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ON LARGE VALUES OF L2 HOLOMORPHIC FUNCTIONS

Jeffery D. McNeal

1. Introduction

Let Ω ⊂⊂ C
n be a smoothly bounded domain of holomorphy and p ∈

Ω. Let O(Ω) denote the holomorphic functions on Ω, L2(Ω) the square-
integrable functions on Ω and consider the following extreme-value problem:

(1.1) MΩ(p) = sup{|f(p)|2 : f ∈ O(Ω) ∩ L2(Ω), ||f ||L2 ≤ 1}.

The solution to (1.1) gives the value of the Bergman kernel function asso-
ciated to Ω (the kernel of the operator projecting L2(Ω) orthogonally onto
O(Ω)) at (p, p). If n = 1, it is a classical fact that MΩ(p) is bounded, from
above and below, by a constant factor times dist(p, bΩ)−2. In higher dimen-
sions, the geometry of bΩ influences the size of MΩ(p) in non-trivial ways.
A general lower bound for (1.1) was proved by Ohsawa-Takegoshi, [O-T]
(see also [P] for a slightly weaker, prior estimate): MΩ(p) ≥ Cdist (p, bΩ)−2

for a constant C independent of p. It was also shown by Ohsawa, [O], that
each positive eigenvalue of the Levi form (of bΩ near p) adds -1 to the
exponent on the right side of this inequality. Trivial upper bounds on (1.1)
related to the dimension are easy to obtain from the maximum principle,
but only in some special cases have upper and lower bounds of the same
order of magnitude in the boundary distance been obtained, see [C], [F],
[H], [Mc1-2]. In all these cases, the first assumption is that the Levi form
associated to bΩ has finite degeneracy at points in bΩ near p.

In this paper, we show that (1.1) has a lower bound, which sharpens that
given in [O-T], for a class of domains whose Levi forms do not, necessarily,
degenerate to finite order. For notational convenience, we state the result
for an infralevel domain of Ω, instead of Ω itself.
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Theorem 1.1. Let {z : r(z) < 0} = Ω ⊂⊂ C
n be a smoothly bounded,

pseudoconvex domain. Suppose that z0 ∈ bΩ and that bΩ admits a (local,
weak) holomorphic support surface, S, at z0. Let νz0 denote the inward
unit normal for bΩ at z0.

Then there exists a constant c > 0 so that if p = z0 + δνz0 , then

(1.2) cδ−2MSp∩Ω(p) ≤ MΩδ
(p),

where Sp = {z : z − δνz0 ∈ S} and Ωδ = {z : r(z) < − δ
2}.

The hypothesis of this theorem is restrictive, as evidenced by the Kohn-
Nirenberg type domains [K-N]. Note that Sp ∩ Ω is (essentially) a domain
in C

n−1 and so the result should be interpreted as having sliced away a
complex dimension from the extreme-value problem (at a cost of the fac-
tor δ−2). The exponent -2 reflects the fact that the ∂̄-Neumann problem
is elliptic in the component transverse to bΩ on any smoothly bounded
pseudoconvex domain; finding the correct exponent for general slices of the
domain would be a difficult problem, essentially equivalent to understand-
ing exact, non-isotropic regularity of the ∂̄-Neumann problem.

This theorem and previous results do not give an induction on dimension
result for the full asymptotics of MΩ(p). Consider Ω ⊂⊂ C

3 which satisfies
the hypothesis of Theorem 1.1 and is, additionally, of finite type (see [D’A]
for the definition of this concept). Although Theorem 1.1 relates MΩ(p)
to an extreme-value problem on a (finite type) domain in C

2, it does not
combine with the above mentioned result of Catlin to give a lower bound
on MΩ(p) solely as a function of δ. This is because the point p, though
absolutely close to bSp ∩ Ω, is far from bSp ∩ Ω relative to the diameter
of Sp ∩ Ω. Understanding MSp∩Ω(p) is, therefore, not so much a question
about the boundary behavior of the Bergman kernel but, rather, related to
the asymptotics of the volume (and various moments) of small domains, as
their diameters go to zero. We will discuss this problem in a future paper.

