THE DIMENSION OF THE FIXED POINT SET ON AFFINE FLAG MANIFOLDS

Roman Bezrukavnikov

Let *G* be a semisimple simply-connected algebraic group over \mathbb{C} , g its Lie algebra. Also, $F = \mathbb{C}((\varepsilon))$ is the field of formal Laurent series, $A = \mathbb{C}[[\varepsilon]]$ is the ring of integers in *F*. Set $\hat{\mathfrak{g}} = \mathfrak{g} \otimes F$, $\mathfrak{g}_A = \mathfrak{g} \otimes A$ and $\hat{G} = G(F)$.

Let β be the set of all Iwahori subalgebras in $\hat{\mathfrak{g}}$, and X the set of all subalgebras in $\hat{\mathfrak{g}}$ which are *G*-conjugate to \mathfrak{g}_A . Then *B* and *X* have the structure of Ind-algebraic varieties over $\mathbb C$ (they are unions of increasing system of ordinary projective algebraic varieties over \mathbb{C}). They are called the affine flag variety and the affine Grassmanian of *G* respectively. We have $X = G/G(A)$ and $\mathcal{B} = G/I$, where *I* is an Iwahori subgroup.

For any $N \in \hat{\mathfrak{g}}$ let $\mathcal{B}_N \subset \mathcal{B}$ (respectively $X_N \subset X$) be the set of all Iwahori subalgebras (respectively, subalgebras conjugate to g*A*) which contain *N*. Clearly, \mathcal{B}_N (X_N) is a closed subvariety of the Ind-variety β (respectively *X*).

The varieties \mathcal{B}_N , X_N were studied by Kazhdan and Lusztig in [KL]. Following their paper let us suppose that *N* is topologically nilpotent (nilelement in the terminology of [KL]), i.e., $\text{ad}(N)^r \to 0$ in $\text{End}_F(\hat{\mathfrak{g}})$ when $r \to \infty$. (The topology on End_F($\hat{\mathfrak{g}}$) arises from the obvious topology on *F*.) It was shown in loc. cit. that the Ind-varieties \mathcal{B}_N , X_N are finite dimensional iff the element *N* is regular semisimple. We will assume from now on that this is the case. Then \mathcal{B}_N and X_N are locally finite unions of finite dimensional projective varieties. Moreover, all components of \mathcal{B}_N have the same dimension, which coincides with the dimension of X_N . A precise formula for the dimension of \mathcal{B}_N was stated in [KL] as a conjecture. The aim of the present note is to give a proof of this conjecture.

Let *O* be the subset of X_N defined as follows: if $\hat{\mathfrak{p}} \in X_N$ is a subalgebra conjugate to \mathfrak{g}_A , then $\hat{\mathfrak{p}} \in O$ iff the image of *N* in $\mathfrak{g} \equiv \hat{\mathfrak{p}}/\varepsilon \hat{\mathfrak{p}}$ is a regular nilpotent.

Let $Z(N)$ be the centralizer of N in G; let $\mathfrak{z}(N)$ be the centralizer of N in $\hat{\mathfrak{g}}$. We also fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and denote by W the Weyl group. The result containing the formula for the dimension of \mathcal{B}_N is the following:

Received December 3, 1995.

Proposition.

- a) *O* is an orbit of the group $Z(N)$.
- b) The dimension of this orbit is given by the formula (cf. [KL], p.130)

$$
\dim(O) = 1/2(\delta(N) - \mathrm{rk}(\mathfrak{g}) + \dim(\mathfrak{h}^w))
$$

where $w \in W$ is such that $\mathfrak{z}(N)$ is of type *w* (see [KL], $\S1$); \mathfrak{h}^w denotes the *w*-invariants in $\mathfrak h$ and $\delta(N)$ is the valuation of

$$
\det(\mathrm{ad}\,N\colon\hat{\mathfrak{g}}/\mathfrak{z}(N)\longrightarrow \hat{\mathfrak{g}}/\mathfrak{z}(N)).
$$

c) dim $(\mathcal{B}_N) = \dim(X_N) = \dim(O)$.

