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ON FUNCTION THEORY ON SPACES WITH
A LOWER RICCI CURVATURE BOUND

Tobias H. Colding and William P. Minicozzi II

Abstract. In this announcement, we describe some results of an ongoing
investigation of function theory on spaces with a lower Ricci curvature
bound. In particular, we announce results on harmonic functions of poly-
nomial growth on open manifolds with nonnegative Ricci curvature and
Euclidean volume growth.

0. Introduction

Twenty years ago Yau, [Y1], generalized the classical Liouville theorem
of complex analysis to open manifolds with nonnegative Ricci curvature.
Specifically, he proved that a positive harmonic function on such a manifold
must be constant. This theorem of Yau was considerably generalized by
Cheng-Yau (see [ChY]) by means of a gradient estimate which implies the
Harnack inequality. As a consequence of this gradient estimate (see [Ch]),
one has that on such a manifold even a harmonic function of sublinear
growth must be constant. In order to study further the analytic properties
of these manifolds one would like to restrict the class of functions to be
considered as much as possible while minimizing loss of information (cf.
[CM2]). From the results of Cheng and Yau, it follows that a natural
candidate is the class of harmonic functions of polynomial growth (note
that they must be of at least linear growth). In fact, in his study of these
functions, Yau was motivated to make the following conjecture (see [Y3],
[Y4], and [Y5]; cf. [L1]):

Conjecture 0.1. (Yau). For an open manifold with nonnegative Ricci
curvature the space of harmonic functions with polynomial growth of a
fixed rate is finite dimensional.

We recall the definition of polynomial growth.

Definition 0.2. For an open (complete noncompact) manifold, Mn, given
a point p ∈ M let r be the distance from p. Define Hd(M) to be the
linear space of harmonic functions with order of growth at most d. This
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means that u ∈ Hd if u is harmonic and there exists some C > 0 so that
|u| ≤ C(1 + rd).

Our main result is the following.

Theorem 0.3. ([CM1]). Conjecture 0.1 is true if Mn has Euclidean vol-
ume growth.

Remark 0.4. For each fixed rate of growth, we give explicit bounds on
the dimension of the space of harmonic functions.

In fact, we give a description of the asymptotic behavior of polynomial
growth harmonic functions in this case. We also give examples illustrating
the subtleties that arise.

From the investigation initiated by the first author in [C1], [C2], and
[C3], and later on further developed by the first author jointly with Cheeger
in [CC1], [CC2], and [CC3], and finally the joint work of the first author
with Cheeger and Tian in [CCT], we have a good understanding of the
geometry of spaces with Ricci curvature bounded from below.

In [CCM], jointly with Cheeger we show that for each nontrivial inde-
pendent linear growth harmonic function the tangent cone at infinity splits
off a line. Examples of Kasue-Washio show that M itself may not split
(see [KW]). As a consequence of this result proven in [CCM] and results
of the first author in [C3], we have that a manifold with nonnegative Ricci
curvature admitting the maximal number of independent linear growth
harmonic functions must be isometric to Euclidean space (cf. [LT], [L2],
and [W]). That is, we get that Rn is the unique n-dimensional manifold
with nonnegative Ricci curvature with the maximal number of independent
linear growth harmonic functions.

Earlier important work on Conjecture 0.1 has been done by P. Li, P.
Li and L.F. Tam, A. Kasue, J. Wang, and H. Wu. F.H. Lin has studied
asymptotically conical elliptic operators and formulated similar problems
on function theory on minimal submanifolds.

In a future paper, we plan on describing applications of this work, and
considering some related questions (see [CM2]).

1. Background

We first recall the notion of Gromov-Hausdorff distance which we will
use to measure the rough geometry of manifolds.

