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HODGE INDEX THEOREM FOR ARITHMETIC

CYCLES OF CODIMENSION ONE

Atsushi Moriwaki

0. Introduction

Let f : X → Spec(Z) be a (d+1)-dimensional regular arithmetic variety
over Spec(Z), i.e. X is regular, X is projective and flat over Spec(Z) and
d = dim f . Let H be an f -ample line bundle on X and k a Hermitian
metric of H. Here we consider a homomorphism

L : ĈH
p
(X)R → ĈH

p+1
(X)R

defined by L(x) = x · ĉ1(H, k). In [GS], H. Gillet and C. Soulé conjectured
that

Arithmetic Analogues of Grothendieck’s Standard Conjectures.
For a suitable choice of k, if 2p ≤ d + 1, then

(a) The homomorphism Ld+1−2p : ĈH
p
(X)R → ĈH

d+1−p
(X)R is bijec-

tive, and
(b) If x ∈ ĈH

p
(X)R, x �= 0 and Ld+2−2p(x) = 0, then

(−1)pd̂eg(x · Ld+1−2p(x)) > 0.

For example, K. Künnemann [Ku] proved that if X is a projective space,
then the conjecture is true. Here we fix a notation. We say a Hermitian
line bundle (H, k) on X is arithmetically ample if (1) H is f -ample, (2)
the Chern form c1(H∞, k∞) is positive definite on the infinite fiber X∞,
and (3) there is a positive integer m0 such that, for any integer m ≥ m0,
H0(X, Hm) is generated by the set

{
s ∈ H0(X, Hm) | ‖s∞‖sup < 1

}
. Note

that by virtue of [Zh], the third condition can be replaced by a numerical
condition : (3)’ for every irreducible horizontal subvariety Y (i.e. Y is flat
over Spec(Z)), the height ĉ1( (H, k)|Y )dim Y of Y is positive. In this note,
we would like to prove the following partial answer of the above conjecture
for general regular arithmetic varieties.
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Theorem A. Assume that d ≥ 1 and (H, k) is arithmetically ample. Then
we have the following:

(1) Ld−1 : ĈH
1
(X)R → ĈH

d
(X)R is injective.

(2) If x ∈ ĈH
1
(X)R, x �= 0 and Ld(x) = 0, then d̂eg(xLd−1(x)) < 0.

Theorem A is a consequence of the following higher dimensional generaliza-
tion of Faltings-Hriljac’s Hodge index theorem on arithmetic surfaces (cf.
[Fa] and [Hr]).

Theorem B. Assume that d ≥ 1 and (H, k) is arithmetically ample.

Let X
f ′
−→ Spec(OK) → Spec(Z) be the Stein factorization of f : X →

Spec(Z) and XK the generic fiber of f ′, where OK is the ring of inte-

gers of an algebraic number field K. Let z : ĈH
1
(X) → CH1(X) be the

canonical homomorphism defined by z(D, g) = D. If x ∈ ĈH
1
(X) and(

z(x)|XK
·
(
H|XK

)d−1
)

= 0, then

d̂eg(x2 · ĉ1(H, k)d−1) ≤ 0.

Moreover, equality holds if and only if there are a positive integer n and
y ∈ ĈH

1
(Spec(OK)) such that nx = f ′∗(y).

1. Proof of Theorem B

In this section, we would like to give the proof of Theorem B. An ad-
vantage to use arithmetical ampleness of the Hermitian line bundle (H, k)
is the following arithmetic Bertini’s theorem.

Arithmetic Bertini’s Theorem. (cf. [Mo2, Theorem 4.2 and Theo-
rem 5.2]) Let f : X → Spec(Z) be an arithmetic variety, and (H, k) an
arithmetically ample Hermitian line bundle on X. If x1, . . . , xs are points
(not necessarily closed) on X, then, for a sufficiently large integer m, there
is a section φ of H0(X, Hm) such that

(1) div(φ) is smooth over Q,
(2) φ(xi) �= 0 for all 1 ≤ i ≤ s, and
(3) ‖φ∞‖sup < 1.