The method of proof for Theorem 1.1 revolves around solving a certain
system of partial differential equations, which are pertubations of the or-
dinary ∂̄-equations, with estimates in weighted L2 spaces. The presence
of the pertubation factor gives a useful new term in the standard L2 esti-
mates for the ∂̄-equations and manipulation of this factor and the weight
factor in a somewhat independent manner is the key step in our proof.
The idea of perturbing the ∂̄-equations in the manner that we do (section
2) is taken directly from the work of Ohsawa-Takegoshi, [O-T], in which
they obtain very similar inequalities on complex mainfolds with a complete
Kähler metric. Indeed, the only new point to our manipulations in section
2 is to show that the hypothesis of a complete metric is unnecessary for the
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type of estimates that [O-T] consider. It is, of course, useful to work with
non-complete metrics (e.g., the euclidean metric) as this allows the study
of various questions about boundary behavior.

In addition to [O-T], we mention several works which overlap to some
extent with this paper. In particular, we point out the recently received
papers of Berndtsson [B] and Siu [S] which contain closely related results.
Berndtsson, [B], in work on sup-norm estimates for ∂̄, obtains a differential
equality which is essentially equivalent to a non-integrated version of our
identity (2.14). Siu, [S], in work concerning the construction of certain
singular metrics, has independently obtained a result equivalent to our
Theorem 2.1. We also mention the works of Donnelly-Fefferman [D-F] and
Witten [W], where pertubation schemes (of the exterior derivative) similar
to that discussed in section 2 appear (explicitly in [W] and implicitly in
[D-F]). It is worthwhile to point out that the asymmetric twisting of either
the d-complex or ∂̄-complex, used in [O-T] and [D-F], is crucial for the
useable, new term to appear in the weighted L2 estimates. Conjugation of
the operators by a smooth function, as in [W], leads only to the standard
estimates of Hörmander, [H], for a shifted weight function.

I would like to thank T. Ohsawa for several discussions and for two
inspirational lectures at the conference on complex analysis in Hayama,
Japan in the spring of 1995.

2. L2 estimates for a twisted ∂̄ complex

The manipulations in this section are direct applications of material
found in [F-K]. The reader is referred there for further elaboration of the
(un-weighted) ∂̄-Neumann problem.

Let Ω ⊂⊂ C
n be a smoothly bounded, pseudoconvex domain defined by

a real-valued function r, normalized so that |dr| ≡ 1 on bΩ. We choose the
sign of r so that r < 0 in Ω.

We use the symbols Λp,q(Ω) and Λp,q(Ω) to denote the forms of type
(p, q) which are smooth on Ω and Ω, respectively. If φ, ψ ∈ Λp,q(Ω), we
denote the pointwise euclidean inner product of φ and ψ at z by < φ, ψ >z

and drop the subscript z if no confusion is likely to arise. If λ is a function
defined on Ω, we define a global inner product of φ, ψ ∈ Λp.q(Ω) by setting

(2.1) (φ, ψ)λ =
∫

Ω

< φ, ψ >z e−λ(z) dV (z),

where dV (z) is the (euclidean) volume element at z. We denote the norm
determined by (2.1) by || · ||λ.

Let Π0,1 denote the projection of the complexified cotangent bundle of
C

n onto its (0,1) subspace and Πp,q the naturally induced projection of
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forms of order p + q onto Λp,q. The operator ∂̄ : Λp,q(Ω) −→ Λp,q+1(Ω)
is defined as ∂̄φ = Πp,q+1dφ, where d is the exterior derivative operator.
The formal adjoint of ∂̄ with respect to the inner product (2.1), ϑλ, maps
Λp,q(Ω) to Λp,q−1(Ω) and is defined by the condition

(ϑλφ, ψ)λ = (φ, ∂̄ψ)λ,

for all ψ ∈ Λp,q−1(Ω) with compact support.
If ξ is a 1-form, the symbol of ∂̄ is the linear map σ(∂̄, ξ) : Λp,q(Ω) −→

Λp,q+1(Ω) defined as

σ(∂̄, ξ)φ = Π0,1(ξ) ∧ φ, φ ∈ Λp,q(Ω).

