HODGE INDEX THEOREM FOR ARITHMETIC CYCLES OF CODIMENSION ONE

Atsushi Moriwaki

0. Introduction

Let $f: X \to \text{Spec}(\mathbb{Z})$ be a $(d+1)$ -dimensional regular arithmetic variety over $Spec(\mathbb{Z})$, i.e. X is regular, X is projective and flat over $Spec(\mathbb{Z})$ and $d = \dim f$. Let *H* be an *f*-ample line bundle on *X* and *k* a Hermitian metric of *H*. Here we consider a homomorphism

$$
L: \widehat{\operatorname{CH}}^p(X)_{\mathbb{R}} \to \widehat{\operatorname{CH}}^{p+1}(X)_{\mathbb{R}}
$$

defined by $L(x) = x \cdot \hat{c}_1(H, k)$. In [GS], H. Gillet and C. Soulé conjectured that

Arithmetic Analogues of Grothendieck's Standard Conjectures. For a suitable choice of *k*, if $2p \leq d+1$, then

- (a) The homomorphism $L^{d+1-2p} : \widehat{CH}^p(X)_\mathbb{R} \to \widehat{CH}^{d+1-p}(X)_\mathbb{R}$ is bijective, and
- (b) If $x \in \widehat{\text{CH}}^p(X)_{\mathbb{R}}, x \neq 0$ and $L^{d+2-2p}(x) = 0$, then $(-1)^{p} \widehat{\deg}(x \cdot L^{d+1-2p}(x)) > 0.$

For example, K. Künnemann $[Ku]$ proved that if X is a projective space, then the conjecture is true. Here we fix a notation. We say a Hermitian line bundle (H, k) on X is arithmetically ample if (1) H is f -ample, (2) the Chern form $c_1(H_\infty, k_\infty)$ is positive definite on the infinite fiber X_∞ , and (3) there is a positive integer m_0 such that, for any integer $m \geq m_0$, $H^0(X, H^m)$ is generated by the set $\{s \in H^0(X, H^m) \mid ||s_\infty||_{\sup} < 1\}$. Note that by virtue of [Zh], the third condition can be replaced by a numerical condition : (3)' for every irreducible horizontal subvariety *Y* (i.e. *Y* is flat over $Spec(\mathbb{Z})$, the height $\hat{c}_1((H,k)|_Y)^{\dim Y}$ of *Y* is positive. In this note, we would like to prove the following partial answer of the above conjecture for general regular arithmetic varieties.

Received December 6, 1995.

Theorem A. Assume that $d \geq 1$ and (H, k) is arithmetically ample. Then we have the following:

(1)
$$
L^{d-1} : \widehat{\text{CH}}^1(X)_{\mathbb{R}} \to \widehat{\text{CH}}^d(X)_{\mathbb{R}}
$$
 is injective.
\n(2) If $x \in \widehat{\text{CH}}^1(X)_{\mathbb{R}}$, $x \neq 0$ and $L^d(x) = 0$, then $\widehat{\text{deg}}(xL^{d-1}(x)) < 0$.

Theorem A is a consequence of the following higher dimensional generalization of Faltings-Hriljac's Hodge index theorem on arithmetic surfaces (cf. [Fa] and [Hr]).

Theorem B. Assume that $d > 1$ and (H, k) is arithmetically ample. Let $X \stackrel{f'}{\longrightarrow}$ Spec $(O_K) \rightarrow$ Spec (\mathbb{Z}) be the Stein factorization of $f : X \rightarrow$ $Spec(\mathbb{Z})$ and X_K the generic fiber of f' , where O_K is the ring of integers of an algebraic number field *K*. Let $z : \widehat{CH}^1(X) \to CH^1(X)$ be the canonical homomorphism defined by $z(D,g) = D$. If $x \in \widehat{CH}^1(X)$ and $(z(x)|_{X_K} \cdot (H|_{X_K})^{d-1}) = 0$, then

$$
\widehat{\deg}(x^2 \cdot \widehat{c}_1(H,k)^{d-1}) \le 0.
$$

Moreover, equality holds if and only if there are a positive integer *n* and $y \in \widehat{\text{CH}}^1(\text{Spec}(O_K))$ such that $nx = f'^*(y)$.

1. Proof of Theorem B

In this section, we would like to give the proof of Theorem B. An advantage to use arithmetical ampleness of the Hermitian line bundle (*H,k*) is the following arithmetic Bertini's theorem.

