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COCYCLES’ STABILITY FOR
PARTIALLY HYPERBOLIC SYSTEMS

A. Katok and A. Kononenko

Abstract. In this paper we establish Livshitz-type theorems for partially
hyperbolic systems. To be more precise, we prove that for a large class
of partially hyperbolic transformations and flows the subspace of Hoelder
coboundaries is closed and can be described by some natural geometric
conditions. This class includes an open, in C2 topology, neighborhood
of the time-one maps of contact Anosov flows (for example, the geodesic
flows on manifolds of negative curvature).

Along the way we prove several results on the transitivity of the pair of
stable and unstable foliations for partially hyperbolic systems. In particu-
lar, we establish the transitivity property for the time-one maps of contact
Anosov flows and their small perturbations, which has important applica-
tions to the stable ergodicity of the time-one maps of geodesic flows on the
manifolds of negative curvature.

1. Stability of cocycle spaces

Let f be a transformation of a space X. The cohomological equation
corresponding to a fixed function φ (also called a cocycle) is the following
equation, with an unknown function h,

φ(x) − h(x) + h(f(x)) = 0, x ∈ X.

If this equation has solutions then φ is called a coboundary, and h is called a
transfer function. Two functions are called cohomologous if their difference
is a coboundary. Depending on the classes of regularity of cocycles and
transfer functions allowed one associates with the transformation f various
cohomology spaces ([10], [13]).

A number of well known results describes the spaces of coboundaries for
different types of maps f. The most celebrated results of this kind are the
Livshitz-type theorems for hyperbolic diffeomorphisms and flows ([4], [7],
[8], [10] (Section 19.2), [13], [14], [15], [16]). However some non-hyperbolic
systems also display certain regularity for cocycles. These include Dio-
phantine translations of a torus, affine maps ([12], Section 10.5), partially
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hyperbolic toral automorphisms ([20]), integrable systems, area-preserving
flows on surfaces of high genus ([5]).

It is a simple and very general fact that under some natural conditions
the closure of the space of coboundaries is equal to the intersection of
the kernels of all f -invariant linear functionals. It is true, for example, for
C∞-cocycles with C∞ transfer functions, for Hoelder cocycles with Hoelder
transfer functions, etc (the proof is similar to the proof of Proposition 9.12
in [12]). Therefore, if we want to describe a certain space of coboundaries
B for a map f we naturally encounter the following two questions:

(1) Is B closed, and thus equal to the intersection of the kernels of all
f -invariant functionals?

(2) What is the structure of the set F of all f -invariant functionals?
In particular, is it possible to find a dense or generating subset of
F that consists of the functionals which have “nice descriptions”
in terms of the dynamics of f?

Livshitz theorems describe the space of coboundaries as being the com-
mon zero set for a family of functionals corresponding to the periodic
points of f, where f is a hyperbolic diffeomorphism, thus giving a positive
answer to both questions.

In the present paper, we give an affirmative answer to the first question
for a large class of partially hyperbolic dynamical systems. Moreover, we
show that for such systems the subspace of Hoelder coboundaries can be
described as a common zero set of some natural geometrically defined func-
tionals – the periodic cycles functionals (see Definition 3.3), thus answering
the second question.

Before we proceed to the formulations of our results we would like to
introduce some convenient terminology (which is a slight modification of
the terminology first suggested in [12]).

Let P be a space of functions on a space X endowed with some topology.
Let P1 be another space of functions (not necessarily equipped with any
topology).

Definition 1.1. The space of P-cocycles, i.e., cocycles which lie in P, of
a transformation f of X is called P1-stable if the space of the cocycles
cohomologous to a constant, with the transfer functions from P1, is closed
with respect to the topology of P.

With the exception of Section 6, we will work with Hoelder cocycles.
To be more precise, the role of P will be played by the space Lα — the
space of Hoelder functions with the fixed exponent α ∈ (0, 1]. The role of
P1 will be played by Lβ , β ∈ (0, 1] or the space of continuous functions.
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We will refer to the functions from Lα as α-Hoelder functions, and we will
refer to the functions from L1 as Lipschitz functions.

2. Transitivity of a pair of foliations

Let M be a Riemannian manifold and S its submanifold. For x, y ∈ M
(correspondingly x, y ∈ S) we will denote by dM (x, y) (correspondingly
dS(x, y)) the infinum of the lengths of the smooth curves in M (corre-
spondingly S) connecting x and y.

Definition 2.1. A pair of continuous foliations F1 and F2 with smooth
leaves is called locally transitive if, for any compact subset M1 of M, there
exists N ∈ N, such that for any ε > 0 there exists δ > 0 such that for every
x, y ∈ M with x ∈ M1 and dM (x, y) < δ there are points x1, . . . , xN ∈ M,
satisfying the following conditions:

(1) x1 = x, xN = y;
(2) xi+1 ∈ Fj(xi), i = 1, . . . , N − 1, j = 1 or 2;
(3) dM (xi, x) ≤ ε and dFj(xi)(xi+1, xi) < 2ε, i = 1, . . . , N − 1, j = 1

or 2.

The notion of local transitivity of a pair of foliations was introduced by
Brin and Pesin in [2]. They studied extensively the local transitivity prop-
erty for the pair of stable and unstable foliations for partially hyperbolic
dynamical systems, its relations to other properties of the system, and its
stability under perturbations. An important class of partially hyperbolic
dynamical systems – the extensions of the hyperbolic ones – was proved
to posses the transitivity property (slightly weaker property then the local
transitivity) generically, by Brin in [3]. Brin’s examples include, in par-
ticular, the frame flows on the manifolds of negative curvature. Also, the
transitivity condition appears in the work of Grayson, Pugh and Shub [6]
on stable ergodicity. Namely, it is one of the conditions which they require
for the system to be stably ergodic.

