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AN APPLICATION OF EIGENVALUE

ESTIMATE TO ALGEBRAIC CURVES

DEFINED BY CONGRUENCE SUBGROUPS

Shing-Tung Yau

§1. Arithmetic curves

Let X be an algebraic curve defined by a congruence subgroup. Then it
is clear that X enjoys many special properties as an algebraic curve. How
to characterize it algebraic geometrically? Ten years ago, based on my work
with Peter Li [7], the author made the simple observation that the degree of
this curve over the projective line must be large, i.e., at least a (universal)
constant multiple of the genus. In particular, there is an explicit bound of
the genus for such a curve which is hyperelliptic. It is also interesting to
understand a similar estimate for the degree of this curve over an elliptic
curve. Since there is interest in such estimates, we decided to publish this
note.

Let Σ be any algebraic curve. In [7] Peter Li and I defined an invariant
attached to its complex structure in the following way. Let

AC(Σ) = inf
F

sup
g

Area(g(F (Σ)))

where F is any nontrivial branched conformal map of Σ into a unit sphere
Sn and g is any element in the conformal group of Sn.

Li and the author called AC(Σ) to be the conformal area of Σ. It can
be computed for cases when Σ can be conformal immersed into Sn. In
particular, it is equal to 4π when Σ = S2 = CP 1. We proved that for any
conformal metric defined on X, the first eigenvalue λ1 of the Laplacian is
dominated by

λ1 ≤ 2dAC(Σ)
Area(X)
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where d is the minimal degree of a holomorphic map onto Σ. (See also [9]
where Paul Yang and the author studied the case where Σ is mapped to
S2.)

In such an inequality, if we take the metric to be the Poincaré metric,
Area(X) = 4π(g − 1) and by Selberg’s theorem, we have the following.

Theorem 1. Let X be any curve defined by the congruence subgroup. Then
for any holomorphic map from X to an algebraic curve Σ with degree d, we
have the following inequality

dAC(Σ) ≥ 3π

8
(g − 1 +

n

2
)

where g is the genus of X and n is the number of ends of X.

Corollary. The degree of any X mapping to CP 1 must be greater than
3
32

(g − 1 +
n

2
).

Note that if λ1 ≥ 1
4
, the inequality will be improved to

1
8
(g − 1 +

n

2
).

Hence the genus of any X which is hyperelliptic must be less than 17.
If we consider the Laplacian acting on a (flat) complex line bundle L over

X, we can also find the upper bound for the first eigenvalue. Let us treat
the simplest case where the line bundle is defined by a representation of the
fundamental group of X to Zp. Let ω be the p-th root of unity. Then ω acts
on S2n−1 ⊂ C

n diagonally. There is an obvious flat Zp line L̃ bundle over
S2n−1/Zp. Let F be any branched conformal inversion of X into S2n−1/Zp

so that the pullback of L̃ is equal to L. The complex coordinates of S2n−1

defines a section of L̃. Hence we can apply the argument of Li-Yau to
conclude that the first eigenvalue of L over X is bounded by

λ1(L) ≤ 2(Area X)−1 inf
F

(Area F ).

For n = 1, we should understand this inequality as follows: Take any
one form ω with integral period and some period equal to one. It defines a
map from X into the circle. Then

λ1(L) ≤ 4π2

p2

infω‖ω‖2

Area X
.

When L is trivial, the first eigenvalue considered here is zero. (The pre-
vious first eigenvalue should be considered as first non-trivial eigenvalue.)
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The estimate on the first eigenvalue shows that when

d <
1
8
(g − 1 +

n

2
)

there is a discrete eigenvalue below
1
4
. It is interesting to know how many

eigenvalues are less than
1
4
. In fact, answering a question of the author, N.

Korevare [4] proved that

λi ≤ Cdi(A(Σ))−1

where C is a universal constant. (The best constant is still not known.)

Hence if m is the smallest integer less than
π(g − 1 + n

2 )
cd

, there are m

L2-eigenfunctions with eigenvalue less than
1
4
.