By the above theorem, we can proceed to induction on d = dim f . However,
regularity of X doesn’t preserve by induction step in general. Here we
consider the following weaker version on general arithmetic varieties.
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Theorem 1.1. Let K be an algebraic number field and OK the ring of
integers of K. Let f : X → Spec(OK) be an arithmetic variety such that
d = dim f ≥ 1 and XK is smooth and geometrically irreducible. Let (H, k)
be an arithmetically ample Hermitian line bundle on X. Let D be a Cartier
divisor on X and gσ a Green current of Dσ on each σ ∈ K(C). If (DK ·
Hd−1

K ) = 0, then

d̂eg
((

D,
∑

gσ

)2

· ĉ1(H, k)d−1

)
≤ 0.

Moreover, if equality holds, then there are a positive integer n, a Cartier
divisor Z on X and constants {g′σ}σ∈K(C) such that the support of Z is
vertical and the class of (Z,

∑
g′σ) is equal to the class of n(D,

∑
gσ) in

ĈH
1
(X). In particular, if equality holds, then OXK

(DK) is a torsion of
Pic(XK).

Proof. First of all, we prepare two lemmas.

Lemma 1.1.1. Let X be a d-dimensional compact Kähler manifold with
a Kähler form Φ and ϕ a real valued smooth function on X. Then,∫

X

ϕddc(ϕ)Φd−1 ≤ 0.

Moreover, equality holds if and only if ϕ is a constant.

Proof. Since ddc =
√
−1
2π

∂∂̄ and d(ϕ∂̄(ϕ)) = ∂(ϕ)∂̄(ϕ)+ϕ∂∂̄(ϕ), by Stokes’
theorem, we have∫

X

ϕddc(ϕ)Φd−1 = −
√
−1
2π

∫
X

∂(ϕ)∂̄(ϕ)Φd−1.

Here let θ1, . . . , θd be a local unitary frame of Ω1
X with Φ =

√
−1

∑
i θi∧ θ̄i.

We set ∂(ϕ) =
∑

i aiθ
i. Then, ∂̄(ϕ) = ∂(ϕ) =

∑
i āiθ̄

i. Therefore,

−
√
−1
2π

∂(ϕ)∂̄(ϕ)Φd−1 =
−1
2π

d∑
i=1

|ai|2Φd.

Thus, we have ∫
X

ϕddc(ϕ)Φd−1 ≤ 0.

Moreover, equality hold if and only if ∂(ϕ) = 0. Here, since ϕ is real valued,
∂(ϕ) = 0 implies that ϕ is a constant. �
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Lemma 1.1.2. Let X be a d-dimensional Kähler manifold with a Kähler
form Φ and ω a smooth (1, 1)-form on X such that ω̄ = −ω and ω∧Φd−1 =
0. Then, there is a real valued smooth function u on X with the following
properties.

(1) ω2 ∧ Φd−2 = uΦd.
(2) u(x) ≤ 0 for all x ∈ X.
(3) u(x) = 0 for all x ∈ X if and only if ω = 0.

Proof. Let θ1, . . . , θd be a local unitary frame of Ω1
X with Φ =

√
−1

∑
i θi∧

θ̄i. We set ω =
∑

i,j aijθ
i ∧ θ̄j . Then, ω̄ = −ω implies that aji = −āij .

Moreover, since

ω ∧ Φd−1 = −
√
−1(a11 + · · · + add)Φd,

we have a11 + · · · + add = 0. On the other hand, by an easy calculation,

d(d − 1)ω2 ∧ Φd−2 =


∑

i,j

aijaji − aiiajj


 Φd.

Therefore, we get

ω2 ∧ Φd−2 =
−1

d(d − 1)


∑

i,j

|aij |2

 Φd.

Hence, if we set u =
−1

d(d − 1)

∑
i,j

|aij |2, the lemma is obtained because

∑
i,j |aij |2 is independent of the choice of θ1, . . . , θd. �

Let us start of the proof of Theorem 1.1. We will prove it by induction on
d. First, we consider the case d = 1. In this case, taking a desingularization
of X, we may assume that X is regular. Thus, our theorem can be derived
from Faltings-Hriljac’s Hodge index theorem (cf. [Fa] and [Hr]).