The following definition is the Hoelder version of local transitivity:

Definition 2.2. A pair of continuous foliations F1 and F2 with smooth
leaves is called locally α-Hoelder transitive if there exists N ∈ N, δ > 0,
C > 0 such that for every x and y ∈ M with dM (x, y) < δ there are points
x1, . . . , xN ∈ M, satisfying the following conditions:

(1) x1 = x, xN = y;
(2) xi+1 ∈ Fj(xi) i = 1, . . . , N − 1, j = 1 or 2;
(3) dFj(xi)(xi+1, xi) < CdM (x, y)α, i = 1, . . . , N − 1, j = 1 or 2.

The following definition is useful in questions related to Lipschitz cocy-
cles, in particular, to C∞-cocycles.
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Definition 2.3. A pair of continuous foliations F1 and F2 with smooth
leaves is called weakly locally α-Hoelder transitive, where α ∈ (0, 1], if
there exists δ > 0 and C > 0 such that for every x, y ∈ M with dM (x, y) <
δ there are points x1, . . . , xk ∈ M, satisfying the following conditions:

(1) x1 = x, xk = y;
(2) xi+1 ∈ Fj(xi), i = 1, . . . , k − 1, j = 1 or 2;
(3)

∑j=k−1
j=1 dFj(xi)(xi+1, xi) < CdM (x, y)α.

Clearly, local α-Hoelder transitivity implies weak local α-Hoelder tran-
sitivity and transitivity.

3. Stability theorems for Hoelder cocycles

Recall the following standard definition due to Brin and Pesin ([2]):

Definition 3.1. A diffeomorphism g of a manifold M with a Riemannian
norm || · || is called partially hyperbolic if there exist real numbers λ1 >
µ1 > 0, i = 1, 2, K, K ′ > 0 and a continuous splitting of the tangent
bundle

TM = E+
⊕

E0
⊕

E−

such that for all x ∈ M, for all v ∈ E+(x) (v ∈ E+(x) respectively) and
n > 0 (n < 0 respectively) we have for the differential g∗ : TM → TM

||g∗(v)|| ≤ Ke−λ1n||v|| (||g∗(v)|| ≤ Ke−λ2|n|||v||, respectively)

and for all n ∈ Z and v ∈ E0(x) we have

||g∗(v)|| ≥ K ′e−µ1n||v||, n > 0 and ||g∗(v)|| ≥ K ′e−µ2|n|||v||, n < 0.

Furthermore, we assume that the distribution E0 is uniquely integrable.
We will call E+ and E− stable and unstable distributions respectively.

Note that if M is compact these notions do not depend on the ambient
Riemannian metric.

The following fact is a direct corollary of the Hadamard-Perron theorem
(see, for example, [10], Theorem 6.2.8).

Theorem A 3.0.1. For a partially hyperbolic dynamical system, there are
Hoelder foliations W s and Wu tangent to the distributions E+ and E−

respectively. We call this foliations stable and unstable foliations. The
individual leaves of these foliations are C∞-immersed submanifolds of M,
and are called stable and unstable manifolds.

For the basic theory of the partially hyperbolic systems see [2] and [9].
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Definition 3.2. We will call a set C of points x1, x2, . . . , x2n, x2n+1 =
x1 ∈ M a periodic cycle if x2k ∈ W s(x2k−1) and x2k+1 ∈ Wu(x2k), for
k = 1, . . . , n.

Notice that if y ∈ W s(x) then dM (f i(x), f i(y)) decreases exponentially,
thus φ(f i(x))−φ(f i(y)) also decreases exponentially. Therefore, the series

P+(x, y)(φ) =
∞∑

i=0

(φ(f i(x)) − φ(f i(y)))

converges absolutely for any Hoelder function φ. Similarly, if y ∈ Wu(x)
then the series

P−(x, y)(φ) = −
−∞∑

i=−1

(φ(f i(x)) − φ(f i(y)))

converges absolutely for any Hoelder function φ.

Let us notice that if φ is C∞ then P+(x, y) and P−(x, y) are infinitely
differentiable with respect to y along the stable and unstable foliations,
and the derivatives are continuous with respect to x.

Definition 3.3. For a periodic cycle C, we will denote by F (C) the fol-
lowing continuous functional on the space L of Hoelder functions:

F (C)(φ) = P+(x1, x2)(φ) + P−(x2, x3)(φ) + · · ·

+P+(x2n−1, x2n)(φ) + P−(x2n, x1)(φ).

We will call this functional a periodic cycle functional.

The following results give general criteria for cocycle’s stability for par-
tially hyperbolic diffeomorphisms:

Theorem 3.1. If f is a partially hyperbolic diffeomorphism such that the
pair (W s, Wu) is locally transitive, then, for any β ∈ (0, 1], the space
of β-Hoelder cocycles of f is C0-stable, and the subspace of cocycles co-
homologous to a constant is the common zero set of the periodic cycles
functionals, i.e., φ ∈ Lβ is cohomologous to a constant, with C0 transfer
function, if and only if F (C)(φ) = 0 for all periodic cycles C.

Remark. Notice that if the cocycle is C∞ and the periodic cycles func-
tionals vanish then the transfer function constructed in Theorem 3.1 has
continuous derivatives of all orders along the stable and unstable foliations.
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Theorem 3.2. If f is a partially hyperbolic diffeomorphism such that the
pair (W s, Wu) is locally α-Hoelder transitive, then, for any β ∈ (0, 1], the
space of β-Hoelder cocycles is both αβ-Hoelder stable and C0-stable.

