AN APPROXIMATION PROPERTY FOR TEICHMULLER POINTS ¨

Alexandru Buium

Start with a field *K* of characteristic zero, complete under a discrete valuation and having an algebraically closed residue field *k* of characteristic *p >* 0. Let *R* be the valuation ring of *K*. Assume that we are given a prime element $\pi \in R$ which is algebraic over Q_p . Let q be the cardinality of the residue field of $Q_p(\pi)$ and let ϕ be the unique ring automorphism of R with $\phi(\pi) = \pi$ that lifts the "Frobenius" automorphism $F : k \to k$, $F(x) := x^q$.

Let *X* be a scheme of finite type over *R* and assume the Frobenius *x* → *x*^{*q*} of the closed fibre $X_0 := X \otimes k$ lifts to a *φ*−endomorphism ϕ of \hat{X} , the completion of *X* with respect to the ideal generated by π . For any point $P \in X(R) = \hat{X}(R)$, $P : Sp f R \rightarrow \hat{X}$ define the point $P^{\tilde{\phi}} \in X(R)$ as the composition

$$
Spf \mathrel{R} \stackrel{\phi^{-1}}{\to} Spf \mathrel{R} \stackrel{P}{\to} \hat{X} \stackrel{\tilde{\phi}}{\to} \hat{X}
$$

Call *P* a Teichmüller point if $P^{\tilde{\phi}} = P$ and let $T = T(X, \tilde{\phi}) \subset X(R)$ denote the set of Teichmüller points.

Examples

1) Let $X = (G_m)^N = \text{Spec } R[x_1, x_1^{-1}, ..., x_N, x_N^{-1}]$ be a torus over R and let $\tilde{\phi}$ be the unique lifting of ϕ to \hat{X} such that $\tilde{\phi}(x_i) = x_i^q + \pi g_i$, where $g_i \in R[x_1, ..., x_N]$. So *T* consists of all points $r = (r_1, ..., r_N) \in R^\times \times ... \times R^\times$ such that $\phi(r_i) = r_i^q + \pi g_i(r)$. So if *K* is the completion of the maximum unramified extension of Q_p and $g_i = 0$, then *T* consists all points whose coordinates are roots of unity of order prime to *p*.

2)Assume for simplicity that *K* is the completion of the maximum unramified extension of Q_p . Let X be an abelian variety with ordinary reduction X_0 and assume X is the canonical lifting of X_0 ; by [Ka1], there is a canonical lifting of Frobenius, ϕ , to *X*. Then *T* contains the prime to p torsion of $X(R)$.

Received April 1, 1996.

Supported in part by NSF grant DMS–9500331.

3) Assume again that *K* is as in Example 2) above. Let $n \geq 3$ be an integer not divisible by *p*. Let

$$
X = \operatorname{Spec}_{\bar{M}_n \otimes R}(\operatorname{Symm}(\omega^{p-1})/(E_{p-1} - 1))
$$

where M_n is obtained by "adding cusps" to the modular scheme over *Z*[1*/n*] classifying the elliptic curves with level *n* structure (cf. [Ka2], pp. 81-82), ω is the natural invertible sheaf defined in [Ka2], p. 82, and E_{p-1} is the corresponding Eisenstein series. By [Ka2], p.111, *X* is an affine scheme. By [Ka2] pp. 122-124, there is a natural lifting of the Frobenius, ϕ , to *X*. Using the construction of ϕ via the "canonical subgroup" one can check that *T* contains all points of $X(R)$ that are not cusps and for which the corresponding elliptic curve E/R is a canonical lift of its closed fibre E_0 . One can consider more complicated examples by taking *d* fold products of the *X* above. Also it is reasonable to expect that a similar example is obtainable by taking modular varieties corresponding to abelian varieties of higher dimension.

4) Let $X = \text{Proj } R[x_0, ..., x_N]$ be the projective space over R and let ϕ be the unique lifting of ϕ to \ddot{X} such that

$$
\tilde{\phi}\left(\frac{x_i}{x_j}\right) = \frac{x_i^q + \pi G_i}{x_j^q + \pi G_j}
$$

where $G_0, ..., G_N \in R[x_0, ..., x_N]$ are homogenous polynomials of degree *q*. So, for instance, if $G_i = 0$ and *K* is the completion of the maximum unramified extension of Q_p then T consists all points whose projective coordinates have ratios roots of unity of order prime to *p*.