Arithmetic Bertini's Theorem. (cf. [Mo2, Theorem 4.2 and Theorem 5.2]) Let $f: X \to \text{Spec}(\mathbb{Z})$ be an arithmetic variety, and (H, k) an arithmetically ample Hermitian line bundle on *X*. If x_1, \ldots, x_s are points (not necessarily closed) on *X*, then, for a sufficiently large integer *m*, there is a section ϕ of $H^0(X, H^m)$ such that

- (1) div(ϕ) is smooth over \mathbb{Q} ,
- (2) $\phi(x_i) \neq 0$ for all $1 \leq i \leq s$, and
- (3) $\|\phi_{\infty}\|_{\sup} < 1.$

By the above theorem, we can proceed to induction on $d = \dim f$. However, regularity of *X* doesn't preserve by induction step in general. Here we consider the following weaker version on general arithmetic varieties.

Theorem 1.1. Let K be an algebraic number field and O_K the ring of integers of *K*. Let $f: X \to \text{Spec}(O_K)$ be an arithmetic variety such that $d = \dim f \geq 1$ and X_K is smooth and geometrically irreducible. Let (H, k) be an arithmetically ample Hermitian line bundle on *X*. Let *D* be a Cartier divisor on *X* and g_{σ} a Green current of D_{σ} on each $\sigma \in K(\mathbb{C})$. If $(D_K \cdot$ H_K^{d-1}) = 0, then

$$
\widehat{\deg}\left(\left(D,\sum g_{\sigma}\right)^2 \cdot \widehat{c}_1(H,k)^{d-1}\right) \leq 0.
$$

Moreover, if equality holds, then there are a positive integer *n*, a Cartier divisor *Z* on *X* and constants ${g'_{\sigma}}_{\sigma \in K(\mathbb{C})}$ such that the support of *Z* is vertical and the class of $(Z, \sum g'_\sigma)$ is equal to the class of $n(D, \sum g_\sigma)$ in $\widehat{\text{CH}}^1(X)$. In particular, if equality holds, then $\mathcal{O}_{X_K}(D_K)$ is a torsion of $Pic(X_K)$.

Proof. First of all, we prepare two lemmas.

Lemma 1.1.1. Let *X* be a *d*-dimensional compact Kähler manifold with a Kähler form Φ and φ a real valued smooth function on X. Then,

$$
\int_X \varphi dd^c(\varphi) \Phi^{d-1} \le 0.
$$

Moreover, equality holds if and only if φ is a constant.

Proof. Since $dd^c = \frac{\sqrt{-1}}{2}$ $\frac{2}{2\pi}$ $\partial\bar{\partial}$ and $d(\varphi\bar{\partial}(\varphi)) = \partial(\varphi)\bar{\partial}(\varphi) + \varphi\partial\bar{\partial}(\varphi)$, by Stokes' theorem, we have

$$
\int_X \varphi dd^c(\varphi)\Phi^{d-1}=-\frac{\sqrt{-1}}{2\pi}\int_X \partial(\varphi)\bar{\partial}(\varphi)\Phi^{d-1}.
$$

Here let $\theta^1, \ldots, \theta^d$ be a local unitary frame of Ω^1_X with $\Phi = \sqrt{-1} \sum_i \theta^i \wedge \bar{\theta}^i$. We set $\partial(\varphi) = \sum_i a_i \theta^i$. Then, $\overline{\partial}(\varphi) = \overline{\partial(\varphi)} = \sum_i \overline{a}_i \overline{\theta}^i$. Therefore,

$$
-\frac{\sqrt{-1}}{2\pi}\partial(\varphi)\bar{\partial}(\varphi)\Phi^{d-1}=\frac{-1}{2\pi}\sum_{i=1}^d|a_i|^2\Phi^d.
$$

Thus, we have

$$
\int_X \varphi dd^c(\varphi) \Phi^{d-1} \le 0.
$$

Moreover, equality hold if and only if $\partial(\varphi) = 0$. Here, since φ is real valued, $\partial(\varphi) = 0$ implies that φ is a constant. \square

Lemma 1.1.2. Let *X* be a *d*-dimensional Kähler manifold with a Kähler $form \Phi$ and ω a smooth (1, 1)-form on *X* such that $\bar{\omega} = -\omega$ and $\omega \wedge \Phi^{d-1} =$ 0. Then, there is a real valued smooth function *u* on *X* with the following properties.

- (1) $\omega^2 \wedge \Phi^{d-2} = u \Phi^d$.
- (2) $u(x) \leq 0$ for all $x \in X$.
- (3) $u(x) = 0$ for all $x \in X$ if and only if $\omega = 0$.

