma 2.2, there exists µ > 0 such that (9)–(11) hold
for all u ∈ (0, µ]. Let (x0, t0), t0 > 0, be a point where u = 0. Since u is
continuous, there exists a rectangle R ⊂ R × R

+, such that (x0, t0) ∈ R
and maxR u ≤ µ/2. Hence, thanks to the locally uniform convergence of
uδ to u, we conclude that 0 < uδ(x, t) ≤ µ in R for sufficiently small δ,
say δ ≤ δ0. Applying Lemma 2.1 to uδ, we conclude that for any proper
subrectangle R∗ ⊂ R there exists a constant C, which depends on µ but
is independent of δ, such that

(46) max
R∗

|Q(uδ)x| ≤ C ∀δ ≤ δ0 .

Letting δ ↓ 0, we find that Q(u(·, t)) is Lipschitz continuous in (x0, t0) with
a local Lipschitz constant less than or equal to C.

(3) Let µ, (x0, t0), R, δ0 and R∗ be as above. We fix 0 < δ ≤ δ0. For
any two points (x1, t0) and (x2, t0) in R∗, it holds

K(uδ(x2, t0)) − K(uδ(x1, t0))
x2 − x1

=

K(uδ(x2, t0)) − K(uδ(x1, t0))
Q(uδ(x2, t0)) − Q(uδ(x1, t0))

· Q(uδ(x2, t0)) − Q(uδ(x1, t0))
x2 − x1

.

By (46), ∣∣∣∣Q(uδ(x2, t0)) − Q(uδ(x1, t0))
x2 − x1

∣∣∣∣ ≤ C ,

where C is independent of δ. Assumption (43) implies that∣∣∣∣K(uδ(x2, t0)) − K(uδ(x1, t0))
Q(uδ(x2, t0)) − Q(uδ(x1, t0))

∣∣∣∣ ≤ C̃ · (uδ(x1, t0) + uδ(x2, t0)) ,
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where the constant C̃ depends only on the function K. Hence, we conclude
in view of the above that∣∣∣∣K(uδ(x2, t0)) − K(uδ(x1, t0))

x2 − x1

∣∣∣∣ ≤ Const · (uδ(x1, t0) + uδ(x2, t0)) ,

for all (x1, t0), (x2, t0) ∈ R∗ and 0 < δ ≤ δ0 . Letting δ ↓ 0, we conclude
that the limit function u satisfies

(47)

∣∣∣∣K(u(x2, t0)) − K(u(x1, t0))
x2 − x1

∣∣∣∣ ≤ Const · sup
R∗

u

∀(x1, t0), (x2, t0) ∈ R∗ .

Since, by the continuity of u, supR∗ u ↓ 0 when R∗ shrinks to the point
(x0, t0), inequality (47) implies that K(u)x exists and equals zero at
(x0, t0). Moreover, since (47) holds for every two points in R∗, we get
that

|K(u)x| ≤ Const · sup
R∗

u ∀(x, t) ∈ R∗

which implies that K(u)x is a continuous function of x at (x0, t0). This
concludes the proof.

Remarks.

(1) The Lipschitz continuity of Q(u(·, t)) implies, in view of (43), that
u(·, t) is Hölder continuous with exponent min{ 1

p , 1}.
(2) If p < 1, ux exists and is continuous as a function of x for all t > 0

and ux = 0 whenever u = 0. In order to show this, we observe
that (46) implies that |(uδ)x| ≤ C · (Q′(uδ))−1 in R∗ for δ ≤ δ0.
Since Q′(u)−1 ∼ u1−p ↓ 0 for u ↓ 0, we may proceed along the
lines of the proof of Part (3) in order to prove our assertion.

(3) As in [5], the regularity of u(x, t) with respect to x implies also
regularity with respect to t. We omit further details.

In Theorem 2.1 we established local Lipschitz continuity for Q(u(·, t)).
In order to obtain a uniform estimate, Q(u) must satisfy the conditions of
Lemma 2.1 for all values of u and not only for small ones:

Theorem 2.2. Let u = u(x, t) be the weak solution of (1)–(3), where u0(x)
is bounded and nonnegative. Assume that there exists µ+ > µ := maxu0

such that (9)–(11) are satisfied for all u ∈ (0, µ+]. Then Q(u(·, t)) is
uniformly Lipschitz continuous in any domain R × [τ, T ], 0 < τ < T . If,
in addition, Q(u0) ∈ Lip then Q(u(·, t)) is uniformly Lipschitz continuous
in R × [0, T ].
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Proof. We consider the sequence of classical solutions uδ, defined in the
proof of Theorem 2.1, which converges to the weak solution u as δ tends
to 0. The maximum principle implies that for δ ≤ µ+ − µ, δ ≤ uδ ≤
µ+. Therefore, according to Lemma 2.1, for these values of δ, Q(uδ(·, t))
are uniformly Lipschitz continuous in R × [τ, T ], 0 < τ < T (or in R ×
[0, T ] under the further assumption), with a Lipschitz constant which is
independent of δ. By letting δ go to 0 we obtain the uniform Lipschitz
continuity of Q(u(·, t)).