Let X/R be a scheme, let $Y \subset X$ be a closed subscheme and let $P \in$ *X*(*R*). Set $R_m := R/\pi^{m+1}R$ for $m \ge 1$, $X_m := X \otimes R_m$, $Y_m := Y \otimes R_m$, and let $P_m \in X_m(R_m)$, be the image of *P*. One defines the *p*−adic distance from P to Y as

$$
dist(P, Y) = inf{p-m; Pm \in Ym(Rm)}.
$$

Of course dist $(P, Y) = 0$ if and only if $P \in Y(R)$. Here is our main result:

Theorem 1. Let X/R be a scheme of finite type, $Y \subset X$ a closed subscheme, $\phi : \hat{X} \to \hat{X}$ a ϕ -lifting of the Frobenius of the closed fibre X_0 and $T = T(X, \tilde{\phi}) \subset X(R)$ the set of Teichmüller points. Then there exists a real constant $c = c(X, Y, \phi) > 0$ such that for any $P \in T$ with $dist(P, Y) \leq c$ we must have $P \in Y(R)$.

Remark. Theorem 1 applied to Examples 1, 2, 3 above answers special cases of a question posed to the author by F.Voloch. Cf. [TV] for the case of Example 1.

For the case of curves in projective varieties we can supplement the above Theorem as follows:

Theorem 2. Assume we are in the situation of Theorem 1 and assume moreover that *K* is absolutely unramified, X/R is projective and Y/R is a smooth curve of genus ≥ 2 . Then the set of points $\{P \in T; \text{dist}(P, Y) < 1\}$ is finite.

The proofs of these two results will be an easy consequence of a construction made in [B1] whose properties we now recall. For any *R*−algebra *B* we denote by $W_2^{\pi}(B)$ the ring of "ramified Witt vectors of length two", whose underlying set is $B \times B$ and whose addition and multiplication are given by:

$$
(b_0, b_1) + (c_0, c_1) = (b_0 + c_0, b_1 + c_1 - (p/\pi)C_q(b_0, c_0))
$$

$$
(b_0, b_1) \cdot (c_0, c_1) = (b_0c_0, b_0^q c_1 + c_0^q b_1 + \pi b_1 c_1)
$$

where $C_q(X, Y) = ((X+Y)^q - X^q - Y^q)/p \in Z[X, Y]$. Let *f* : *A* → *B* be an *R*−algebra homomorphism. By a π −derivation of *f* we shall understand a map of sets $\delta: A \to B$ such that the induced map

$$
(f,\delta):A\to B\times B=W_2^\pi(B),\ \ x\mapsto (f(x),\delta(x))
$$

is a ring homomorphism. For instance the map $\delta_* : R \to R$ defined by $\delta_* x = (\phi(x) - x^q)/\pi$ is a π -derivation. There is an obvious notion of *π*−derivation of a map of sheaves of *R*−algebras on a topological space. For any scheme of finite type X/R we constructed, in [B1], a projective system

$$
\ldots \to X^n \overset{f_n}{\to} X^{n-1} \to \ldots \to X^1 \overset{f_1}{\to} X^0 = \hat{X}
$$

of *π*−formal schemes (where "*π*−formal scheme" means "formal scheme for which the ideal generated by π is an ideal of definition"), and π −derivations *δ*^{*n*} (extending *δ*^{*}) of $O_{X_{n-1}}$ into the direct image of O_{X_n} , such that each δ_{n+1} prolongs δ_n and such that the following universality property is satisfied. For any morphism of π -formal schemes $g : S \to X^n$ and for any *π*−derivation *δ* of O_{X^n} into $g_* O_S$, prolonging $δ_n$, there is a unique morphism of π -formal schemes $f : S \to X^{n+1}$ such that $f^* \circ \delta_{n+1} = \delta$ and $f_{n+1} \circ f = g$. This universality property induces natural maps

$$
\nabla^n: X(R) \to X^n(R)
$$

which induce bijections

$$
\nabla_0^n: X_n(R_n) \to X_0^n(k)
$$

where, as usual, $X_0^n := X^n \otimes k$. (In case *K* is absolutely unramified, but only in this case, the k -schemes X_0^n are the "Greenberg transforms" of *X*.)

