AN APPROXIMATION PROPERTY FOR TEICHMÜLLER POINTS

Alexandru Buium

Start with a field K of characteristic zero, complete under a discrete valuation and having an algebraically closed residue field k of characteristic p > 0. Let R be the valuation ring of K. Assume that we are given a prime element $\pi \in R$ which is algebraic over Q_p . Let q be the cardinality of the residue field of $Q_p(\pi)$ and let ϕ be the unique ring automorphism of R with $\phi(\pi) = \pi$ that lifts the "Frobenius" automorphism $F: k \to k, F(x) := x^q$.

Let X be a scheme of finite type over R and assume the Frobenius $x \mapsto x^q$ of the closed fibre $X_0 := X \otimes k$ lifts to a ϕ -endomorphism $\tilde{\phi}$ of \hat{X} , the completion of X with respect to the ideal generated by π . For any point $P \in X(R) = \hat{X}(R), P : Spf \ R \to \hat{X}$ define the point $P^{\tilde{\phi}} \in X(R)$ as the composition

$$Spf \ R \xrightarrow{\phi^{-1}} Spf \ R \xrightarrow{P} \hat{X} \xrightarrow{\tilde{\phi}} \hat{X}$$

Call P a Teichmüller point if $P^{\phi} = P$ and let $T = T(X, \phi) \subset X(R)$ denote the set of Teichmüller points.

Examples

1) Let $X = (G_m)^N = \text{Spec } R[x_1, x_1^{-1}, ..., x_N, x_N^{-1}]$ be a torus over Rand let $\tilde{\phi}$ be the unique lifting of ϕ to \hat{X} such that $\tilde{\phi}(x_i) = x_i^q + \pi g_i$, where $g_i \in R[x_1, ..., x_N]$. So T consists of all points $r = (r_1, ..., r_N) \in R^{\times} \times ... \times R^{\times}$ such that $\phi(r_i) = r_i^q + \pi g_i(r)$. So if K is the completion of the maximum unramified extension of Q_p and $g_i = 0$, then T consists all points whose coordinates are roots of unity of order prime to p.

2) Assume for simplicity that K is the completion of the maximum unramified extension of Q_p . Let X be an abelian variety with ordinary reduction X_0 and assume X is the canonical lifting of X_0 ; by [Ka1], there is a canonical lifting of Frobenius, $\tilde{\phi}$, to \hat{X} . Then T contains the prime to p torsion of X(R).

Received April 1, 1996.

Supported in part by NSF grant DMS-9500331.

3) Assume again that K is as in Example 2) above. Let $n \ge 3$ be an integer not divisible by p. Let

$$X = \operatorname{Spec}_{\bar{M}_n \otimes R}(\operatorname{Symm}(\omega^{p-1})/(E_{p-1}-1))$$

where \overline{M}_n is obtained by "adding cusps" to the modular scheme over Z[1/n] classifying the elliptic curves with level n structure (cf. [Ka2], pp. 81-82), ω is the natural invertible sheaf defined in [Ka2], p. 82, and E_{p-1} is the corresponding Eisenstein series. By [Ka2], p.111, X is an affine scheme. By [Ka2] pp. 122-124, there is a natural lifting of the Frobenius, $\tilde{\phi}$, to \hat{X} . Using the construction of $\tilde{\phi}$ via the "canonical subgroup" one can check that T contains all points of X(R) that are not cusps and for which the corresponding elliptic curve E/R is a canonical lift of its closed fibre E_0 . One can consider more complicated examples by taking d fold products of the X above. Also it is reasonable to expect that a similar example is obtainable by taking modular varieties corresponding to abelian varieties of higher dimension.

4) Let $X = \text{Proj } R[x_0, ..., x_N]$ be the projective space over R and let $\tilde{\phi}$ be the unique lifting of ϕ to \hat{X} such that

$$\tilde{\phi}\left(\frac{x_i}{x_j}\right) = \frac{x_i^q + \pi G_i}{x_j^q + \pi G_j}$$

where $G_0, ..., G_N \in R[x_0, ..., x_N]$ are homogenous polynomials of degree q. So, for instance, if $G_i = 0$ and K is the completion of the maximum unramified extension of Q_p then T consists all points whose projective coordinates have ratios roots of unity of order prime to p.