Proof. Let $\theta^1, \ldots, \theta^d$ be a local unitary frame of Ω^1_X with $\Phi = \sqrt{-1} \sum$ *Proof.* Let $\theta^1, \ldots, \theta^d$ be a local unitary frame of Ω^1_X with $\Phi = \sqrt{-1} \sum_i \theta^i \wedge \bar{\theta}^i$. We set $\omega = \sum_{i,j} a_{ij} \theta^i \wedge \bar{\theta}^j$. Then, $\bar{\omega} = -\omega$ implies that $a_{ji} = -\bar{a}_{ij}$. Moreover, since

$$
\omega \wedge \Phi^{d-1} = -\sqrt{-1}(a_{11} + \dots + a_{dd})\Phi^d,
$$

we have $a_{11} + \cdots + a_{dd} = 0$. On the other hand, by an easy calculation,

$$
d(d-1)\omega^2 \wedge \Phi^{d-2} = \left(\sum_{i,j} a_{ij} a_{ji} - a_{ii} a_{jj}\right) \Phi^d.
$$

Therefore, we get

$$
\omega^2 \wedge \Phi^{d-2} = \frac{-1}{d(d-1)} \left(\sum_{i,j} |a_{ij}|^2 \right) \Phi^d.
$$

Hence, if we set $u = \frac{-1}{d(d-1)}$ \sum $_{i,j}$ $|a_{ij}|^2$, the lemma is obtained because $\sum_{i,j} |a_{ij}|^2$ is independent of the choice of $\theta^1, \ldots, \theta^d$. \Box

Let us start of the proof of Theorem 1.1. We will prove it by induction on *d*. First, we consider the case $d = 1$. In this case, taking a desingularization of *X*, we may assume that *X* is regular. Thus, our theorem can be derived from Faltings-Hriljac's Hodge index theorem (cf. [Fa] and [Hr]).

Next, we assume $d \geq 2$. We set $x = (D, \sum g_{\sigma})$ and $L = \mathcal{O}_X(D)$. Let h_{σ} be an Einstein-Hermitian metric of L_{σ} with respect to $c_1(H_{\sigma}, k_{\sigma})$. Let *s* be a rational section of *L* with $div(s) = D$. Here we consider an arithmetic cycle

$$
y = \left(D, \sum_{\sigma \in K(\mathbb{C})} -\log(h_{\sigma}(s_{\sigma}, s_{\sigma}))\right).
$$

Since g_{σ} and $-\log(h_{\sigma}(s_{\sigma}, s_{\sigma}))$ are Green currents of the same D_{σ} , there is a real valued smooth function ϕ_{σ} on each X_{σ} such that $x = y + a(\sum_{\sigma \in K(\mathbb{C})} \phi_{\sigma})$ in $\widehat{\text{CH}}^1(X)$. Then, it is easy to see that

$$
\widehat{\deg}(x^2 \cdot \widehat{c}_1(H, k)^{d-1}) = \widehat{\deg}(y^2 \cdot \widehat{c}_1(H, k)^{d-1}) + \frac{1}{2} \sum_{\sigma \in K(\mathbb{C})} \int_{X_{\sigma}} \phi_{\sigma} dd^c(\phi_{\sigma}) c_1(H_{\sigma}, k_{\sigma})^{d-1}
$$

because $c_1(L_\sigma, h_\sigma)c_1(H_\sigma, k_\sigma)^{d-1} = 0$. Therefore, by Lemma 1.1.1,

$$
\widehat{\deg}(x^2 \cdot \widehat{c}_1(H,k)^{d-1}) \le \widehat{\deg}(y^2 \cdot \widehat{c}_1(H,k)^{d-1})
$$

and equality holds if and only if ϕ_{σ} is a constant for each $\sigma \in K(\mathbb{C})$. On the other hand, by virtue of arithmetic Bertini's theorem, for a sufficiently large *m*, there is a section $t \in H^0(X, H^m)$ with the following properties:

- i) div (t) ^K is smooth and geometrically irreducible.
- ii) If $\text{div}(t) = Y + a_1 F_1 + \cdots + a_s F_s$ is the irreducible decomposition such that *Y* is horizontal and F_i 's are vertical, then F_i 's are smooth fibers.
- iii) D and $div(t)$ has no common irreducible component.
- iv) $\sup_{x \in X_{\sigma}} (\|t_{\sigma}\|_{k_{\sigma}^m}(x)) < 1$ for all $\sigma \in K(\mathbb{C})$.