If the pair (W s, Wu) is weakly locally α-Hoelder transitive then the space
of Lipschitz cocycles is C0-stable and α-Hoelder stable.

In all cases, the subspace of cocycles cohomologous to a constant is the
common zero set of the periodic cycles functionals.

Proof of Theorems 3.1 and 3.2. Let φ be a β-Hoelder function. Then
there exists a constant L such that |φ(a) − φ(b)| ≤ LdM (a, b)β , for all
a, b ∈ M.

Assume that F (C)(φ) = 0 for any periodic cycle C.
We will call a set S(x, y) of points x1 = x, x2, . . . , xk = y ∈ M a broken

path from x to y, if xi+1 ∈ Fj(xi), i = 1, . . . , k−1, j = 1 or 2. We will call∑j=k−1
j=1 dFj(xi)(xi+1, xi) the length of the broken path S. We will call the

points xi the turning points of S and the points x and y the end points of
S. We will also say that S connects x with y.

Let

F1(S(x, y))(φ) =
k−1∑

i=1

P ∗(xi, xi+1)(φ),

where ∗ is equal to + or − depending on whether the xi+1 belong to,
correspondingly, the stable or unstable manifolds of xi.

Fix an arbitrary point x ∈ M, and define a function
h(y) = F1(S(x, y))(φ), where S is some broken path from x to y. The
function h(y) is defined for all points y ∈ M due to the transitivity of the
pair (W s, Wu), and h(y) does not depend on the choice of the path S, due
to the fact that F (C)(φ) = 0, for any periodic cycle C.

Now we will prove that due to the local transitivity condition (corre-
spondingly local α-Hoelder transitivity condition) on the pair of stable and
unstable foliations, h(y) is continuous, (correspondingly αβ-Hoelder).

Indeed, there exists δ1 > 0 such that for a and b belonging to the same
leaf W of the stable foliation with dW (a, b) < δ1,

P+(a, b)(φ) =
∞∑

i=0

(φ(f i(a)) − φ(f i(b))) ≤
∞∑

i=0

LdM (f i(a), f i(b))β ≤
∞∑

i=0

LλiβdM (a, b)β = K1dM (a, b)β ,

whereλ is a contracting exponent of the stable foliation, and L and K1 =∑∞
i=0 Lλiβ are constants that depend on φ and f but not a and b.
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Similarly, there exists δ2 > 0 such that for a and b belonging to the
same leaf W of the unstable foliation with dW (a, b) < δ2,

P−(a, b)(φ) ≤ K2dM (a, b)β ,

for some constant K2 that depends on φ and f but not a and b.

Let K = max(K1, K2). Then we have

P ∗(a, b)(φ) ≤ KdM (a, b)β ,

for all a and b which belong to the same leaf of either the stable or unstable
foliation and such that dM (a, b) < min(δ1, δ2).

Suppose the pair (W s, Wu) is locally transitive. Fix ε > 0 and let δ
and N ∈ N be as in Definition 2.1. Also, assume that δ < min(δ1, δ2).
Let z1 and z2 be arbitrary points in M such that dM (z1, z2) < δ, and let
Z = {x1 = z1, x2, . . . , xN = z2} be a broken path from z1 to z2 as in
Definition 2.1. Then,

h(z1) − h(z2) = F1(Z)(φ) ≤
N−1∑

i=1

KdM (xi, xi+1)β ≤ (N − 1)K(2ε)β ,

which proves that h is continuous.
If the pair (W s, Wu) is locally α-Hoelder transitive then we have

h(z1) − h(z2) = F1(Z)(φ) ≤
N−1∑

i=1

KdM (xi, xi+1)β

≤ (N − 1)KCβdM (z1, z2)αβ ,

where C is as in Definition 2.2, which shows that h is αβ-Hoelder.
If φ is Lipschitz, and the pair W s, Wu is weakly locally α-Hoelder

transitive then we still have

h(z1) − h(z2) = F1(Z)(φ) ≤
k−1∑

i=1

KdM (xi, xi+1) ≤ KCdM (z1, z2)α,

which shows that h is α-Hoelder.
Now we will show that −h(y) solves the cohomological equation for φ.

Indeed, let S(x, y) = {x1 = x, x2, . . . , xk = y} be some broken path from
point x to point y, and let S(f(x), f(y)) be a broken path from f(x) to
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f(y) consisting of points f(x1) = f(x), f(x2), . . . , f(xk) = f(y). Then

h(f(y)) = h(f(x)) + F1(S(f(x), f(y))(φ) =

h(f(x)) +
k−1∑

i=1

P ∗(f(xi), f(xi+1))(φ) =

h(f(x)) +
k−1∑

i=1

P ∗(xi, xi+1)(φ) −
k−1∑

i=1

(φ(xi) − φ(xi+1)) =

h(f(x)) +
k−1∑

i=1

P ∗(xi, xi+1)(φ) − φ(x) + φ(y) =

h(f(x)) + h(y) − φ(x) + φ(y).

If we denote h(f(x)) + φ(x) by c, then we have

φ(y) + h(y) − h(f(y)) = c.

This shows that if F (C)(φ) = 0 for any periodic cycle C then φ is
cohomologous to a constant cocycle.

Now assume that φ(y)−h(y)+h(f(y)) = c is cohomologous to a constant
with the continuous transfer function h. Let C = {x1, . . . , x2k, x2k+1 = x1}
be some periodic cycle.