Next, we assume d ≥ 2. We set x = (D,
∑

gσ) and L = OX(D). Let hσ

be an Einstein-Hermitian metric of Lσ with respect to c1(Hσ, kσ). Let s
be a rational section of L with div(s) = D. Here we consider an arithmetic
cycle

y =


D,

∑
σ∈K(C)

− log(hσ(sσ, sσ))


 .
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Since gσ and − log(hσ(sσ, sσ)) are Green currents of the same Dσ, there is a
real valued smooth function φσ on each Xσ such that
x = y + a(

∑
σ∈K(C) φσ) in ĈH

1
(X). Then, it is easy to see that

d̂eg(x2 · ĉ1(H, k)d−1) = d̂eg(y2 · ĉ1(H, k)d−1)+
1
2

∑
σ∈K(C)

∫
Xσ

φσddc(φσ)c1(Hσ, kσ)d−1

because c1(Lσ, hσ)c1(Hσ, kσ)d−1 = 0. Therefore, by Lemma 1.1.1,

d̂eg(x2 · ĉ1(H, k)d−1) ≤ d̂eg(y2 · ĉ1(H, k)d−1)

and equality holds if and only if φσ is a constant for each σ ∈ K(C). On
the other hand, by virtue of arithmetic Bertini’s theorem, for a sufficiently
large m, there is a section t ∈ H0(X, Hm) with the following properties:

i) div(t)K is smooth and geometrically irreducible.
ii) If div(t) = Y + a1F1 + · · · + asFs is the irreducible decomposition

such that Y is horizontal and Fi’s are vertical, then Fi’s are smooth
fibers.

iii) D and div(t) has no common irreducible component.
iv) supx∈Xσ

(
‖tσ‖km

σ
(x)

)
< 1 for all σ ∈ K(C).

(Note that H1(XK , H−m
K ) = 0 guarantees geometrical irreducibility of

div(t)K .) Since (D|2Fi
· H|d−2

Fi
) ≤ 0 by the geometric Hodge index the-

orem, we obtain

d̂eg(y2 · ĉ1(Hm, km)d−1) = d̂eg(y|2Y · ĉ1( (Hm, km)|Y )d−2)+∑
aim(D|2Fi

· H|d−2
Fi

)−∑
σ∈K(C)

∫
Xσ

log(‖tσ‖km
σ

)c1(Lσ, hσ)2c1(Hm
σ , km

σ )d−2

≤ d̂eg(y|2Y · ĉ1( (Hm, km)|Y )d−2)−∑
σ∈K(C)

∫
Xσ

log(‖tσ‖km
σ

)c1(Lσ, hσ)2c1(Hm
σ , km

σ )d−2.

Since (Lσ, hσ) is Einstein-Hermitian, by Lemma 1.1.2, there is a real-valued
smooth function uσ on Xσ with the following properties:

(1) c1(Lσ, hσ)2c1(Hσ, kσ)d−2 = uσc1(Hσ, kσ)d.
(2) uσ(x) ≤ 0 for all x ∈ Xσ.
(3) uσ(x) = 0 for all x ∈ Xσ if and only if (Lσ, hσ) is flat.
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Therefore, we have

d̂eg(y2 · ĉ1(H, k)d−1) ≤ d̂eg((y|Y )2 · ĉ1( (H, k)|Y )d−2).

Hence, by hypothesis of induction, we get our inequality.
Finally, we consider the equality condition. We assume

d̂eg(x2 · ĉ1(H, k)d−1) = 0. Then, if we trace back the above proof care-
fully, we can see

(a) φσ is a constant for each σ ∈ K(C).
(b) (Lσ, hσ) is flat for each σ ∈ K(C).
(c) LK |YK

is a torsion of Pic(YK).

By (b), LC is given by a representation ρ : π1(XC) → C∗ of the fundamental
group of XC. (c) implies that the image of π1(YC) → π1(XC) → C∗ is
finite. On the other hand, by Lefschetz theorem (cf. Theorem 7.4 in [Mi]),
π1(YC) → π1(XC) is surjective. Thus, the image of ρ : π1(XC) → C∗ is also
finite. Therefore, there is a positive integer n with Ln

C � OXC
. Thus,

dimK H0(XK , Ln
K) = dimC H0(XK , Ln

K) ⊗ C = dimC H0(XC, Ln
C) = 1.