(Note that $H^1(X_K, H_K^{-m}) = 0$ guarantees geometrical irreducibility of $\operatorname{div}(t)_K$.) Since $(D|_{F_i}^2 \cdot H|_{F_i}^{d-2}) \leq 0$ by the geometric Hodge index theorem, we obtain

$$
\widehat{\deg}(y^2 \cdot \widehat{c}_1(H^m, k^m)^{d-1}) = \widehat{\deg}(y|_Y^2 \cdot \widehat{c}_1((H^m, k^m)|_Y)^{d-2}) +
$$
\n
$$
\sum a_i m(D|_{F_i}^2 \cdot H|_{F_i}^{d-2}) -
$$
\n
$$
\sum_{\sigma \in K(\mathbb{C})} \int_{X_{\sigma}} \log(\|t_{\sigma}\|_{k_{\sigma}}) c_1(L_{\sigma}, h_{\sigma})^2 c_1(H_{\sigma}^m, k_{\sigma}^m)^{d-2}
$$
\n
$$
\leq \widehat{\deg}(y|_Y^2 \cdot \widehat{c}_1((H^m, k^m)|_Y)^{d-2}) -
$$
\n
$$
\sum_{\sigma \in K(\mathbb{C})} \int_{X_{\sigma}} \log(\|t_{\sigma}\|_{k_{\sigma}}) c_1(L_{\sigma}, h_{\sigma})^2 c_1(H_{\sigma}^m, k_{\sigma}^m)^{d-2}.
$$

Since (L_{σ}, h_{σ}) is Einstein-Hermitian, by Lemma 1.1.2, there is a real-valued smooth function u_{σ} on X_{σ} with the following properties:

 (1) $c_1(L_{\sigma}, h_{\sigma})^2 c_1(H_{\sigma}, k_{\sigma})^{d-2} = u_{\sigma}c_1(H_{\sigma}, k_{\sigma})^d.$ (2) $u_{\sigma}(x) \leq 0$ for all $x \in X_{\sigma}$. (3) $u_{\sigma}(x) = 0$ for all $x \in X_{\sigma}$ if and only if (L_{σ}, h_{σ}) is flat. Therefore, we have

$$
\widehat{\deg}(y^2 \cdot \widehat{c}_1(H,k)^{d-1}) \le \widehat{\deg}((y|_Y)^2 \cdot \widehat{c}_1((H,k)|_Y)^{d-2}).
$$

Hence, by hypothesis of induction, we get our inequality.

Finally, we consider the equality condition. We assume $\deg(x^2 \cdot \hat{c}_1(H, k)^{d-1}) = 0$. Then, if we trace back the above proof care-
fully we can see fully, we can see

- (a) ϕ_{σ} is a constant for each $\sigma \in K(\mathbb{C})$.
- (b) (L_{σ}, h_{σ}) is flat for each $\sigma \in K(\mathbb{C})$.
- (c) $L_K|_{Y_K}$ is a torsion of Pic(Y_K).

By (b), $L_{\mathbb{C}}$ is given by a representation $\rho : \pi_1(X_{\mathbb{C}}) \to \mathbb{C}^*$ of the fundamental group of $X_{\mathbb{C}}$. (c) implies that the image of $\pi_1(Y_{\mathbb{C}}) \to \pi_1(X_{\mathbb{C}}) \to \mathbb{C}^*$ is finite. On the other hand, by Lefschetz theorem (cf. Theorem 7.4 in [Mi]), $\pi_1(Y_{\mathbb{C}}) \to \pi_1(X_{\mathbb{C}})$ is surjective. Thus, the image of $\rho : \pi_1(X_{\mathbb{C}}) \to \mathbb{C}^*$ is also finite. Therefore, there is a positive integer *n* with $L_{\mathbb{C}}^n \simeq \mathcal{O}_{X_{\mathbb{C}}}$. Thus,

$$
\dim_K H^0(X_K, L_K^n) = \dim_{\mathbb{C}} H^0(X_K, L_K^n) \otimes \mathbb{C} = \dim_{\mathbb{C}} H^0(X_{\mathbb{C}}, L_{\mathbb{C}}^n) = 1.
$$

Hence, since $(L_K \cdot H_K^{d-1}) = 0$, we have $L_K^n \simeq \mathcal{O}_{X_K}$. Thus, there is a rational section *s'* of L^n with $s'_K = 1$. We set $Z = \text{div}(s')$ and $g'_{\sigma} =$ $-\log(h_{\sigma}^n(s', s')) + n\phi_{\sigma}$. Then, the support of *Z* is vertical. Moreover, since h_{σ}^{n} is a flat metric of $\mathcal{O}_{X_{\sigma}}$, $h_{\sigma}^{n}(s', s')$ must be a constant. Therefore, $(Z, \sum g'_\sigma)$ is our desired cycle. \square

Proof of Theorem B. Since $f'_* \mathcal{O}_X = O_K$, X_K is geometrically irreducible. So the inequality is an immediate consequence of Theorem 1.1.