Notice that

P+(xi, xi+1)(φ) =
∞∑

j=0

(φ(f j(xi)) − φ(f j(xi+1))) =

∞∑

j=0

(h(f j(xi)) − h(f j+1(xi)) + c − (h(f j(xi+1)) − h(f j+1(xi+1)) + c)) =

∞∑

j=0

((h(f j(xi)) − h(f j(xi+1))) − (h(f j+1(xi)) − h(f j+1(xi+1))) =

h(xi) − h(xi+1) − lim
j→∞

(h(f j(xi)) − h(f j(xi+1))) = h(xi) − h(xi+1),

if i is odd.
Similarly,

P−(xi, xi+1)(φ) = h(xi) − h(xi+1),
if i is even.

Therefore,

F (C)(φ) =
i=2k∑

i=1

(h(xi) − h(xi+1)) = 0.

Theorems 3.1 and 3.2 are proved.
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Notice, that from the last part of the proof we get the following

Corollary 3.1. For any partially hyperbolic diffeomorphism, if a Hoelder
function φ is cohomologous to a constant with a continuous transfer func-
tion then it belongs to the intersection of the kernels of all periodic cycles
functionals.

4. Transformations coming from the Weyl chamber flows

Recall the following standard

Definition 4.1. A pair of smooth foliations F1 or F2 is called totally non-
integrable with index p ∈ N if for any x ∈ M the Lie brackets of degree at
most p of the vector fields tangent to either F1 or F2 span the whole TxM.

We will call a smooth distribution E on M totally non-integrable with
index p ∈ N if for any x ∈ M the Lie brackets of degree at most p of the
vector fields tangent to E span the whole TxM.

The following simple statement opens up a way to construct a large
class of examples of transformations with Hoelder stable and C0-stable
spaces of Hoelder cocycles:

Proposition 4.1. If a pair of C∞ foliations on M is totally non-integrable
with index p, then it is locally transitive and, if M is compact it is locally
(1/2p)-Hoelder transitive.

We omit the proof of Proposition 4.1, since it is standard and is unre-
lated to our main subject here. (A proof of a similar result that can be
easily modified to prove Proposition 4.1 can be found in [2].)

From Proposition 4.1 and Theorem 3.2 we have the following

Corollary 4.1. Let G be a semisimple group of non-compact type, A its
maximal split Cartan subgroup, Γ an irreducible cocompact lattice, and K
any compact subgroup of G that commutes with A. Then, for any β ∈
(0, 1], for any regular element a ∈ A acting on M = K\G/Γ, the space
of β-Hoelder cocycles is both β/2p-Hoelder stable and C0-stable, where p
depends only on G and K, but not on a, Γ or β.

In particular, if K is maximal such compact group as described above
then the space of β-Hoelder cocycles is β/2-Hoelder stable.

If a ∈ A is not regular but log(a) still has non-trivial projections to
all simple components of the Lie algebra G of G, then the space of β-
Hoelder cocycles is both β/2p(a)-Hoelder stable and C0-stable, where now
p(a) depends only on G, K and a, but not on Γ or β.

Moreover, the subspace of cocycles cohomologous to a constant is the
common zero set of the periodic cycles functionals.
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In particular, if K is the maximal compact subgroup commuting with
A, the above action of a ∈ A is a part of the Weyl chamber flow. And if G
is rank one the Weyl chamber flow coincides with the geodesic flow on the
corresponding compact rank-one locally symmetric space of non-compact
type.

Also notice, that if Γ is not cocompact then the C0 part of Corollary 4.1
still holds.

Theorem 3.1 together with the results of Brin and Pesin ([2], Theorem
4.3) imply the following

Corollary 4.2. For any transformation f described in Corollary 4.1 there
is an open neighborhood U(f) in Diff2(M) such that for every f1 ∈ U(f)
the space of β-Hoelder cocycles of f1 is C0-stable, and the subspace of
cocycles cohomologous to a constant is the common zero set of the periodic
cycles functionals.

5. Time-one maps of contact Anosov flows

We will call a continuous distribution E on a manifold Q locally transi-
tive (α-Hoelder locally transitive respectively) if for any ε > 0 there exists
δ > 0 such that for any x, y ∈ Q with dQ(x, y) < δ there exists a broken
piecewise smooth curve γ tangent to E, on its intervals of smoothness, and
such that its length is less then ε (Cδα, for some constant C, respectively).

Then we prove the following:

Proposition 5.1. If for an Anosov flow gt on a manifold Q the distri-
bution E+

⊕
E− is locally transitive (α-Hoelder locally transitive, respec-

tively) then the pair (W s, Wu) is locally transitive (weakly α-Hoelder locally
transitive, respectively).

Proof. For y ∈ Q we will denote the ball of radius a around y on Q by
Ba(y).

For a point y ∈ Q denote the orbit passing through y by Oy.
Fix ε. We will find numbers δ and N satisfying Definition 2.1 in several

steps.
Let x be an arbitrary point of Q. In steps 1 − 7 x is the same point.
Step 1. There exists 0 < δ1 < ε such that for any 0 < δ < δ1 and any

y ∈ Bδ(x) there is a broken piecewise smooth curve γ tangent to E+
⊕

E−

and connecting x and y. Moreover, γ is inside Bε1/2(x), (where ε1/2 = ε/2
or ε1/2 = C1δ

α, for some constant C1. Therefore, approximating γ by
broken paths we see that for any ε2 there exists a broken path inside Bε1(x)
connecting x with some point y1 ∈ Bε2(y). (Such an approximation always
exists due to the following simple argument. Project the curve γ to the
transverse section T constructed in Step 2. Let Π(γ) be the projection on
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T. Then due to the product structure on T (see Step 3), for small enough
δ1, the curve Π(γ) can be arbitrarily well approximated by a broken path
on T, (see Step 2) and the lifts (see Step 3) of such approximations to Q,
with initial point x, give approximations of γ by broken paths on Q.)