Now we are in a position to prove Theorem 1. We may assume \ddot{X}/R is flat, hence we may define a π −derivation of the structure sheaf of X by the formula $\delta x = (\phi(x) - x^q)/\pi$. By the universality property of X^n , since the δ_n 's extend δ_* , there exist induced sections $s^n : \hat{X} \to X^n$ of the projections $X^n \to \hat{X}$ such that $f_n \circ s^n = s^{n-1}$ for all *n*. Tensorizing with *k* we get a system of sections $s_0^n : X_0 \to X_0^n$ of the projections $X_0^n \to X_0$. Consider the closed subschemes $Y^n \subset X^n$ and their reductions modulo p, $Y_0^n \subset X_0^n$. Consider the closed subschemes

$$
Z(n) = (s_0^n)^{-1}(Y_0^n \cap s_0^n(X_0)) \subset X_0.
$$

They form a descending sequence so there exists an index n_0 such that

(*)
$$
Z(n) = Z(n_0), n \ge n_0.
$$

Now let $P \in T$, viewed as a morphism $P : Spf \rvert R \to \hat{X}$. We claim that $\nabla^{n}(P)$: *Spf* $R \to X^{n}$ factors through $s^{n}(\hat{X})$, i.e. that $\nabla^{n}(P) = s^{n} \circ P$. (Indeed we proceed by induction on *n*. Assume $\nabla^{n-1}(P) = s^{n-1} \circ P$. Since $P \in T$ we have $P^* \circ \delta = \delta_* \circ P^*$. On the other hand, by the construction of the s^n 's we have $s^{n,*} \circ \delta_n = \delta \circ s^{n-1,*}$. We get

$$
(s^n \circ P)^* \circ \delta_n = P^* \circ s^{n,*} \circ \delta_n = P^* \circ \delta \circ s^{n-1,*}
$$

$$
= \delta_* \circ P^* \circ s^{n-1,*} = \delta_* \circ \nabla^{n-1}(P)^*.
$$

On the other hand, by the definition of ∇^n we have

$$
\nabla^n(P)^* \circ \delta_n = \delta_* \circ \nabla^{n-1}(P)^*.
$$

The two equations above plus the universality property of X^n impliy that $\nabla^{n}(P) = s^{n} \circ P$, and the induction step is proved.) We conclude that $\nabla_0^n(P_n) \in s_0^n(X_0)(k)$ for all n. In particular if $P \in T$ and $dist(P, Y) \le$ *p*^{−*n*₀} we get $\nabla_0^{n_0}(P_{n_0}) \in Y_0^{n_0}(k) \cap s_0^{n_0}(X_0)(k)$, hence, by (*), $\nabla_0^{n}(P_n) \in$ $Y_0^n(k) \cap s_0^n(X_0)(k)$ for all $n \geq n_0$, hence $P \in Y(R)$ and we are done.

To prove Theorem 2 it is enough to prove that $Y_0^1 \cap s_0^1(X_0)$ is a finite set. But $s_0^1(X_0)$ is a projective variety while, by [B2], Proposition 1.10, Y_0^1 is an affine variety. Since both these varieties are closed in X_0^1 , their intersection must be finite.

Acknowledgment

The author would like to thank John Tate for his useful comments.

References

[B1] A. Buium, *Differential characters of abelian varieties over p*−*adic fields*, Invent. Math. **122** (1995), 309–340.

[B2] , *Geometry of p*−*jets*, Duke Math. J. **82** (1996), 349–367.

[Ka1] N. Katz, *Serre-Tate local moduli*, Springer, LNM **868** (1981), 138–202

[Ka2] N. Katz, *p-adic properties of modular schemes and modular forms*, in: Modular functions in one variable III, Springer, LNM **350** (1973), 70–190.

[TV] J. Tate and F.Voloch, *Projective geometry for p*−*adic fields*, Preprint.

University of New Mexico, Albuquerque, NM 87131 *E-mail address*: buium@math.unm.edu