The symbol of ϑλ, σ(ϑλ, ξ), is the adjoint of σ(∂̄, ξ) in the euclidean inner
product. Integration by parts then reads as:

(2.2) (φ, ∂̄ψ)λ = (ϑλφ, ψ)λ −
∫

bΩ

< σ(ϑλ, dr)φ, ψ > e−λ dS,

where dS is the volume element of bΩ and φ ∈ Λp,q(Ω) and ψ ∈ Λp,q−1(Ω).
An operator of greater interest in the following is the Hilbert space

adjoint of ∂̄, ∂̄∗
λ. Define

(2.3) Dp,q = {φ ∈ Λp,q(Ω) : σ(ϑλ, dr)φ = 0 on bΩ}.
The operator ∂̄∗

λ (defined as an operator on L2) is defined on Dom (∂̄∗
λ), a

set which contains Dp,q. It happens that the operators ∂̄∗
λ and ϑλ agree on

Dp,q, see [F-K].
In the sequel, we will work with forms in Λ0,q(Ω), q ≤ 2, and it will

be convenient to express the relevant quantities in terms of coordinates.
If (z1, . . . , zn) are holomorphic coordinates on C

n and φ =
∑n

i=1 φi dz̄i ∈
Λ0,1(Ω) then

(2.4) ∂̄φ =
∑
l<k

(
∂φl

∂z̄k
− ∂φk

∂z̄l
)dz̄l ∧ dz̄k.

The condition that φ ∈ D0,1 is equivalent to
∑n

l=1 φl
∂r
∂zl

= 0 on bΩ. Also,
if φ ∈ D0,1,

∂̄∗
λφ = −2

n∑
j=1

eλ ∂

∂zj
(e−λφj)

= −2
n∑

j=1

δj(φj),

(2.5)

where the last equality defines the operators δj , j = 1, . . . , n.
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Theorem 2.1. Let Ω ⊂⊂ C
n be smoothly bounded and pseudoconvex. Let

λ, g, h be smooth functions defined on Ω, g, h ≥ 0, and suppose, for all
φ ∈ D0,1,

∫
Ω

g
n∑

j,k=1

∂2λ

∂zj∂z̄k
φj φ̄k e−λ −

∫
Ω

n∑
j,k=1

∂2g

∂zj∂z̄k
φj φ̄k e−λ

−
∫

Ω

h−1|
n∑

j=1

∂g

∂zj
φj |2e−λ ≥ (Pφ, φ)λ,

(2.6)

for some positive definite matrix of functions P . Then, for any α ∈ Λ0,1(Ω)
with ∂̄α = 0, there exists a solution u to ∂̄(

√
g + h·u) = α with the estimate

(2.7) ||u||2λ ≤ C(P−1α, α)λ,

for an independent constant C.

Proof. If φ ∈ D0,1 and g ≥ 0, then (2.4) implies

(g∂̄φ, ∂̄φ)λ = 4
∑
l<k

||√g(
∂φl

∂z̄k
− ∂φk

∂z̄l
)||2λ

= 4
n∑

l,k=1

||√g
∂φl

∂z̄k
||2λ − 4

n∑
l,k=1

(g
∂φl

∂z̄k
,
∂φk

∂z̄l
)λ.

It follows from (2.5) that

(g∂̄∗
λφ, ∂̄∗

λφ)λ = 4
n∑

l,k=1

(gδlφl, δkφk)λ.

Thus,

(g∂̄φ, ∂̄φ)λ + (g∂̄∗
λφ, ∂̄∗

λφ)λ = 4
n∑

l,k=1

||√g
∂φl

∂z̄k
||2λ +

4
n∑

l,k=1

∫
Ω

{gδlφlδkφk − g
∂φl

∂z̄k

∂φk

∂z̄l
}e−λ

= 4
n∑

l,k=1

||√g
∂φl

∂z̄k
||2λ + M.

(2.8)
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We record three facts:

(2.9) [δl,
∂

∂z̄k
] =

∂2

∂zl∂z̄k
.

If u and v are smooth functions, then

(2.10) (
∂u

∂z̄k
, v)λ = −(u, δkv)λ −

∫
bΩ

∂r

∂z̄k
uv̄ e−λ.

(2.11) (δlu, v)λ = −(u,
∂v

∂z̄l
)λ −

∫
bΩ

∂r

∂zl
uv̄ e−λ.

The equality (2.9) follows immediately from the definitions and (2.10) and
(2.11) follow by integration by parts.

Moving the derivatives to the left in (2.8) gives

M = 4
n∑

l,k=1

∫
Ω

{δl(g
∂φl

∂z̄k
) − ∂

∂z̄k
(gδlφl)}φk e−λ −

4
n∑

l,k=1

∫
bΩ

∂r

∂zl
· g ∂φl

∂z̄k
φ̄k e−λ + 4

n∑
l,k=1

∫
bΩ

∂r

∂z̄k
· gδlφlφ̄k e−λ.