We need to consider the precise equality condition. Clearly, if there are a positive integer *n* and $y \in \widehat{\text{CH}}^1(\text{Spec}(O_K))$ such that $nx = f'^*(y)$, then $\deg(x^2 \cdot \hat{c}_1(H, k)^{d-1}) = 0$. Conversely we assume $\deg(x^2 \cdot \hat{c}_1(H, k)^{d-1}) = 0$.
Then by Theorem 1.1, there are a positive integer n_i , and an arithmetic Then, by Theorem 1.1, there are a positive integer n_1 and an arithmetic cycle $(Z, \sum_{\sigma \in K(\mathbb{C})} g_{\sigma})$ such that *Z* is vertical with respect to f' , g_{σ} 's are constant and n_1x is equal to the class of $(Z, \sum_{\sigma \in K(\mathbb{C})} g_{\sigma})$ in $\widehat{\text{CH}}^1(X)$. Then,

$$
\widehat{\deg}((n_1x)^2 \cdot \widehat{c}_1(H,k)^{d-1}) = (Z^2 \cdot H^{d-1}) = 0.
$$

Here, we need the following lemma.

Lemma1.3. Let *X* be a regular scheme, *R* a discrete valuation ring, $f: X \to \text{Spec}(R)$ a projective morphism with $f_*\mathcal{O}_X = R$, and *H* an *f*ample line bundle on X. Let X_o be the central fiber of f and $(X_o)_{\text{red}} =$

 $X_1 + \cdots + X_n$ the irreducible decomposition of $(X_o)_{\text{red}}$. We consider a vector space $V = \bigoplus_{i=1}^n \mathbb{Q}X_i$ generated by X_i 's and the natural pairing $(,) : V \times V \rightarrow \mathbb{Q}$ defined by

$$
(D_1, D_2) = (D_1 \cdot D_2 \cdot H^{d-1}),
$$

where $d = \dim f$ and · is the intersection product. Then, we have $(D, D) \leq$ 0 for all $D \in V$ and equality holds if and only if $D \in \mathbb{Q}X_o$.

Proof. For example, see (i)' of Lemma (2.10) in Chap. I of [BPV]. \Box

By the above lemma, there is a positive integer n_2 and a cycle T on $Spec(\mathcal{O}_K)$ such that $n_2Z = f^{**}(T)$. Therefore, if we set $y = (T, \sum_{\sigma \in K(\mathbb{C})} n_2 g_{\sigma}), \text{ then } n_1 n_2 x = f'^*(y). \quad \Box$

2. Proof of Theorem A

Let us begin the proof of Theorem A. This is an easy corollary of Theorem B.

(1) Let us see that (2) implies (1). Assume that $L^{d-1}(x) = 0$. Then, $L^{d}(x) = 0$. Thus if $x \neq 0$, then $\deg(xL^{d-1}(x)) < 0$ by (2). This is a contradiction. Therefore, $x = 0$.

(2) Let $X \xrightarrow{f'} \text{Spec}(O_K) \to \text{Spec}(\mathbb{Z})$ be the Stein factorization of f : $X \rightarrow \text{Spec}(\mathbb{Z})$. In the following arguments, the subscript *K* means the restriction to the generic fiber of *f* .

Since *x* can be approximated by points $y \in \widehat{\text{CH}}^1(X)_\mathbb{Q}$ with $L^d(y) = 0$, we may assume that $x \in \widehat{\text{CH}}^1(X)_{\mathbb{Q}}$. Let *t* be a rational number with $(z(x)_K + tH_K \cdot H_K^{d-1}) = 0$. Replacing *x* by *mx*, we may assume that $x \in \widehat{\text{CH}}^1(x)$ and $t \in \mathbb{Z}$. We set $y = x + t\widehat{c}_1(H, k)$. Then, $(z(y)_K \cdot H_K^{d-1}) = 0$. Thus, by Theorem B, we have $\deg(y^2 \cdot \hat{c}_1(H, k)^{d-1}) \leq 0$. Therefore, since $L^d(x) = 0$, we get $L^d(x) = 0$, we get

$$
\widehat{\deg}(x^2 \cdot \widehat{c}_1(H,k)^{d-1}) + (t)^2 \widehat{\deg}(\widehat{c}_1(H,k)^{d+1}) \le 0.
$$

Hence, $\deg(x^2 + \widehat{c}_1(H,k)^{d-1}) \leq 0$. Here, we assume that $\deg(x^2 \cdot \hat{c}_1(H,k)^{d-1}) = 0.$ Then, $t = 0.$ Thus, $(z(x)_K \cdot H_K^{d-1}) = 0.$ So, by Theorem B, there is a positive integer *n* and $u \in \widehat{\text{CH}}^1(\text{Spec}(O_K))$ such that $nx = f'^*(u)$. We know $nx \cdot \hat{c}_1(H, k)^d = 0$, which implies $u \cdot f'_{*}(\widehat{c}_{1}(H, k)^{d}) = 0$. Therefore, $u = 0$ in $\widehat{\text{CH}}^{1}(\text{Spec}(O_{K}))_{\mathbb{Q}}$ because $f'_{*}(\widehat{c}_{1}(H,k)^{d})=(H_{K}^{d})[\text{Spec}(O_{K})].$ Thus, $x=0$ in $\widehat{\text{CH}}^{1}(X)_{\mathbb{Q}}$. This is a contradiction. Hence, we get $\deg(x^2 \cdot \widehat{c}_1(H,k)^{d-1}) < 0$.