Example. Consider the general convective porous media equation,

(48) ut + f(u)x = (um)xx m > 1 .

Equations (4) and (8), which are special cases of that equation, were stud-
ied in [1] and [5]. It was shown there that nonnegative solutions of these
equations are uniformly Hölder continuous (with respect to x) with ex-
ponent min{ 1

m−1 , 1} in every strip R × [τ, T ], 0 < τ < T ; moreover, if
u0 is Hölder continuous with the same exponent, then u(·, t) is uniformly
Hölder continuous in R× [0, T ], T > 0. In addition, um(·, t) was shown to
be C1-smooth for all t > 0.

Our analysis implies that the same type of regularity is shared by non-
negative weak solutions of the more general equation (48). Indeed, for that
equation G(u) ≡ (m−1)−1 and, therefore, conditions (9)–(11) are satisfied
for all u > 0. Hence, by Theorem 2.2, Q(u(·, t)) = mu(·, t)m−1 is uniformly
Lipschitz continuous (for 0 < τ ≤ t ≤ T or for 0 ≤ t ≤ T if Q(u0) ∈ Lip)
and that implies the same type of Hölder continuity for u(·, t) as above.
Moreover, by Theorem 2.1, K(u(·, t)) = um(·, t) is C1-smooth for all t > 0.

We refer the reader to [1] and [5] for examples of explicit solutions of (4)
and (8) which demonstrate the sharpness of the above regularity results.

3. Solutions with changing sign

Here, we deal with weak solutions of (1) without any restriction on their
sign; i.e., the weak solution may have a changing sign. When the nonneg-
ativity assumption is removed, it is not known whether weak solutions of
(1)+(3) are uniquely determined by their initial data. Hence, we consider
the unique physically relevant weak solutions – these are the solutions
which may be realized as a vanishing viscosity solution, u = limε↓0 uε,

(49) uε
t + f(uε)x = Kε(uε)xx, Kε(uε) := K(uε) + εuε ,

(50) uε(x, 0) = u(x, 0) = u0(x) .

These admissible or entropy solutions are uniquely determined by their
initial data (consult [11], where an alternative definition of these entropy
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solutions is presented). Our goal is to prove that the entropy solutions of
(1)–(2) are regular in the sense of (6). In fact, to this end there is no need
in the assumption on the mild nature of the degeneracy of the equation,
(3); instead, we assume just that the viscosity coefficient is nonnegative,

(51) Q(u) ≥ 0 ,

thus extending the class of equations under consideration.
The main ingredient in proving the uniform Lipschitz continuity of

K(u(·, t)) is the following lemma, due to E. Tadmor [10]:

Lemma 3.1. (Tadmor). Consider the uniformly parabolic equation,

(52) ut + f(u)x = K(u)xx, Q(u) = K ′(u) ≥ ε > 0 ,

subject to the initial data

(53) u(x, 0) = u0(x) ∈ L1(R) ∩ L∞(R) .

Then if K(u0)x is uniformly bounded, there exists a constant C, indepen-
dent of ε, such that

(54) ‖K(u)x‖L∞(R×R+) ≤ C .

Proof. We first recall that, thanks to the uniform parabolicity, (52)–(53)
admits a unique classical solution. After differentiation of (52) with respect
to t and integration with respect to x, we find that w(x, t) :=

∫ x

−∞ ut(ξ, t)dξ
satisfies

(55) wt + f ′(u)wx = (Q(u)wx)x .

This is a uniformly parabolic linear equation in w and, therefore, by the
maximum principle,

(56) ‖w‖L∞(R×R+) ≤ ‖w(·, 0)‖L∞(R) .

But, since equation (52) and the definition of w imply that w = K(u)x −
f(u), we conclude by (56) and the maximum principle for (52) that (54)
holds with

(57) C = 2 max
|u|≤‖u0‖L∞

|f(u)| + ‖K(u0)x‖L∞ .