(2.12)

Note that the second boundary integral vanishes since φ ∈ D0,1, while
the first boundary integral can be re-written in the standard way. Namely:
since

∑n
k=1 gφ̄k

∂
∂z̄k

is a tangential derivative and
∑n

l=1 φl
∂r
∂zl

= 0 on bΩ,
then on bΩ

0 =
n∑

k=1

gφk
∂

∂z̄k
(

n∑
l=1

φl
∂r

∂zl
)

=
n∑

l,k=1

g
∂2r

∂zl∂z̄k
φlφ̄k +

n∑
l,k=1

gφ̄k
∂φl

∂z̄k

∂r

∂zl
.

Substituting into (2.12) gives



ON LARGE VALUES OF L2 HOLOMORPHIC FUNCTIONS 253

M = 4
n∑

l,k=1

∫
Ω

{δl(g
∂φl

∂z̄k
) − ∂

∂z̄k
(gδlφl)}φk e−λ+

4
n∑

l,k=1

∫
bΩ

g
∂2r

∂zl∂z̄k
φlφ̄k e−λ

= 4
n∑

l,k=1

∫
Ω

g[δl,
∂

∂z̄k
]φlφ̄k e−λ + 4

n∑
l,k=1

∫
bΩ

g
∂2r

∂zl∂z̄k
φlφ̄k e−λ +

4
n∑

l,k=1

∫
Ω

{ ∂g

∂zl

∂φl

∂z̄k
− ∂g

∂z̄k
(δlφl)}φ̄k e−λ.

(2.13)

The last equality holds since δl(uv) = uδlv + ∂u
∂zl

v.

In the first piece of the last integral above, move ∂
∂z̄k

to the left and use
that φ ∈ D0,1 to obtain

4
n∑

l,k=1

∫
Ω

∂g

∂zl

∂φl

∂z̄k
φ̄k e−λ

= 4
n∑

l,k=1

∫
bΩ

∂r

∂z̄k

∂g

∂zl
φlφ̄k e−λ − 4

n∑
l,k=1

∫
Ω

∂

∂z̄k
(
∂g

∂zl
φ̄ke−λ)φl

= −4
n∑

l,k=1

∫
Ω

∂g

∂zl
· ∂

∂z̄k
(φ̄ke−λ)φl − 4

n∑
l,k=1

∫
Ω

∂2g

∂zl∂z̄k
φlφ̄k e−λ

= −4
n∑

l,k=1

∫
Ω

∂g

∂zl
φlδkφk e−λ − 4

n∑
l,k=1

∫
Ω

∂2g

∂zl∂z̄k
φlφ̄k e−λ.

Thus (2.13) becomes

M = 4
n∑

l,k=1

∫
Ω

g[δl,
∂

∂z̄k
]φlφ̄k e−λ + 4

n∑
l,k=1

∫
bΩ

g
∂2r

∂zl∂z̄k
φlφ̄k e−λ −

4
n∑

l,k=1

∫
Ω

∂2g

∂zl∂z̄k
φlφ̄k e−λ − 4[

n∑
l,k=1

∫
Ω

(
∂g

∂zl
φlδkφk +

∂g

∂z̄k
(δlφl)φ̄k) e−λ].
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Consequently, (2.8) yields the following indentity:

(g∂̄φ, ∂̄φ)λ + (g∂̄∗
λφ, ∂̄∗

λφ)λ = 4
n∑

l,k=1

||√g
∂φl

∂z̄k
||2λ+

4
∫

Ω

g
n∑

l,k=1

∂2λ

∂zl∂z̄k
φlφ̄k e−λ − 4

n∑
l,k=1

∫
Ω

∂2g

∂zl∂z̄k
φlφ̄k e−λ+

4
n∑

l,k=1

∫
bΩ

g
∂2r

∂zl∂z̄k
φlφ̄k e−λ − 8Re {

∫
Ω

n∑
l,k=1

∂g

∂zl
φlδkφk e−λ}.

(2.14)

Suppose that λ, g, h satisfy (2.6). The Cauchy-Schwarz inequality ap-
plied to (2.14) gives, if Ω is pseudoconvex,

(g∂̄φ, ∂̄φ)λ + ((g + h)∂̄∗
λφ, ∂̄∗

λφ)λ ≥ (Pφ, φ)λ, φ ∈ D0,1.