Hence, since (LK · Hd−1
K ) = 0, we have Ln

K � OXK
. Thus, there is a

rational section s′ of Ln with s′K = 1. We set Z = div(s′) and g′σ =
− log(hn

σ(s′, s′)) + nφσ. Then, the support of Z is vertical. Moreover,
since hn

σ is a flat metric of OXσ , hn
σ(s′, s′) must be a constant. Therefore,

(Z,
∑

g′σ) is our desired cycle. �
Proof of Theorem B. Since f ′

∗OX = OK , XK is geometrically irreducible.
So the inequality is an immediate consequence of Theorem 1.1.

We need to consider the precise equality condition. Clearly, if there are
a positive integer n and y ∈ ĈH

1
(Spec(OK)) such that nx = f ′∗(y), then

d̂eg(x2 · ĉ1(H, k)d−1) = 0. Conversely we assume d̂eg(x2 · ĉ1(H, k)d−1) = 0.
Then, by Theorem 1.1, there are a positive integer n1 and an arithmetic
cycle (Z,

∑
σ∈K(C) gσ) such that Z is vertical with respect to f ′, gσ’s are

constant and n1x is equal to the class of (Z,
∑

σ∈K(C) gσ) in ĈH
1
(X). Then,

d̂eg((n1x)2 · ĉ1(H, k)d−1) = (Z2 · Hd−1) = 0.

Here, we need the following lemma.

Lemma 1.3. Let X be a regular scheme, R a discrete valuation ring,
f : X → Spec(R) a projective morphism with f∗OX = R, and H an f-
ample line bundle on X. Let Xo be the central fiber of f and (Xo)red =
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X1 + · · · + Xn the irreducible decomposition of (Xo)red. We consider a
vector space V =

⊕n
i=1 QXi generated by Xi’s and the natural pairing

( , ) : V × V → Q defined by

(D1, D2) = (D1 · D2 · Hd−1),

where d = dim f and · is the intersection product. Then, we have (D, D) ≤
0 for all D ∈ V and equality holds if and only if D ∈ QXo.

Proof. For example, see (i)’ of Lemma (2.10) in Chap. I of [BPV]. �
By the above lemma, there is a positive integer n2 and a cycle T on
Spec(OK) such that n2Z = f ′∗(T ). Therefore, if we set
y = (T,

∑
σ∈K(C) n2gσ), then n1n2x = f ′∗(y). �

2. Proof of Theorem A

Let us begin the proof of Theorem A. This is an easy corollary of The-
orem B.

(1) Let us see that (2) implies (1). Assume that Ld−1(x) = 0. Then,
Ld(x) = 0. Thus if x �= 0, then d̂eg(xLd−1(x)) < 0 by (2). This is a
contradiction. Therefore, x = 0.

(2) Let X
f ′
−→ Spec(OK) → Spec(Z) be the Stein factorization of f :

X → Spec(Z). In the following arguments, the subscript K means the
restriction to the generic fiber of f ′.

Since x can be approximated by points y ∈ ĈH
1
(X)Q with Ld(y) = 0,

we may assume that x ∈ ĈH
1
(X)Q. Let t be a rational number with

(z(x)K + tHK · Hd−1
K ) = 0. Replacing x by mx, we may assume that

x ∈ ĈH
1
(x) and t ∈ Z. We set y = x+tĉ1(H, k). Then, (z(y)K ·Hd−1

K ) = 0.
Thus, by Theorem B, we have d̂eg(y2 · ĉ1(H, k)d−1) ≤ 0. Therefore, since
Ld(x) = 0, we get

d̂eg(x2 · ĉ1(H, k)d−1) + (t)2d̂eg(ĉ1(H, k)d+1) ≤ 0.

Hence, d̂eg(x2 · ĉ1(H, k)d−1) ≤ 0. Here, we assume that
d̂eg(x2 · ĉ1(H, k)d−1) = 0. Then, t = 0. Thus, (z(x)K · Hd−1

K ) = 0.

So, by Theorem B, there is a positive integer n and u ∈ ĈH
1
(Spec(OK))

such that nx = f ′∗(u). We know nx · ĉ1(H, k)d = 0, which implies

u · f ′
∗(ĉ1(H, k)d) = 0. Therefore, u = 0 in ĈH

1
(Spec(OK))Q because

f ′
∗(ĉ1(H, k)d) = (Hd

K)[Spec(OK)]. Thus, x = 0 in ĈH
1
(X)Q. This is a

contradiction. Hence, we get d̂eg(x2 · ĉ1(H, k)d−1) < 0.
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3. Variants of Theorem B (non-abelian case)

In this section, we will study variants of Theorem B or Theorem 1.1.
The following theorem is a generalization of Theorem 1.1 to a higher rank
vector bundle.