3. Variants of Theorem B (non-abelian case)

In this section, we will study variants of Theorem B or Theorem 1.1. The following theorem is a generalization of Theorem 1.1 to a higher rank vector bundle.

Theorem 3.1. Let K be an algebraic number field and O_K the ring of integers. Let $f : X \to \text{Spec}(O_K)$ be an arithmetic variety and (H, k) an arithmetically ample Hermitian line bundle on *X*. Assume that $d =$ $\dim f \geq 1$ and X_K is smooth and geometrically irreducible. Let (E, h) be a Hermitian vector bundle on *X* such that $E_{\overline{Q}}$ is semi-stable with respect to $H_{\overline{\mathbb{Q}}}$ and $(c_1(E_K) \cdot c_1(H_K)^{d-1})=0$. Then, we have

$$
\widehat{\deg}\left(\widehat{\mathrm{ch}}_2(E,h)\cdot\widehat{c}_1(H,k)^{d-1}\right)\leq 0.
$$

Moreover, if the equality holds, then h_{σ} is Einstein-Hermitian with respect to a Kähler form $\Omega_{\sigma} = c_1(H_{\sigma}, k_{\sigma})$ and E_{σ} is flat for every $\sigma \in K(\mathbb{C})$.

Proof. Let *r* be the rank of *E*. Since

$$
\widehat{\text{ch}}_2(E, h) = \frac{1}{2}\widehat{c}_1(E, h)^2 - \widehat{c}_2(E, h),
$$

we have

$$
\widehat{ch}_2(E, h) \cdot \widehat{c}_1(H, k)^{d-1} = \frac{1}{2r} \widehat{c}_1(E, h)^2 \cdot \widehat{c}_1(H, k)^{d-1} - \left\{ \widehat{c}_2(E, h) - \frac{r-1}{2r} \widehat{c}_1(E, h)^2 \right\} \cdot \widehat{c}_1(H, k)^{d-1}.
$$

By Lemma 8.2 of [Mo1], E_{σ} is semistable with respect to H_{σ} . Thus the main theorem in [Mo2] implies that

$$
\widehat{\deg}\left(\left\{\widehat{c}_2(E,h)-\frac{r-1}{2r}\widehat{c}_1(E,h)^2\right\}\cdot\widehat{c}_1(H,k)^{d-1}\right)\geq 0.
$$

On the other hand, by Theorem 1.1, deg $(\widehat{c}_1(E,h)^2 \cdot \widehat{c}_1(H,k)^{d-1}) \leq 0$. Therefore, we have $\widehat{\text{deg}}\left(\widehat{\text{ch}}_2(E, h) \cdot \widehat{c}_1(H, k)^{d-1}\right) \leq 0.$

Next we consider equality condition.

We assume that $\widehat{\deg}(\widehat{\mathrm{ch}}_2(E, h) \cdot \widehat{c}_1(H, k)^{d-1}) = 0$. First of all, by equality condition of the main theorem of [Mo2], E_{σ} is flat for every $\sigma \in K(\mathbb{C})$.

Let *h'* be an Einstein-Hermitian metric of *E*. Then, by Lemma 6.1 of $[Mo1]$,

$$
\widehat{\deg}\left((\widehat{\mathrm{ch}}_2(E, h) - \widehat{\mathrm{ch}}_2(E, h')) \cdot \widehat{c}_1(H, k)^{d-1}\right) = -\frac{(d-1)!}{4\pi} \sum_{\sigma \in K(\mathbb{C})} DL(E_{\sigma}, h_{\sigma}, h'_{\sigma}),
$$

where *DL* is the Donaldson's Lagrangian. Therefore, we have

$$
\sum_{\sigma \in K(\mathbb{C})} DL(E_{\sigma}, h_{\sigma}, h_{\sigma}') \leq 0.
$$

On the other hand, since *h*' is Einstein-Hermitian, we get $DL(E_{\sigma}, h_{\sigma}, h_{\sigma}') \ge$ 0 for all $\sigma \in K(\mathbb{C})$. Hence $DL(E_{\sigma}, h_{\sigma}, h_{\sigma}') = 0$ for all $\sigma \in K(\mathbb{C})$. Thus h_{σ} is Einstein-Hermitian for all $\sigma \in K(\mathbb{C})$. \Box