Since estimate (54) is independent of ε, a similar estimate may be ob-
tained in the degenerate case as well:

Theorem 3.1. Let u be the unique entropy solution of (1)–(3), where u0 ∈
W 1,∞∩BV . Then the derivative K(u)x exists in the sense of distributions
and it is uniformly bounded in R × R

+.
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Remark. This theorem generalizes the regularity result of Theorem 1.1 in
three aspects:
(i) removing the restriction on the sign of the solution;
(ii) allowing a more general type of degeneracy, i.e., (51) instead of (3);
(iii) obtaining a uniform bound, independent of t, for |K(u)x|.

Proof. Let {uε(x, t)}ε>0 be the family of classical solutions of the cor-
responding uniformly parabolic problem (49)–(50). According to Lemma
3.1,

‖Kε(uε)x‖L∞(R×R+) ≤ Cε ,

where
Cε = 2 max

|u|≤‖u0‖L∞
|f(u)| + ‖Kε(u0)x‖L∞ .

Since u0 ∈ W 1,∞,

‖Kε(u0)x‖L∞ ≤ ‖K(u0)x‖L∞ + ε‖(u0)x‖L∞ ≤ ‖K(u0)x‖L∞ + |u0|W 1,∞

∀ε ∈ (0, 1] .

Therefore, for ε ∈ (0, 1],

(58) ‖Kε(uε(·, t))x‖L∞(R) ≤ C ∀t ≥ 0 ,

where C is independent of ε and is given by

C = 2 max
|u|≤‖u0‖L∞

|f(u)| + ‖K(u0)x‖L∞ + |u0|W 1,∞ .

Inequality (58) implies that

(59) sup
φ∈Φ

∣∣∣∣
∫

R

Kε(uε)φxdx

∣∣∣∣ ≤ C ∀t ≥ 0 ,

where
Φ = {φ ∈ C∞

0 (R) : ‖φ‖L1 = 1} .

However, since uε(·, t) converges in L1
loc(Rx), when ε ↓ 0, to u(·, t) for all

t > 0, [11], it follows that

(60)

∣∣∣∣
∫

R

Kε(uε)φxdx −
∫

R

K(u)φxdx

∣∣∣∣ ≤∣∣∣∣
∫

R

(K(uε) − K(u))φxdx

∣∣∣∣ +
∣∣∣∣
∫

R

εuεφxdx

∣∣∣∣ ≤
‖φx‖L∞ · max

|u|≤‖u0‖L∞
|Q(u)| · ‖uε(·, t) − u(·, t)‖L1(Supp φ) +

ε‖u0‖L∞‖φx‖L1 −→
ε→0

0 .
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Hence, by (59) and (60),

sup
φ∈Φ

∣∣∣∣
∫

K(u)φxdx

∣∣∣∣ ≤ C ∀t ≥ 0 ,

and, therefore, the derivative K(u)x exists in the sense of distributions and
is uniformly bounded in R × R

+.

Example. Consider the porous media equation, (4), subject to a compactly
supported initial data, u(x, 0) = u0(x). Assume that∫

R

u0(x)dx = 0 and P := −
∫

R

xu0(x)dx > 0 .

In [7] it is shown that

t
1
m ‖u(·, t) − z(·, t)‖L∞ −→

t→∞
0 ,

where z(x, t) is the solution of (4) which takes a dipole as initial data,
z(x, 0) = δ′(x). This solution, which was published by Barenblatt and
Zeldovich [2], is given by

z(x, t) = −dt−
1
m |ξ| 1

m sgn(ξ) · (C − q|ξ|m+1
m )

1
m−1
+ , (·)+ = max(·, 0) ,

where ξ = xt−
1

2m and d, C, q are some constants which depend on m and
P .

Equation (4) degenerates, for this dipole solution, at x = 0 (where z
changes its sign) and at the tips of the compact support, x = x±(t) =
±(C/q)

m
m+1 t

1
2m . Along x = 0, z(x, t) is Hölder continuous with expo-

nent 1
m . This demonstrates the sharpness of our estimate that K(z)x =

(|z|m−1z)x is bounded. Note that, on the other hand, along the inter-
faces x±(t) the solution is Hölder continuous with exponent min{ 1

m−1 , 1}.
Hence, in the neighborhood of those interfaces, where the solution is one-
signed, our estimate from §2 holds, namely, Q(z)x = (m|z|m−1)x is locally
bounded.
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