Definition 1.1. (see [GLP]). We will say that the Gromov-Hausdorff
distance between two metric spaces X1 and X2 is less than ε if there exist
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maps Φ1 : X1 → X2 and Φ2 : X2 → X1 such that for every ai, bi ∈ Xi,

|d(Φi(ai),Φi(bi)) − d(ai, bi)| < ε(1.2)

and for i �= j

|d(Φj(Φi(ai)),Φj(Φi(bi))) − d(ai, bi)| < ε .(1.3)

Similarly, if X is an unbounded metric space and p ∈ X, we can define
pointed Gromov-Hausdorff convergence with base point p (see [GLP]); this
is essentially Gromov-Hausdorff convergence on bounded subsets.

Let Mn be an open Riemannian manifold with nonnegative Ricci curva-
ture. By Gromov’s compactness theorem, [GLP], any sequence, ri → ∞,
has a subsequence, rj → ∞, such that the rescaled manifolds (M, p, r−2

j g)
converge in the pointed Gromov-Hausdorff topology to a length space,
M∞. Such an M∞ is called a tangent cone at infinity of M .

Mn is said to have Euclidean volume growth if there exists p ∈ M and
a positive constant C such that Vol(Br(p)) ≥ Crn for all r > 0. Note that
Bishop’s volume comparison theorem implies that Vol(Br(p)) ≤ Vn

0 (1)rn

for all r > 0, where Vn
Λ(r) denotes the volume of the ball of radius r in the

n-dimensional space form of constant sectional curvature Λ.
Examples of Perelman ([P1]; see also [CC2] for further examples) show

that M∞ is not unique in general even if M has Euclidean volume growth
and quadratic curvature decay (cf. [C3] and [CT]).

However, in [CC1] it is shown that if M has Euclidean volume growth,
then every such M∞ is a metric cone. For this reason, we will model large
balls in such a manifold by large balls centered at the vertex of a cone.

We also note that examples of Perelman (see [P2]) most likely can be
modified to give examples of manifolds with nonnegative Ricci curvature,
Euclidean volume growth and infinite topological type.

2. Harmonic functions with polynomial growth

In this section, we describe our results settling Conjecture 0.1 when M
has Euclidean volume growth. As a step towards this, we give a description
of the asymptotic structure of polynomial growth harmonic functions in
this case.

It is a classical result that the space of harmonic functions of polynomial
growth on Euclidean space is spanned by the spherical harmonics. Recall
that the spherical harmonics are the homogeneous polynomials whose re-
striction to every sphere centered at the origin is an eigenfunction of the
spherical Laplacian. More generally, the harmonic functions of polynomial
growth on a metric cone can be written as a linear combination of harmonic
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functions which separate variables (into the radial and cross-sectional di-
rections). Further, they are homogeneous in the radial direction; it follows
that the restriction to the cross-section gives an eigenfunction (where the
eigenvalue depends on the dimension and the order of growth). We show
that asymptotically this picture still holds in the general case of nonneg-
ative Ricci curvature and Euclidean volume growth. That is, on many
sufficiently large annuli, harmonic functions of polynomial growth will al-
most separate variables and be approximately homogeneous in the radial
direction.

An important tool in the proof of Theorem 0.3 is to study for a harmonic
function u the rate of growth U(r) of the average of u2 on the sphere of
radius r. See [CM1] for a precise definition.

We also describe some of the subtleties that arise in the case of Euclidean
volume growth compared to the model case of a cone. In particular, in
contrast to the model case, U is not always monotone (see [CM1] for
examples).

We note that if M does not have Euclidean volume growth, there might
not be any nontrivial polynomial growth harmonic functions.

Example 2.1. There exist manifolds with nonnegative Ricci curvature (in
fact, positive sectional curvature) which admit no nontrivial polynomial
growth harmonic function. In fact, one may round off a metric of the form
dr2 + r2αdθ2, where α < 1 and dθ2 is the standard metric on Sn−1. This
example was observed by Kasue in [K1].

Example 2.2. (Klembeck, [Kl], and cf. [Mo]). In the holomorphic case,
there exists a Kähler metric on Cn of positive sectional curvature and
quadratic curvature decay which does not admit any nonconstant holo-
morphic functions with polynomial growth.
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