Theorem 3.1. Let K be an algebraic number field and OK the ring of
integers. Let f : X → Spec(OK) be an arithmetic variety and (H, k)
an arithmetically ample Hermitian line bundle on X. Assume that d =
dim f ≥ 1 and XK is smooth and geometrically irreducible. Let (E, h) be a
Hermitian vector bundle on X such that EQ is semi-stable with respect to
HQ and (c1(EK) · c1(HK)d−1) = 0. Then, we have

d̂eg
(
ĉh2(E, h) · ĉ1(H, k)d−1

)
≤ 0.

Moreover, if the equality holds, then hσ is Einstein-Hermitian with respect
to a Kähler form Ωσ = c1(Hσ, kσ) and Eσ is flat for every σ ∈ K(C).

Proof. Let r be the rank of E. Since

ĉh2(E, h) =
1
2
ĉ1(E, h)2 − ĉ2(E, h),

we have

ĉh2(E, h) · ĉ1(H, k)d−1 =
1
2r

ĉ1(E, h)2 · ĉ1(H, k)d−1

−
{

ĉ2(E, h) − r − 1
2r

ĉ1(E, h)2
}
· ĉ1(H, k)d−1.

By Lemma 8.2 of [Mo1], Eσ is semistable with respect to Hσ. Thus the
main theorem in [Mo2] implies that

d̂eg
({

ĉ2(E, h) − r − 1
2r

ĉ1(E, h)2
}
· ĉ1(H, k)d−1

)
≥ 0.

On the other hand, by Theorem 1.1, d̂eg
(
ĉ1(E, h)2 · ĉ1(H, k)d−1

)
≤ 0.

Therefore, we have d̂eg
(
ĉh2(E, h) · ĉ1(H, k)d−1

)
≤ 0.

Next we consider equality condition.
We assume that d̂eg

(
ĉh2(E, h) · ĉ1(H, k)d−1

)
= 0. First of all, by equal-

ity condition of the main theorem of [Mo2], Eσ is flat for every σ ∈ K(C).
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Let h′ be an Einstein-Hermitian metric of E. Then, by Lemma 6.1 of
[Mo1],

d̂eg
(
(ĉh2(E, h) − ĉh2(E, h′)) · ĉ1(H, k)d−1

)
=

− (d − 1)!
4π

∑
σ∈K(C)

DL(Eσ, hσ, h′
σ),

where DL is the Donaldson’s Lagrangian. Therefore, we have∑
σ∈K(C)

DL(Eσ, hσ, h′
σ) ≤ 0.

On the other hand, since h′ is Einstein-Hermitian, we get DL(Eσ, hσ, h′
σ) ≥

0 for all σ ∈ K(C). Hence DL(Eσ, hσ, h′
σ) = 0 for all σ ∈ K(C). Thus hσ

is Einstein-Hermitian for all σ ∈ K(C). �
In the case where rk E = 1, Theorem 1.1 says that if

d̂eg
(
ĉh2(E, h) · ĉ1(H, k)d−1

)
= 0, then EK is a torsion element of

Pic0(XK). So we might expect a stronger property of (E, h) than flat-
ness. Here we introduce one notation. Let M be a complex manifold and
F a flat vector bundle of rank r on M . Let ρF : π1(M) → GLr(C) be the
representation of the fundamental group of M arising from the flat vector
bundle F . F is said to be of torsion type if the image of ρF is finite.

Proposition 3.2. Let K be an algebraic number field and OK the ring
of integers. Let f : X → Spec(OK) be an arithmetic variety, H an f-
ample line bundle on X and k a Hermitian metric of H. Assume that
d = dim f ≥ 1 and XK is smooth and geometrically irreducible. Let (E, h)
be a Hermitian vector bundle of rank r on X such that (Eσ, hσ) is flat for
each σ ∈ K(C) and d̂eg

(
ĉh2(E, h) · ĉ1(H, k)d−1

)
= 0. Let ρEC

: π1(XC) →
GLr(C) be the representation of the fundamental group of XC arising from
the flat vector bundle EC. If the image of ρEC

is abelian, then Eσ is of
torsion type for all σ ∈ K(C).