Proof. a) is equivalent to the following:

Claim. Suppose that N , N' are nil-elements in \mathfrak{g}_A , which lie in the same \hat{G} orbit, and the images of *N* and *N'* in $\mathfrak{g} = \mathfrak{g}_A/\varepsilon \mathfrak{g}_A$ are regular nilpotents. Then N and N' lie in one $G(A)$ orbit.

Proof of the claim. Since the regular nilpotents in $\mathfrak g$ form one conjugacy class we can assume that *N* mod $\varepsilon \mathfrak{g}_A = N'$ mod $\varepsilon \mathfrak{g}_A = n$, where $n \in \mathfrak{g}$ is a regular nilpotent.

Let *V* be any complement to the image of $ad(n)$ in \mathfrak{g} , and let $v_1, ..., v_r$ be a basis of *V* .

Lemma 1.

- a) Assume that $x \in \mathfrak{g}_A$ is such that $x \in n + \varepsilon \vee \otimes A + \varepsilon^i \mathfrak{g}_A$ for some $i \geq 1$. Then there exists $g \in G(A)$ such that $g = 1 \mod \varepsilon^i$ and $ad(g)(x) \in n + \varepsilon V \otimes A + \varepsilon^{i+1} g_A$.
- b) Any such x is $G(A)$ -conjugate to an element lying in $n + \varepsilon V \otimes A$.

Proof. To prove a) let us write x as $x = n + v + [n, \varepsilon^i y]$ for some $v \in \varepsilon V \otimes A$, $y \in \mathfrak{g}_A$. (This is possible because $\varepsilon^i \mathfrak{g}_A \subset \varepsilon V \otimes A + \mathrm{ad}(n)(\varepsilon^i \mathfrak{g}_A)$ as follows from the definition of *V*). It is enough to take $g = \exp(-\varepsilon^i y)$.

To prove b) note that by the statement a) there exists a sequence of elements $g_i \in G(A)$ such that $g_i = g_{i+1} \mod \varepsilon^i$ and $ad(g_i)(x) \in n + \varepsilon V \otimes$ $A + \varepsilon^i \mathfrak{g}_A$. It is obvious that $g := \lim g_i$ exists, lies in $G(A)$ and satisfies

$$
ad(g)(x) \in n + \varepsilon V \otimes A. \quad \Box
$$

Now we see that *N* (respectively *N*) is *G*(*A*)-conjugate to an element of the form $N_0 = n + \sum a_i v_i$ (respectively $N'_0 = n + \sum a'_i v_i$), where $a_i, a'_i \in \varepsilon A$. By the theorem of Kostant (see [K], Theorem 0.10) there exists a set of generators Q_1, \ldots, Q_r of the ring of invariant polynomials on $\mathfrak g$ such that

$$
Q_k(n + \Sigma a_i v_i) = a_k.
$$

Since N' , N'_0 , N , N_0 lie in one \hat{G} orbit, we have $Q_i(N_0) = Q_i(N'_0)$, hence $a_i = a'_i$ and $N_0 = N'_0$. The claim is proved.

c) It is clear that *O* is open; *O* is nonempty by [KL], §4, Corollary 1. The natural projection $\pi: \mathcal{B}_N \longrightarrow X_N$ is 1-1 over *O*. Since $\pi^{-1}(O)$ is open in \mathcal{B}_N and all components of \mathcal{B}_N have the same dimension ([KL], §4, Proposition 1) we see that $\dim(O) = \dim(\pi^{-1}(O)) = \dim(\mathcal{B}_N) =$ $\dim(X_N)$. (The last equality is Corollary 2, §4 of [KL].)

b) For split *N* the formula for the dimension of X_N follows from [KL], §5 (and coincides with the formula b) above) so by the statement (c) we are done. The general case can be reduced to the case of split *N* by the next two lemmas.

Let $N \in \hat{\mathfrak{g}}$ be any regular semisimple nil-element. Consider the field extension \tilde{F}/F of degree *n*, and the corresponding ring extension \tilde{A}/A , such that *N* splits over \widetilde{F} . We have $\widetilde{F} \cong \mathbb{C}((\varepsilon^{1/n}))$; $\widetilde{A} \cong \mathbb{C}[[\varepsilon^{1/n}]]$. Let $\widetilde{X} = G(\widetilde{F})/G(\widetilde{A})$ be the corresponding affine Grassmanian, and $\widetilde{Z}(N)$ be the centralizer of *N* in $G(\widetilde{F})$.