Step 2. Let 0 < δ2 be so small that there exists a piece T of smooth
sub-manifold of Q of codimension one, such that, for y ∈ Bδ2(x), the
maximal connected piece of Oy that contains y and belongs entirely to
Bδ2(x), intersects T transversely in exactly one point Π(x) ∈ T. From now
on, for y ∈ Bδ2(x), we will denote by Oy not the whole orbit Oy but the
maximal connected piece of the orbit that contains y and belongs entirely
to Bδ2(x).

We have a well defined projection Π : Bδ2(x) → T along the orbits.
Two points z1 and z2 are mapped by Π into one point n ∈ T if and only
if Oz1 = Oz2 . Moreover, their stable and unstable manifolds are mapped
into the same sub-manifolds of T. We will denote these sub-manifolds by
F s(n) and Fu(n). Therefore, we obtain two local foliations F s and Fu in
the δ2-neighborhood of x in T. We will call broken paths on T defined with
respect to F s and Fu broken paths on T.

Step 3. Locally, there is a product structure on T. Namely, there exists
0 < δ3 < δ2 such that for n1, n2 ∈ T1 = (Bδ3(x)

⋂
T ) there are unique

points I1 and I2 of intersections of F s(n1) and Fu(n2) and of Fu(n1) and
F s(n2) correspondingly.

Moreover, for any δ < δ3 there exists δ′ such that if n1, n2 ∈ Bδ′(x)
then I1, I2 ∈ Bδ(x).

Now, notice that for any broken path ST1 = {X, n1, . . . , nk} ∈ T1 on T
and for any X̃ ∈ OX there is a unique lift to Q, which is a broken path
SQ(X̃) = {X̃, x1, . . . , xk} ∈ Q such that Π(xi) = ni, i = 1, . . . , k. Indeed,
there is a unique point x1 of intersection of W ∗(X̃) with On1 . Then there
is a unique point x2 of intersection of W ∗(x1) with On2 , and so on, where
∗ is equal to s or u in accordance with the sequence of s and u in the
broken path ST1 on T.

Step 4. Since, T is transversal to the orbits of gt, there exist 0 < δ4 < δ3

such that for any y ∈ Bδ4(x) the norm of the differential D(Π|W∗(y)) is
bounded away from zero by some constant independent of y and ∗ = s or
u.

Step 5. Therefore, due to the choice of δ4 in Step 4, there exists
0 < δ5 < δ4 and a constant K such that for any δ < δ5 a lift to Q
of any broken path on T inside a δ-neighborhood of x belongs to a Kδ-
neighborhood of x̃ in Q, if x̃ ∈ Ox

⋂
Bδ5(x).

Step 6. Therefore, due to the local product structure (Step 3), the
lifting procedure (Step 3) and the restriction on the norm of the differential
(Step 4), there exist 0 < δ6 < δ5 such that for any y ∈ Bδ6(x) there is a
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broken path consisting of 3 turning points inside Bδ5(x) that connects y
with some point z ∈ Ox such that dQ(y, z) < KdQ(Π(y), x).

Step 7. Now we will prove that there exists 0 < δ7 < δ6, 0 < δ7 < δ1,
such that for any point of Ox

⋂
Bδ7(x) there is a broken path inside Bδ5

with no more then some fixed number L of turning points that connects
this point with x.

First of all notice that if there is a path S inside Bδ6(x) connecting x
and p ∈ Ox then for any p′ ∈ Ox between x and p on Ox there is a path
S′ connecting x and p′, and such that S′ has as many turning points as S
does. Indeed, consider, the closed broken path Π(S) in T. Due to the local
product structure it is easy to construct a continuous family St of closed
broken paths in T, with the same number of turning points as S has, and
such that S0 = Π(S) and S1 = {x}, where {x} is a trivial broken path
that consists of several copies of the point x, and the end points for all
St are all equal to the point x. Then the end point pt of their lifts St

Q(x)
changes continuously on Ox and p0 = p and p1 = x.

Let us prove that there are broken paths S1(x, p1) and S2(x, p2) such
that p1 precedes x on Ox and p2 follows it. Let us construct S1, the
construction of S2 is absolutely parallel.

Fix point any point y ∈ Ox

⋂
Bδ6(x) such that it precedes x and

dQ(y, x) <
(

δ5
2C

)2
. As in Step 1, let γ be a curve tangent to E+

⊕
E−

connecting x and y. Let ε2 <
dQ(x,y)

10K . Then, due to the Step 1, there
exists a broken path S in Q inside Bδ5 connecting x with some point
y1 ∈ Bε2(y). Then, we can add two more points to S in order to connect
y1 with some point p1 ∈ Ox. Denote the resulting path by S1, then the
point p1 and the path S1 satisfy our requirements. Indeed, S1 is inside
Bδ5 and dQ(p1, x) > dQ(y, x)−KdQ(y1, y) > 0, thus p1 precedes x on Ox.

Now, we will show that it is possible to choose the broken path S1 with
no more than 6 turning points. Let L > 6 be the minimal possible number
of turning points and let

S1 = {x1 = x, x2, x3, x4, x5, x6, . . . , xL = p1}
be the path with exactly L turning points. Let {x4, y5, y6 ∈ Ox} be a path
like in Step 3, connecting x4 with some point y6 ∈ Ox. Then,

1) If y6 precedes x on Ox, then the broken path {x1, x2, x3, x4, y5, y6}
contradicts to the choice of S1.