Proof. We prove it by induction on dimX. First, we consider the case
d = 1. Since the representation ρEC

is abelian, we have the decomposition
ρEC

= ρ1 ⊕ · · · ⊕ ρr such that dim ρi = 1 for all i. Therefore, there are
flat line bundles L′

1, . . . , L′
r on XC such that EC = L′

1 ⊕ · · · ⊕ L′
r. Thus,

by an easy descent, we can find line bundles L1, . . . , Lr on XQ such that
EQ = L1 ⊕ · · · ⊕Lr and deg(Li) = 0 for all i. Thus, by Proposition 10.8 in
[Mo1], we have our assertion.
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Next, we assume that d ≥ 2. Replacing H by a higher multiple Hm of
H, we may assume that there is a section φ ∈ H0(X, H) with the following
properties:

i) div(φ)K is smooth and geometrically irreducible.
ii) If div(φ) = Y + a1F1 + · · · + asFs is the irreducible decomposition

such that Y is horizontal and Fi’s are vertical, then Fi’s are smooth
fibers.

Since (Eσ, hσ) is flat for each σ ∈ K(C), we have (ch2(E) · Fi · Hd−2) = 0
and ch2(Eσ, hσ) is zero as differential form for every σ ∈ K(C). Thus we
have

d̂eg
(
ĉh2(E, h) · ĉ1(H, k)d−1

)
= d̂eg

(
ĉh2( (E, h)|Y ) · ĉ1( (H, k)|Y )d−2

)
.

Let ρEC|YC

: π1(YC) → GLr(C) be the representation arising from EC|YC
.

Since ρEC|YC

is the composition of π1(YC) → π(XC) and ρEC
: π1(XC) →

GLr(C), the image of ρEC|YC

is also abelian. Thus, by hypothesis of in-
duction, Eσ|Yσ

is of torsion type for every σ ∈ K(C). On the other hand,
by Lefschetz theorem, π1(Yσ) → π1(Xσ) is surjective. Hence, Eσ is also of
torsion type for every σ ∈ K(C). �

Finally, we will pose two questions. Let f : X → Spec(OK) be a (d+1)-
dimensional arithmetic variety, (H, k) an arithmetically ample Hermitian
line bundle on X, and (E, h) a Hermitian vector bundle on X such that
EQ is semistable with respect to HQ and (c1(EK) · c1(HK)d−1) = 0. An
interesting problem is to find stronger equality conditions for

d̂eg
(
ĉh2(E, h) · ĉ1(H, k)d−1

)
≤ 0.

Theorem 3.1 says that if d̂eg
(
ĉh2(E, h) · ĉ1(H, k)d−1

)
= 0, then at least

Eσ is flat for every σ ∈ K(C). Optimistically, one may pose the following
question:

Question 3.3. If d̂eg
(
ĉh2(E, h) · ĉ1(H, k)d−1

)
= 0, is Eσ of torsion type

for every σ ∈ K(C) ?

By Proposition 3.2, if π1(XC) is abelian or rkE = 1, we have an affirmative
answer of the above question. Moreover, if we carefully trace back the proof
in Proposition 3.2, Question 3.3 can be reduced to the case d = 1. So from
now on, we assume that d = 1. Let MXK/K(r, 0) be the moduli scheme
of semistable vector bundles on XK with rank r and degree 0. Let h be
a height function on MXK/K(r, 0) arising from some ample line bundle on
MXK/K(r, 0). Our next question is
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Question 3.4. Are there constants A and B with the following
properties?

(1) A, B ∈ R and A > 0.
(2) For all semistable Hermitian vector bundle (E, h) on X with rank

r and degree 0, we have

h(EK) ≤ −A

[K : Q]
d̂eg

(
ĉh2(E, h)

)
+ B

In some sense, Question 3.4 is related to Question 3.3. For, if
d̂eg

(
ĉh2(E, h)

)
= 0 and Question 3.4 holds, then the height of EK is

bounded. So EK should have some simple structure.
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