Let X/R be a scheme, let $Y \subset X$ be a closed subscheme and let $P \in X(R)$. Set $R_m := R/\pi^{m+1}R$ for $m \ge 1$, $X_m := X \otimes R_m$, $Y_m := Y \otimes R_m$, and let $P_m \in X_m(R_m)$, be the image of P. One defines the p-adic distance from P to Y as

$$\operatorname{dist}(P,Y) = \inf\{p^{-m}; P_m \in Y_m(R_m)\}$$

Of course dist(P, Y) = 0 if and only if $P \in Y(R)$. Here is our main result:

Theorem 1. Let X/R be a scheme of finite type, $Y \subset X$ a closed subscheme, $\tilde{\phi} : \hat{X} \to \hat{X}$ a ϕ -lifting of the Frobenius of the closed fibre X_0 and $T = T(X, \tilde{\phi}) \subset X(R)$ the set of Teichmüller points. Then there exists a real constant $c = c(X, Y, \tilde{\phi}) > 0$ such that for any $P \in T$ with $dist(P, Y) \leq c$ we must have $P \in Y(R)$.

Remark. Theorem 1 applied to Examples 1, 2, 3 above answers special cases of a question posed to the author by F.Voloch. Cf. [TV] for the case of Example 1.

For the case of curves in projective varieties we can supplement the above Theorem as follows:

Theorem 2. Assume we are in the situation of Theorem 1 and assume moreover that K is absolutely unramified, X/R is projective and Y/R is a smooth curve of genus ≥ 2 . Then the set of points $\{P \in T; \operatorname{dist}(P,Y) < 1\}$ is finite.

The proofs of these two results will be an easy consequence of a construction made in [B1] whose properties we now recall. For any R-algebra B we denote by $W_2^{\pi}(B)$ the ring of "ramified Witt vectors of length two", whose underlying set is $B \times B$ and whose addition and multiplication are given by:

$$(b_0, b_1) + (c_0, c_1) = (b_0 + c_0, b_1 + c_1 - (p/\pi)C_q(b_0, c_0))$$
$$(b_0, b_1) \cdot (c_0, c_1) = (b_0c_0, b_0^qc_1 + c_0^qb_1 + \pi b_1c_1)$$

where $C_q(X,Y) = ((X+Y)^q - X^q - Y^q)/p \in Z[X,Y]$. Let $f: A \to B$ be an R-algebra homomorphism. By a π -derivation of f we shall understand a map of sets $\delta: A \to B$ such that the induced map

$$(f, \delta) : A \to B \times B = W_2^{\pi}(B), \quad x \mapsto (f(x), \delta(x))$$

is a ring homomorphism. For instance the map $\delta_* : R \to R$ defined by $\delta_* x = (\phi(x) - x^q)/\pi$ is a π -derivation. There is an obvious notion of π -derivation of a map of sheaves of R-algebras on a topological space. For any scheme of finite type X/R we constructed, in [B1], a projective system

$$\ldots \to X^n \xrightarrow{f_n} X^{n-1} \to \ldots \to X^1 \xrightarrow{f_1} X^0 = \hat{X}$$

of π -formal schemes (where " π -formal scheme" means "formal scheme for which the ideal generated by π is an ideal of definition"), and π -derivations δ_n (extending δ_*) of $\mathcal{O}_{X_{n-1}}$ into the direct image of \mathcal{O}_{X_n} , such that each δ_{n+1} prolongs δ_n and such that the following universality property is satisfied. For any morphism of π -formal schemes $g: S \to X^n$ and for any π -derivation δ of \mathcal{O}_{X^n} into $g_*\mathcal{O}_S$, prolonging δ_n , there is a unique morphism of π -formal schemes $f: S \to X^{n+1}$ such that $f^* \circ \delta_{n+1} = \delta$ and $f_{n+1} \circ f = g$. This universality property induces natural maps

$$\nabla^n : X(R) \to X^n(R)$$

which induce bijections

$$\nabla_0^n : X_n(R_n) \to X_0^n(k)$$

where, as usual, $X_0^n := X^n \otimes k$. (In case K is absolutely unramified, but only in this case, the k-schemes X_0^n are the "Greenberg transforms" of X.)