2) If y6 = x then the broken path

{y6 = x, y5, x4, x5, x6, . . . , xL = p1}
contradicts to the choice of S1.
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3) Assume that y6 follows x on Ox. Then let

S̃1 = {p1 = xL, . . . , x6, x5, x4, y5, y6}
be the path connecting p1 and y6. Then we consider Π(S̃1) and construct
the family St of broken paths on T, just like before, i.e., S0 = Π(S̃1) and
S1 = {x}. Then consider the lifts St

Q(p1). Denote the end point of St
Q(p1)

by pt. Then, p0 = y6, and p1 = p1. Therefore, there exists t0 such that
pt0 = x. Then, the broken path St0

Q (p1) contradicts to the choice of S1.
Similarly, construct S2. And let

δ7(x) = δ7 = min{dQ(x, p1), dQ(x, p2)}.
Then we see that for any y ∈ Bδ7(x) there is a broken path inside Bδ5(x)

with no more then 8 turning points that connects x and y. Therefore, for
any y1, y2 ∈ Bδ7(x) there is a broken path inside Bδ5(x) with no more then
16 turning points that connects y1 and y2.

Step 8. Cover Q by the balls Ux = Bδ7(x)(x). Let U1, . . . Um be some
finite sub-cover. Then there exists δ8 such that for any y ∈ Q there is
i ∈ {1, . . . , m} such that Bδ8(y) ⊂ Ui.

Therefore, the conditions of Definition 2.1 are satisfied with δ = δ(ε) =
δ8 and N = 16, where xi are the centers of Ui. (Actually, for the case of
contact Anosov flows N = 7 is enough (easily follows from the arguments
in the proof of Theorem 18.3.6 from [10]), but we do not need the estimates
on N in this work.)

The weak local α-Hoelder transitivity follows easily from the local tran-
sitivity of (W s, Wu) and the local α-Hoelder transitivity of E+

⊕
E−.

Indeed, there exists δ > 0 such that for x, y with dQ(x, y) < δ there is a
curve γ connecting x and y as in Step 1. Then its length l is less then
C2dQ(x, y)α, where C2 is some constant that does not depend on x and
y. Let ε < min{l/10, δ}. Then due to the local transitivity there exists δ′

such that every point of Bδ′(y) can be connected with y by a broken path
of length less then ε.

Then, like in Steps 1 and 7, we can approximate γ by a broken path
S′ in such a way that the length of S′ is less then l + ε, and S′ connects
x with some point y′ ∈ Bδ′(y). Then connecting y′ with y we can extend
S′ to a broken path S that connects x and y and has length less then
l + 2ε < 2C2dQ(x, y)α.

Then we have

Theorem 5.1. For a contact Anosov flow gt on a compact manifold the
pair (W s, Wu) is locally transitive and weakly locally 1/2-Hoelder transi-
tive.
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(The local 1/2-Hoelder transitivity of E+
⊕

E− follows from the fact
that E+

⊕
E− is smooth (Lemma 18.3.7, [10]), its total non-integrability

(Theorem 18.3.6, [10]) with index 2 and an obvious analog of Proposi-
tion 4.1 for a single totally non-integrable distribution.)

Let M be a compact Riemannian manifold of negative curvature, and
gt be the geodesic flow on SM. It is well known that gt is a contact Anosov
flow, and thus Theorem 5.1 applies to gt.

As an immediate corollary of Theorems 3.1, 3.2 and 5.1 we obtain the
following

Corollary 5.1. For the time-one map of a contact Anosov flow on a com-
pact manifold the space of β-Hoelder cocycles is C0-stable, and the subspace
of cocycles cohomologous to a constant is the common zero set of the peri-
odic cycles functionals.

Moreover, the spaces of Lipschitz cocycles and C∞-cocycles are 1/2-
Hoelder stable, and the subspaces of cocycles cohomologous to a constant
are the common zero sets of the periodic cycles functionals.

Now, we will show that small perturbations of the time-one maps of
contact Anosov flows on compact manifolds have transitive but not neces-
sarily locally transitive pairs of stable and unstable foliations. Therefore,
Theorem 3.1 is not immediately applicable. Nevertheless, we will show
that for small enough perturbations the conclusion of Theorem 3.1 still
holds, i.e., the space of Hoelder cocycles cohomologous to a constant is the
common zero set of the periodic cycles functionals.

Step 1. Cover the manifold Q by a finite number of open sets Ui

such that inside each Ui the conditions described in Steps 2,3 and 4 of
the proof of Theorem 5.1 are satisfied. Namely, there are projections
Πi : Ui → Ti, where Ti are codimension one submanifolds transversal to
the neutral foliation of g = g1. Moreover, the images of the foliations W s

and Wu are foliations F s
i and Fu

i of Ti, which define a product structure
on Ti and such that their derivatives satisfy the conditions of Step 4.

Step 2. Let g′ be a small perturbation of g. Then, by Hirsh-Pugh-
Shub “Fundamental Theorem of Normally Hyperbolic Invariant Mani-
folds,” if g′ is close enough to g then it is also partially hyperbolic, with
one-dimentional neutral foliation O′, and foliations W s′

, Wu′
, which are

C0 close to the neutral foliation of g and W s, Wu, respectively. There-
fore, if the perturbation was small enough, then we will have projections
Π′ : Ui → Ti along the neutral foliation for g′. Moreover, the images of
the foliations W s′

and Wu′
are foliations F s′

i and Fu′
i of Ti, which define

a product structure on Ti.
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Also, any broken path on T with respect to F s′
i and Fu′

i may be lifted
to a broken path on Q with respect to W s′

and Wu′
, and the lifting is

unique up to the choice of the initial point.
Step 3. Now, find ε so small that for any x ∈ Q there is an i = i(x)

such that B2ε(x) ⊂ Ui.