In the case where $rk E = 1$, Theorem 1.1 says that if $\widehat{\deg}\left(\widehat{\mathrm{ch}}_2(E, h) \cdot \widehat{c}_1(H, k)^{d-1}\right) = 0$, then E_K is a torsion element of $Pic^{0}(X_{K})$. So we might expect a stronger property of (E, h) than flatness. Here we introduce one notation. Let *M* be a complex manifold and *F* a flat vector bundle of rank *r* on *M*. Let $\rho_F : \pi_1(M) \to GL_r(\mathbb{C})$ be the representation of the fundamental group of *M* arising from the flat vector bundle *F*. *F* is said to be *of torsion type* if the image of ρ_F is finite.

Proposition 3.2. Let K be an algebraic number field and O_K the ring of integers. Let $f : X \to \text{Spec}(O_K)$ be an arithmetic variety, *H* an *f*ample line bundle on *X* and *k* a Hermitian metric of *H*. Assume that $d = \dim f \geq 1$ and X_K is smooth and geometrically irreducible. Let (E, h) be a Hermitian vector bundle of rank *r* on *X* such that (E_{σ}, h_{σ}) is flat for $\operatorname{each} \sigma \in K(\mathbb{C}) \text{ and } \widehat{\operatorname{deg}}\left(\widehat{\operatorname{ch}}_2(E, h) \cdot \widehat{c}_1(H, k)^{d-1}\right) = 0.$ Let $\rho_{E_{\mathbb{C}}} : \pi_1(X_{\mathbb{C}}) \to$ $GL_r(\mathbb{C})$ be the representation of the fundamental group of $X_{\mathbb{C}}$ arising from the flat vector bundle $E_{\mathbb{C}}$. If the image of $\rho_{E_{\mathbb{C}}}$ is abelian, then E_{σ} is of torsion type for all $\sigma \in K(\mathbb{C})$.

Proof. We prove it by induction on dim *X*. First, we consider the case $d = 1$. Since the representation ρ_{E_C} is abelian, we have the decomposition $\rho_{E_C} = \rho_1 \oplus \cdots \oplus \rho_r$ such that $\dim \rho_i = 1$ for all *i*. Therefore, there are flat line bundles L'_1, \ldots, L'_r on $X_{\mathbb{C}}$ such that $E_{\mathbb{C}} = L'_1 \oplus \cdots \oplus L'_r$. Thus, by an easy descent, we can find line bundles L_1, \ldots, L_r on $X_{\overline{0}}$ such that $E_{\overline{0}} = L_1 \oplus \cdots \oplus L_r$ and $\deg(L_i) = 0$ for all *i*. Thus, by Proposition 10.8 in [Mo1], we have our assertion.

Next, we assume that $d \geq 2$. Replacing *H* by a higher multiple H^m of *H*, we may assume that there is a section $\phi \in H^0(X, H)$ with the following properties:

- i) div $(\phi)_K$ is smooth and geometrically irreducible.
- ii) If $\text{div}(\phi) = Y + a_1 F_1 + \cdots + a_s F_s$ is the irreducible decomposition such that *Y* is horizontal and F_i 's are vertical, then F_i 's are smooth fibers.

Since (E_{σ}, h_{σ}) is flat for each $\sigma \in K(\mathbb{C})$, we have $(\text{ch}_2(E) \cdot F_i \cdot H^{d-2})=0$ and $ch_2(E_{\sigma}, h_{\sigma})$ is zero as differential form for every $\sigma \in K(\mathbb{C})$. Thus we have

$$
\widehat{\deg}\left(\widehat{\mathrm{ch}}_2(E,h)\cdot\widehat{c}_1(H,k)^{d-1}\right)=\widehat{\deg}\left(\widehat{\mathrm{ch}}_2((E,h)|_Y)\cdot\widehat{c}_1((H,k)|_Y)^{d-2}\right).
$$

Let $\rho_{E_{\mathbb{C}}|_{Y_{\mathbb{C}}}} : \pi_1(Y_{\mathbb{C}}) \to GL_r(\mathbb{C})$ be the representation arising from $E_{\mathbb{C}}|_{Y_{\mathbb{C}}}$. Since $\rho_{E_{\mathbb{C}}|_{Y_{\mathbb{C}}}}$ is the composition of $\pi_1(Y_{\mathbb{C}}) \to \pi(X_{\mathbb{C}})$ and $\rho_{E_{\mathbb{C}}} : \pi_1(X_{\mathbb{C}}) \to$ $GL_r(\mathbb{C})$, the image of $\rho_{E_{\mathbb{C}}|_{Y_{\mathbb{C}}}}$ is also abelian. Thus, by hypothesis of induction, $E_{\sigma}|_{Y_{\sigma}}$ is of torsion type for every $\sigma \in K(\mathbb{C})$. On the other hand, by Lefschetz theorem, $\pi_1(Y_\sigma) \to \pi_1(X_\sigma)$ is surjective. Hence, E_σ is also of torsion type for every $\sigma \in K(\mathbb{C})$. \Box