Let T denote the operator ∂̄◦
√

g + h and let S denote the operator
√

g + h◦
∂̄. Using mollifiers, it is not hard to show that D0,1 is dense in both Dom
(T ∗) and Dom (S) in the graph norm ||T ∗φ||λ + ||Sφ||λ. Thus, we obtain

(2.15) ||T ∗φ||2λ + ||Sφ||2λ ≥ (Pφ, φ)λ, φ ∈ Dom (T ∗) ∩ Dom (S).

The equation Tu = α, for Sα = 0, is equivalent to

(u, T ∗ψ)λ = (α, ψ)λ, ψ ∈ Dom (T ∗).

If ψ ∈ Dom (T ∗)∩Dom (S), then the Cauchy-Schwarz inequality and (2.15)
imply

|(α, ψ)λ|2 ≤ |(P−1α, α)λ||(Pψ, ψ)λ|
≤ |(P−1α, α)λ|{||T ∗ψ||2λ + ||Sψ||2λ}.

(2.16)

However, this implies

(2.17) |(α, ψ)λ|2 ≤ |(P−1α, α)λ|||T ∗ψ||2λ, ψ ∈ Dom (T ∗).

This follows immediately from (2.16) if ψ ∈ Ker (S), and, if ψ is orthogonal
to Ker (S), then both sides of (2.17) vanish since S ◦ T = 0.

The map T ∗φ −→ (φ, α)λ is, therefore, a bounded linear functional on
Dom T ∗ and the Riesz representation theorem then gives a solution u to
Tu = α with the estimate claimed in (2.7). This completes the proof. �
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3. The auxilary functions and proof of (1.2)

As before, Ω ⊂⊂ C
n is pseudoconvex with smooth bΩ and, for δ > 0

given, p = z0 − δνz0 .

Definition. If D ⊂ C
n and q ∈ bD, a weak, local holomorphic support

surface for D at q is a complex analytic manifold S, dimCS = n−1, defined
in a neighborhood U of q such that q ∈ S and S ∩ U = C

n \ D.

Note that S may intersect bD at points other than q.

Suppose f is a holomorphic function on U and S = {z ∈ U : f(z) =
0}. If, in some holomorphic coordinate system (w1, . . . , wn), the defining
function of bΩ locally takes the form

(3.1) r(w) = 2Re wn + R(w′, Im wn),

where z0 = 0 and R vanishes to order ≥ 2 at 0, then the fact that S is
supporting implies that ∂f

∂wn
(0) �= 0. Choose new coordinates (z1, . . . , zn)

such that p = 0 and S = {z ∈ U : zn + δ = 0}. The defining function r
does not, necessarily, have the form (3.1) in the coordinates (z1, . . . , zn),
but the vector field ∂

∂zn
is transverse to bΩ in U .

Since Ω is bounded, we may choose N > 0 so that for z ∈ Ω, |z|2 + δ2 <
Ne−2 for all δ < 1. Note that |zn + δ|2 > bδ2 on {z ∈ U : r(z) < − δ

2} =
Ωδ ∩U for an independent constant b > 0, since {zn +δ = 0} is supporting.
Thus

b

2 + b
≤ |zn + δ|2

|zn|2 + δ2
≤ 1 on Ωδ ∩ U.

Choose a > 0 small so that

− log(|zn|2 + δ2) + log(a|zn + δ|2) > 2, (z′, zn) ∈ Ωδ ∩ U.

Define the twist factor

g(z) = − log(|zn|2 + δ2) + log(a|zn + δ|2)
+ log(− log(|zn|2 + δ2) + log(a|zn + δ|2))

= κ(zn) + log κ(zn).

(3.2)

Direct computation yields

− ∂2g

∂zn∂z̄n
≥ δ2

(|zn|2 + δ2)2
+

1
[κ(zn)]2

· | ∂κ

∂zn
|2
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and
| ∂g

∂zn
|2 ≤ (1 +

1
[κ(zn)]2

)| ∂κ

∂zn
|2.

Using the facts g(z) ≥ 2 and g(z) ≥ κ(zn), it follows that if h = g3, then

(3.3) − ∂2g

∂zn∂z̄n
− 1/h| ∂g

∂zn
|2 ≥ 1

2
δ2

(|zn|2 + δ2)2
.