Since g is locally transitive we can find N and δ(ε) such that every two
points x and y such that dQ(x, y) ≤ δ(ε) can be joined by a broken path
on Q with respect to W s and Wu, which is inside Bε(x) and has no more
than N turning points.

Step 4. For any ε1, there is a neighborhood V of g in C2 topology,
such that for any g′ ∈ V, the pair (F s′

i , Fu′
i ) is so close to (F s

i , Fu
i ) and

(W s′
, Wu′

) is so close to (W s, Wu) that, for any i, and for any broken
path P on Ti, with no more than N turning points, with respect to F s

i

and Fu
i there is a broken path P ′ on Ti with respect to F s′

i and Fu′
i , with

no more than N turning points and such that the distance between the
end points of the lifts of P and P ′ is not bigger than ε1, if the lifts are
with the same initial point.

Step 5. Let us prove that if g′ is close enough to g then every two
points x and y such that dQ(x, y) < δ(ε)/2 can be joined by a broken path
on Q with respect to W s′

and Wu′
, which is inside B2ε(x) and has no

more than N +4 turning points. Due to the arguments similar to the ones
in the proof of Proposition 5.1 it is enough to show that for x and y from
one leaf of O′ (with no more than N + 2 turning points, in this case).

Indeed, let x be an arbitrary point of Q. And let y ∈ O′(x) and
dQ(x, y) < δ(ε)/2. Let z ∈ O′(x) be such that dQ(x, z) = δ(ε) and y
lies between x and z on O′(x). There is a broken path S on Q with respect
to W s and Wu, which is inside Bε(x), has no more than N turning points,
and joins x and z.

Now, let i = i(x). Consider P = Πi(S). Let P ′ be as in Step 4 above.
Consider the lift S′ of P ′ with respect to W s′

and Wu′
and initial point

x. Then the distance between the end point p of the lift of P ′ and z is less
than ε1. Choosing ε1 small enough we can guarantee, just like in Step 7 of
the proof of Proposition 5.1, that if we add two more turning points to S′

we will get a broken path on Q with respect to W s′
and Wu′

connecting
x with some point y1 on O′(x), such that dQ(y1, z) < δ(ε)/2. Therefore
contracting the path P ′ as in Step 7 of the proof of Proposition 5.1 we can
connect x and y by a broken path with respect to W s′

and Wu′
, with no

more than N + 2 turning points.
Also, it is easy to se that if S was inside Bε(x), than for g and g′ close

enough, S′ is inside B2ε(x).
Step 6. Choose a neighborhood U of g in Diff2(Q) such that it would
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satisfy all “close enough” conditions above. We can always do that since
ε, δ(ε), Ui, Ti and Πi are fixed throughout all the steps in our argument.

Thus, we have the following

Proposition 5.2. Every small enough perturbation g′ of a time-one map
g of a contact Anosov flow on a compact manifold Q has a transitive pair
of stable and unstable foliations W s′

and Wu′
, i.e., there exists ε > 0 and

N ′ ∈ N such that every x, y ∈ Q can be joined by a broken path with no
more then N ′ turning points {xi} and such that dW∗(xi)(xi, xi+1) < ε,
i = 1, . . . N − 1.

Notice that it is impossible to claim local transitivity in Proposition 5.2,
since g can always be perturbed so that in a neighborhood of some point
x the pair (W s′

, Wu′
) will become locally completely integrable (actually

that is a generic situation). Therefore, for small enough ε, the local tran-
sitivity condition will fail.

Transitivity of the pair (W s′
, Wu′

) allows us to define a solution h
for the cohomological equation as in the proof of Theorem 3.1. (The
local transitivity was used only to prove the continuity of the solution.)
This solution is uniformly continuous along W s′

and Wu′
. Moreover, it is

uniformly continuous with respect to the leaves. To be more precise, for
any ε > 0 there exists δ > 0 such that for any x, y ∈ Q if y ∈ W ∗(x) and
dW∗(x)(x, y) < δ then |h(x) − h(y)| < ε.

Let us prove that it is also continuous along O′. Fix a point x. As we
showed above, there is a broken path S that connects x with a point y
belonging to O′(x) and such that S can be contracted. Therefore, we
have a continuous family of paths St connecting x with all the points
of O′(x) from some neighborhood of x. But then F1(St)(φ) also changes
continuously, for any Hoelder function φ. Thus the solution h is continuous
along O′. This, together with the uniform continuity of h on the leaves of
W s and Wu, proves that h is continuous on Q.

Thus we have the following:

Theorem 5.2. Let Q be a compact manifold that admits a contact Anosov
flow. Then there is an open set U in Diff2(M) such that for every f ∈ U
and for any β ∈ (0, 1], the space of β-Hoelder cocycles of f is C0-stable,
and the subspace of cocycles cohomologous to a constant is the common
zero set of the periodic cycles functionals, i.e., φ ∈ Lβ is cohomologous to
a constant, with C0 transfer function, if and only if F (C)(φ) = 0 for all
periodic cycles C.

Moreover, U contains all time-one maps for contact Anosov flows on
M.

Actually, it follows easily from the arguments above that:
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Proposition 5.3. Proposition 5.2 and Theorem 5.2 are true in a slightly
more general form. Namely, they hold for small enough perturbations of
any partially hyperbolic diffeomorphism g of a compact manifold such that

(1) the neutral foliation of g is smooth and one-dimensional;
(2) the pair (W s, Wu) is locally transitive.