Finally, we will pose two questions. Let $f: X \to \text{Spec}(O_K)$ be a $(d+1)$ dimensional arithmetic variety, (*H,k*) an arithmetically ample Hermitian line bundle on X , and (E, h) a Hermitian vector bundle on X such that *E*_{$\overline{0}$ is semistable with respect to *H*_{$\overline{0}$} and $(c_1(E_K) \cdot c_1(H_K)^{d-1}) = 0$. An} interesting problem is to find stronger equality conditions for

$$
\widehat{\deg}\left(\widehat{\mathrm{ch}}_2(E,h)\cdot\widehat{c}_1(H,k)^{d-1}\right)\leq 0.
$$

Theorem 3.1 says that if $\widehat{\deg}(\widehat{\mathrm{ch}}_2(E, h) \cdot \widehat{c}_1(H, k)^{d-1}) = 0$, then at least E_{σ} is flat for every $\sigma \in K(\mathbb{C})$. Optimistically, one may pose the following question:

Question 3.3. If $\widehat{\deg}(\widehat{\mathrm{ch}}_2(E, h) \cdot \widehat{c}_1(H, k)^{d-1}) = 0$, is E_{σ} of torsion type for every $\sigma \in K(\mathbb{C})$?

By Proposition 3.2, if $\pi_1(X_{\mathbb{C}})$ is abelian or rk $E=1$, we have an affirmative answer of the above question. Moreover, if we carefully trace back the proof in Proposition 3.2, Question 3.3 can be reduced to the case $d = 1$. So from now on, we assume that $d = 1$. Let $\overline{\mathbf{M}}_{X_K/K}(r,0)$ be the moduli scheme of semistable vector bundles on X_K with rank r and degree 0. Let h be a height function on $\overline{M}_{X_K/K}(r,0)$ arising from some ample line bundle on $\mathbf{M}_{X_K/K}(r,0)$. Our next question is

Question 3.4. Are there constants *A* and *B* with the following properties?

- (1) $A, B \in \mathbb{R}$ and $A > 0$.
- (2) For all semistable Hermitian vector bundle (*E,h*) on *X* with rank *r* and degree 0, we have

$$
h(E_K) \le \frac{-A}{[K:\mathbb{Q}]} \widehat{\deg} \left(\widehat{\mathrm{ch}}_2(E, h) \right) + B
$$

In some sense, Question 3.4 is related to Question 3.3. For, if $\widehat{\deg}\left(\widehat{\mathrm{ch}}_2(E,h)\right) = 0$ and Question 3.4 holds, then the height of E_K is bounded. So E_K should have some simple structure.

References

- [BPV] W. Barth, C. Peters and A. Van de Ven, *Compact complex surfaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3.Folge · Band 4, Springer-Verlag, 1984.
- [Fa] G. Faltings, *Calculus on arithmetic surfaces*, Ann. of Math. **119** (1984), 387–424.
- [GS] H. Gillet and C. Soulé, *Arithmetic analogs of the standard conjectures*, Proc. Symp. in Pure Math. **55-I** (1994), 129–140.
- [Hr] P. Hriljac, *Heights and Arakelov's intersection theory*, Amer. J. Math. **107** (1985), 23–38.
- [Ku] K. Künnemann, *Some remarks on the arithmetic Hodge index conjecture*, Comp. Math. **99** (1995), 109–128.
- [Mi] J. Milnor, *Morse Theory*, Annals of Mathematic Studies, vol. 51, Princeton.
- [Mo1] A. Moriwaki, *Inequality of Bogolomov-Gieseker type on arithmetic surfaces*, Duke Math. J. **74** (1994), 713–761.
- [Mo2] , *Arithmetic Bogomolov-Gieseker's inequality*, Amer. J. Math. **117** (1995), 1325–1347.
- [Zh] S. Zhang, *Positive line bundles on arithmetic varieties*, Jour. A.M.S. **8** (1995), 187–221.

D EPARTM ENT OF M ATHEMATICS, FACULTY OF SCIENCE, K YOTO UNIVERSITY, K yoto 606-01Japan

E-mail address: moriwaki@kusm.kyoto-u.ac.jp