Define the weight function

(3.4) λε(z) = log(|zn|2 + ε) − log(|zn + δ|2) + |z|2,

for ε > 0 and ε ≤ δ2. Note that λε is plurisubharmonic of Ω and that there
exists a constant K > 0, independent of δ and ε, such that

(3.5) |eλε |, |g|, |h| ≤ K

on Ωδ ∩ U .

Proof of Theorem 1.1. First, we note that the localization theorem in [O]
implies that

K̃1MΩδ∩U (p) ≤ MΩδ
(p) ≤ K̃2MΩδ∩U (p),

for independent constants K̃1, K̃2 and U the neighborhood of z0 discussed
above.

Let S = {zn = 0}∩Ω. Choose f ∈ O(S) such that |f(p)|2 = MS(p) and
||f ||L2(S) ≤ 1. Let χ ∈ C∞

0 (�(0; 1)) be a one variable cut-off function with
χ(ζ) ≡ 1 if |ζ| < 1/2. Then

F (z′, zn) =
1
δ
· χ(

|zn|2
cδ2

)f(z′, 0)

=
1
δ
χδ(zn)f(z′, 0)

is a C∞ function on Ωδ ∩ U . Let α = ∂̄F = 1/δ ∂χδ

∂z̄n
f and note that

| ∂
∂z̄n

χδ| ≤ K 1
δ for an independent constant K.

Applying Theorem 2.1, solve ∂̄(
√

g + h · uε) = α with the estimate

(3.6)
∫

Ωδ

|uε|2e−λε ≤
∫

Ωδ

< P−1α, α > e−λε .

It follows from (3.3-3.5) that
∫

Ωδ

< P−1α, α > e−λε ≤ A

∫
supp∂̄χδ

1
δ2

(|zn|2 + δ2)2

δ2

1
δ2

|f |2e−λε

≤ Ã,
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A and Ã independent of δ. Thus, it follows from (3.5)
∫

Ωδ

|
√

g + huε|2 ≤ sup |(g + g3)eλε |
∫

Ωδ

|uε|2e−λε

≤ KÃ.

(3.7)

Additionally,

∫
Ωδ

|uε|2e−λε ≥ B

∫
(
∫
|zn|<cδ

|zn + δ|2
|zn|2 + ε

|uε(z′, zn)|2 dV (zn)) dV (z′)

≥ B̃δ2

∫ ∫
|zn|<cδ

|uε(z′, zn)|2
|zn|2 + ε

.

(3.8)

Take a weak limit of the solutions uε as ε → 0; call the limit u. Then u
solves the same equation as uε and (3.8) implies that u(z′, 0) ≡ 0. Therefore
the function

H(z) =
1
2
(F (z) − 1

KÃ

√
g(z) + h(z)u(z))

is a candidate for MΩδ∩U (p) and has the claimed value at p. This implies
(1.2) and completes the proof. �
Remark. A trivial upper bound on MΩδ

(p), related to the lower bound of
Theorem 1.1, may be obtained by noting

{z ∈ U : |zn| < cδ, z′ ∈ {zn = 0} ∩ Ω̃δ} ⊂ Ωδ,

where Ω̃δ = {z : r(z) < − 3
4δ}, for some constant c > 0 depending only on

the lower bound of | ∂f
∂wn

| in U . Thus

Cδ−2MΩ̃δ∩Sp
(p) ≥ MΩδ

(p).

The comparability of MΩ̃δ∩Sp
(p) and MΩ∩Sp(p) is an open question (for

general Ω); see [D-O] for results related to this question.

Note added in proof

I would like to mention several papers, which contain results relevant to
the material in this paper, that I, regretfully, omitted from the introduc-
tion. The very interesting paper by Berndtsson, [B2], gives a short proof of
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the Ohsawa-Takegoshi extension theorem based on the differential identity
mentioned in the introduction. Diederich, [D], obtains estimates for (1.1)
on strongly pseudoconvex domains equivalent to those in [H] already men-
tioned and also obtains results on certain related, differentiated versions
of the extreme value problem. The papers [BSY], [DH1], and [He] contain
extensions of results mentioned earlier. Finally, I point out the paper by
Diederich-Herbort, [DH2], and its bibliography, as a guide to some of the
issues behind these results and for further references.
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