Also, we would like to mention that the transitivity of stable and unsta-
ble foliations is a key property in the study of stable ergodicity of partially
hyperbolic diffeomorphisms. The stable ergodicity was established for the
time-one map of the geodesic flow on a surface of constant (Grayson, Pugh,
Shub in [6]) and variable (Wilkinson in [19]) negative curvature. Pugh and
Shub ([18]) proved the stable ergodicity for a class of algebraic diffeomor-
phisms of homogeneous spaces. Brezin and Shub ([1]) proved the stable
ergodicity of time one map of the geodesic flow on a compact manifold of
constant negative curvature.

Our results, together with the results of Pugh and Shub ([18]), imply the
stable ergodicity of the time-one maps of the geodesic flows on the compact
manifolds of variable negative curvature (with suitable restrictions on the
pinching of the curvature).

6. Stability of C∞-cocycles

As we have pointed out if the cocycle is C∞ and the periodic cycles
functionals vanish then the transfer function constructed in Theorem 3.1
has continuous derivatives of all orders along the stable and unstable foli-
ations.

Therefore, to prove the regularity of the transfer function we need
some result which would guarantee the smoothness of functions which are
smooth along “sufficiently many directions.” We use the following power-
ful Hermander-type theorem (see [11], Theorem 2.1, where it is deduced
from a number of results published elsewhere).

Theorem B 6.0.1. Let D1, . . . ,Dk be C∞ distributions on a manifold M
such that their sum is totally non-integrable. Also, assume that for each j,
the dimension of the space spanned by the commutators of length at most
j at each point is constant in a neighborhood.

Let P be a function, or even a generalized function or distribution, on
M . Suppose that for any positive integer p and C∞ vectorfield X tangent
to any Dj, the p-th partial derivative Xp(P ) exists as a continuous or a
local L2 function, then P is C∞ on M .

Thus, we immediately have (from Theorems 3.1 and B) the following:
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Theorem 6.1. If f is a partially hyperbolic diffeomorphism of a com-
pact manifold such that the foliations W s and Wu are C∞ and the pair
(W s, Wu) is totally non-integrable, then the space of C∞-cocycles of f is
C∞-stable, and the subspace of cocycles cohomologous to a constant is the
common zero set of the periodic cycles functionals.

In particular we have the following

Corollary 6.1. For all transformations described in Corollary 4.1 the
spaces of C∞-cocycles are C∞-stable, and the subspaces of cocycles co-
homologous to a constant are the common zero sets of the periodic cycles
functionals.

Recently R.de le Llave (private communication) was able to extend
Theorem B to certain cases when the distributions themselves are not
necessarily smooth, but their sum is still smooth. In particular, his results
apply in the setting of Section 5, so one has the following

Corollary 6.2. For the time-one map of a contact Anosov flow (in par-
ticular, for a geodesic shift g1 on a compact manifold of negative curva-
ture) the space of C∞-cocycles is C∞-stable,and the subspace of cocycles
cohomologous to a constant is the common zero set of the periodic cycles
functionals.

7. Concluding remarks

Theorems 3.1, 3.2 and 6.1 can easily be reformulated and reproved for
partially hyperbolic flows. Corollaries 3.1, 4.1, 4.2, and 6.1 remain true for
flows. (Of course, in the statements of Corollaries 4.1 and 6.1 we need to
replace the single transformation generated by a ∈ A by the flow generated
by the one parameter subgroup of A that contains a.)

An even more interesting generalization is to twisted cocycles. Namely,
we can prove the analogs of Theorems 3.1 and 3.2 for twisted cocycles with
coefficients in R

k, twisted by “slow” cocycles with coefficients in GL(k, R).
(A cocycle α is called slow if for all x and n, ||α(fn(x))|| ≤ Ce|n|λ, where C
is a constant and λ < min{λ1, λ2}. Here λ1 and λ2 are as in Definition 3.1.)
Such twisted cocycles arise in connection with the infinitesimal conjugacy
problems.

In all likelihood, Theorems 3.1 and 3.2 can be extended to cocycles with
much more general coefficients. Namely, to Lie groups with the two-sided
metrics (like in [13]) and other finite and even infinite dimensional Lie
groups (like in [17]).

Also, notice that our results for Weyl chamber flows are complementary
to the results of Katok and Spatzier in [11]. To be more precise, the
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results from [11] describe the cocycles for the actions of subgroups of A,
of dimension bigger than one, on K\G/Γ, while Corollaries 4.1 and 6.1
give us a description of the cocycle spaces for the actions of one-parameter
subgroups and individual elements a ∈ A.

Let us point out the importance of the transitivity conditions in The-
orems 3.1, 3.2 and 6.1. Veech ([20]) shows that for partially hyperbolic
automorphisms of a torus the periodic conditions form a generating set
of cohomological obstructions. In particular, it implies that if the peri-
odic conditions vanish then our periodic cycles functionals vanish as well.
Veech has shown ([20], Proposition 1.5) that for partially hyperbolic, but
not hyperbolic, automorphisms of a torus the spaces of C1-cocycles are not
C1-stable . Most likely one can construct examples of partially hyperbolic
automorphisms of a torus with C0-non-stable spaces of Hoelder cocycles.

And finally we would like to formulate two open problems:
1.Will Theorems 3.1 and/or 3.2 be true if we replace in their assump-

tions the periodic cycles functionals by f-invariant measures?
2.Will Corollaries 4.1 and 5.1 be true if we replace in their assumptions

the periodic cycles functionals by, respectively, the gt-invariant and A-
invariant measures?
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