Now we are in a position to prove Theorem 1. We may assume \hat{X}/R is flat, hence we may define a π -derivation of the structure sheaf of \hat{X} by the formula $\delta x = (\tilde{\phi}(x) - x^q)/\pi$. By the universality property of X^n , since the δ_n 's extend δ_* , there exist induced sections $s^n : \hat{X} \to X^n$ of the projections $X^n \to \hat{X}$ such that $f_n \circ s^n = s^{n-1}$ for all n. Tensorizing with k we get a system of sections $s_0^n : X_0 \to X_0^n$ of the projections $X_0^n \to X_0$. Consider the closed subschemes $Y^n \subset X^n$ and their reductions modulo p, $Y_0^n \subset X_0^n$. Consider the closed subschemes

$$Z(n) = (s_0^n)^{-1}(Y_0^n \cap s_0^n(X_0)) \subset X_0.$$

They form a descending sequence so there exists an index n_0 such that

(*)
$$Z(n) = Z(n_0), n \ge n_0$$

Now let $P \in T$, viewed as a morphism $P : Spf \ R \to \hat{X}$. We claim that $\nabla^n(P) : Spf \ R \to X^n$ factors through $s^n(\hat{X})$, i.e. that $\nabla^n(P) = s^n \circ P$. (Indeed we proceed by induction on n. Assume $\nabla^{n-1}(P) = s^{n-1} \circ P$. Since $P \in T$ we have $P^* \circ \delta = \delta_* \circ P^*$. On the other hand, by the construction of the s^n 's we have $s^{n,*} \circ \delta_n = \delta \circ s^{n-1,*}$. We get

$$(s^n \circ P)^* \circ \delta_n = P^* \circ s^{n,*} \circ \delta_n = P^* \circ \delta \circ s^{n-1,*}$$
$$= \delta_* \circ P^* \circ s^{n-1,*} = \delta_* \circ \nabla^{n-1}(P)^*.$$

On the other hand, by the definition of ∇^n we have

$$\nabla^n(P)^* \circ \delta_n = \delta_* \circ \nabla^{n-1}(P)^*.$$

The two equations above plus the universality property of X^n imply that $\nabla^n(P) = s^n \circ P$, and the induction step is proved.) We conclude that $\nabla^n_0(P_n) \in s^n_0(X_0)(k)$ for all n. In particular if $P \in T$ and $\operatorname{dist}(P,Y) \leq p^{-n_0}$ we get $\nabla^{n_0}_0(P_{n_0}) \in Y^{n_0}_0(k) \cap s^{n_0}_0(X_0)(k)$, hence, by $(*), \nabla^n_0(P_n) \in Y^n_0(k) \cap s^n_0(X_0)(k)$ for all $n \geq n_0$, hence $P \in Y(R)$ and we are done.

To prove Theorem 2 it is enough to prove that $Y_0^1 \cap s_0^1(X_0)$ is a finite set. But $s_0^1(X_0)$ is a projective variety while, by [B2], Proposition 1.10, Y_0^1 is an affine variety. Since both these varieties are closed in X_0^1 , their intersection must be finite.

Acknowledgment

The author would like to thank John Tate for his useful comments.

References

[B1] A. Buium, Differential characters of abelian varieties over p-adic fields, Invent. Math. 122 (1995), 309–340.

[B2] _____, Geometry of p-jets, Duke Math. J. 82 (1996), 349–367.

- [Ka1] N. Katz, Serre-Tate local moduli, Springer, LNM 868 (1981), 138-202
- [Ka2] N. Katz, p-adic properties of modular schemes and modular forms, in: Modular functions in one variable III, Springer, LNM 350 (1973), 70–190.
- [TV] J. Tate and F.Voloch, Projective geometry for p-adic fields, Preprint.

UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NM 87131 *E-mail address*: buium@math.unm.edu