For any $\hat{\mathfrak{p}} \in X$ consider the orbit of $Z(N)$ on X containing $\hat{\mathfrak{p}}$, and the orbit of $\tilde{Z}(N)$ on \tilde{X} containing $\hat{\mathfrak{p}} \otimes \tilde{A} \in \tilde{X}$. They will be denoted by $O_{\hat{\mathfrak{p}}}$ and $\widetilde{O}_{\hat{p}}$ respectively. Also let $\widetilde{P} \subset \widehat{G}$ (respectively $\widetilde{P} \subset G(\widetilde{F})$) denote the stabilizer of $\hat{\mathfrak{p}}$ (respectively the stabilizer of $\hat{\mathfrak{p}} \otimes \tilde{A}$).

Let us call an element $x \in \hat{\mathfrak{g}}$ (respectively $y \in \mathfrak{g} \otimes \tilde{F}$) integral if for any ad-invariant polynomial *Q* which is defined over \mathbb{C} we have $Q(x) \in A$ (respectively $Q(y) \in \tilde{A}$). It is easy to see that the integral elements in $\mathfrak{z}(N)$ form a lattice, provided N is regular semisimple. The exponent is a surjective homomorphism with discrete kernel from this lattice to the connected component of *Z*(*N*).

Let *M* (respectively \widetilde{M}) be the lattice of integral elements in $\mathfrak{z}(N)$ (respectively in $\phi(N) \otimes \tilde{F}$). The Killing form will be denoted by k.

Lemma 2. For any $\hat{\mathfrak{p}} \in X$ we have

$$
\dim(\widetilde{O}_{\widehat{\mathfrak{p}}})=n \ [\dim(O_{\widehat{\mathfrak{p}}})+1/2 \ v(\det(k|M))]
$$

where v_F is the valuation of F .

Proof. Indeed

(1)
$$
\dim(O_{\hat{\mathfrak{p}}}) = \dim(Z(N)/(Z(N) \cap \hat{P})) = \dim(M/(M \cap \hat{\mathfrak{p}}))
$$

$$
= 1/2[v_F(\det(k|(M \cap \hat{\mathfrak{p}}))) - v_F(\det(k|M))]
$$

and

$$
\dim(\widetilde{O}_{\widehat{\mathfrak{p}}}) = \dim(\widetilde{Z}(N)/(\widetilde{Z}(N) \cap \widetilde{P})) = \dim(\widetilde{M}/(\widetilde{M} \cap (\widehat{\mathfrak{p}} \otimes \widetilde{A})))
$$

= 1/2[$v_{\widetilde{F}}(\det(k|(\widetilde{M} \cap (\widehat{\mathfrak{p}} \otimes \widetilde{A})))) - v_{\widetilde{F}}(\det(k|\widetilde{M}))],$

where $v_{\widetilde{F}}$ is the valuation of \widetilde{F} . But

$$
\widetilde{M}\cap (\hat{\mathfrak{p}}\otimes \widetilde{A})=(M\otimes \widetilde{F})\cap \hat{\mathfrak{p}}\otimes \widetilde{A}=(M\cap \hat{\mathfrak{p}})\otimes \widetilde{A}.
$$

So we see that

(3)
$$
v_{\widetilde{F}}(\det(k|(\widetilde{M} \cap \hat{\mathfrak{p}} \otimes A)) = v_{\widetilde{F}}(\det(k|({M} \cap \hat{\mathfrak{p}}) \otimes \widetilde{A}))
$$

$$
= n v_{F}(\det(k|({M} \cap \hat{\mathfrak{p}}))).
$$

Besides,

(4)
$$
v_{\widetilde{F}}(\det(k|\widetilde{M})) = 0
$$

because *N* is split over \widetilde{F} , so \widetilde{M} is $G(\widetilde{F})$ -conjugate to $\mathfrak{h} \otimes \widetilde{A}$. (Recall that $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra.) Substituting (3), (4) in (2) and comparing the result with (1) we get the lemma. \Box

Lemma 3. $v_F(\det(k|M)) = \text{rk}(\mathfrak{g}) - \dim(\mathfrak{h}^w)$.

Proof. Since *N* is split over \widetilde{F} , there exists an inner automorphism of $\mathfrak{g} \otimes \widetilde{F}$ which induces an isomorphism

(5)
$$
\widetilde{M} \widetilde{=} \mathfrak{h} \otimes \widetilde{A}.
$$

On the two sides of (5) there is a natural action of the Galois group of \widetilde{F}/F . Let ρ_l *,* ρ_r denote the corresponding actions. On the RHS we have an action of *W* (through h), which we denote by *σ*. Let *s* be a generator of Gal(\widetilde{F}/F). By the definition of *w* we have $\rho_l(s) = \rho_r(s)\sigma(w')$ for some element $w' \in W$ conjugate to *w*. (We identified the endomorphisms of the two sides of (5) .)

Denote by *q* the *n*-th primitive root of unity which satisfies the equation $s(\varepsilon^{1/n}) = q\varepsilon^{1/n}$. For any $\lambda \in \mathbb{C}$ let \mathfrak{h}_{λ} be the λ -eigenspace of *w'* acting on h. Then the *A*-module $M = (\widetilde{M})^{Gal}$ is the direct sum of its submodules

$$
M_i \widetilde{=} \mathfrak{h}_{q^{(n-i)}} \otimes \varepsilon^{(i/n)} A
$$

for $i = 0, \ldots, n - 1$. Consider the restriction of the Killing form on M. Since the conjugation respects the Killing form, we see that the induced Khuri-Makdisi pairing $M_i \times M_j \to A$ is

nondegenerate mod ε if $i = j = 0$ *ε* times the one nondegenerate mod ε if $0 < i < n$, $i + j = n$ 0 otherwise.

We see that $v_F(\det(k|M)) = \text{rk}(\mathfrak{g}) - \dim(\mathfrak{h}^{w'}) = \text{rk}(\mathfrak{g}) - \dim(\mathfrak{h}^{w})$. The lemma is proved. \square

Now we are ready to finish the proof of the Proposition. Applying Lemma 2 to $\hat{\mathfrak{p}} \in O$ we get (using Lemma 3):

$$
\dim(\widetilde{O}) = n[\dim(O) + 1/2(\mathrm{rk}(\mathfrak{g}) - \dim(\mathfrak{h}^w))],
$$

where \widetilde{O} is the corresponding open orbit of $\widetilde{Z}(N)$ on \widetilde{X}_N ; obviously $\hat{\mathfrak{p}} \otimes \widetilde{A} \in \widetilde{O}$. Since *N* is split in $\mathfrak{g} \otimes \widetilde{F}$ we know by [KL], §5 that:

$$
\dim(\widetilde{O}) = \dim(\widetilde{X}_N) = \delta_{\widetilde{F}}(N)/2 = n\delta(N)/2,
$$

where $\delta_{\widetilde{F}} := v_{\widetilde{F}}[\det(\text{ad }N : \mathfrak{g} \otimes \widetilde{F}/\mathfrak{z}(N) \otimes_F \widetilde{F} \to \mathfrak{g} \otimes \widetilde{F}/\mathfrak{z}(N) \otimes_F \widetilde{F})].$ Comparing the last two formulas we get the statement b) of the Proposition. \square

Acknowledgement

I express my gratitude to V. Ginzburg for stimulating attention to the work. The paper [KL] was brought to my attention by him. I thank N. Spaltenstein for encouragement in publishing the note.

References

- [K] B. Kostant, *Lie group representations on polynomial rings*, Amer. J. Math., **85** (1963), 327–404.
- [KL] D. Kazhdan and G. Lusztig, *Fixed points varieties on affine flag manifolds*, Israel J. of Math., **62** (1988), 129–168.

Mathematics Department, Tel-Aviv University, Tel-Aviv, Israel *E-mail address*: roman@math.tau.ac.il