Let us now assume that we are dealing with a compact curve X. It is
a theorem due to Onofri [5], and Osgood-Philips-Sarnak [6] that among
metrics with the same area, the determinant of the Laplacian is maximum
when the curvature of the metric is constant. If there is a holomorphic
map from X onto S2 with degree d, we can pull back the metric from S2

to X. The determinant of the Laplacian of the pulled back metric is the
d-th power of the determinant of the Laplacian of S2.

Hence if we normalize the curvature of S2 so that 4πd−1(g − 1) is equal
to the area of S2, then the determinant of the Laplacian of X is dominant
by the d-th power of the Laplacian of S2. It is not clear how to obtain a
good lower bound for the determinant of the Laplacian for X defined by
arithmetic means.

If X has dimension greater than one, there is an upper estimate of the
first (non-trivial) eigenvalue also. In fact, if X is an n-dimensional Kähler
manifold with Kähler class ω and if f is any holomorphic map from X to

CP 1, then λ1(X) is dominated by 2
∫

M

(f∗Ω ∧ ωn−1) Vol−1(M) where Ω

is the standard Kähler form of CP 1. For higher dimensional manifolds, it
is natural to consider holomorphic maps from X into CPN . In this case
Bourguignon, Li and myself [1] prove that the first eigenvalue is less than

m
N + 1

N
(
∫

f∗(Ω) ∧ ωm−1)Vol−1(M).
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Since there should be a universal lower estimate for algebraic manifolds
defined by arithmetic groups acting on Hermitian symmetric space of non-

compact type, there should be lower estimates of the degree
∫

f∗(Ω)∧ωm−1

for these manifolds in terms of Vol(M). Note that ω can be taken to be
−c1(M) and Vol(M) is simply (−1)mcm

1 (M). Hence if λ1 has a good lower
bound, the line bundle that embeds X into a complex projective space
cannot have low degree relative to the canonical line bundle.

It is an interesting question to generalize the estimate of N. Korevare to
higher dimensional Kähler manifolds. Perhaps there is also some estimate
for holomorphic torsion similar to the determinant of the Laplacian of an
algebraic curve.

For the original problem of characterizing the curve defined by arith-
metic group, one may mention that there is the famous work of Belli on
characterizing algebraic curve defined over Q. Perhaps the structure of the
Hecke algebra can be used to give further conditions.

§2. Theta function

Let T g be a real torus defined by a lattice L with g > 2. Let

(2.1) θL(t) =
∑

∈L

exp(
−‖�‖2

4t
).

Based on eigenvalue estimate mentioned in the last section, we shall
derive some special property of θ(t) when T g contains a minimal surface
Σ. The function

(2.2) h̃(t, x, y) =
1

4πt

∑

∈L

exp(−‖x − y + �‖2

4t
)

defines a function on the surface Σ. We shall use h̃ to compare the heat
kernel of Σ with respect to the induced metric on Σ. Since Σ is a minimal
surface, ∆ΣX = 0 when X is considered as a function defined on Σ. It
follows that ∂h̃

∂t − ∆h̃ ≥ 0. The standard argument as was shown in [2][3]
then shows that h̃(t, x, y) ≥ h(t, x, y).

In particular, setting x = y, we obtain

(2.3)
1

4πt

∑

∈L

exp(−‖�‖2

4t
) ≥

∞∑
i=0

e−λitϕ2
i (x)
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where ϕi are the i-th eigenfunctions of the Laplacian ∆Σ such that∫
Σ

ϕ2
i = 1.

Since λi ≥ Cdi(A(Σ))−1, we deduce that

(2.4) θL(t) ≥ 4πt

A(Σ)

[
1 − exp(

−Cdt

A(Σ)
)
]−1

where A(Σ) is the area of Σ.

Theorem 2.1. If a real torus T g contains a minimal surface Σ whose
degree is d, then its theta function θ of T g satisfies the inequality (2. 4).

Note that algebraic curves are minimal surfaces. Hence we can apply
the above theorem to Jacobian of a curve and A(Σ) can be computed in
terms of the genus.

By the Poisson formula, θL∗( 1
4t ) = (4πt)−g/2θL(t) Vol(T g), where L∗ is

the lattice dual to L. It follows from (2.4) that

(2.5)
∑

∈L∗

exp(−t‖�‖2) ≥ (4πt)
−g
2 +1Vol(T g)
A(Σ)

[
1 − exp(

−Cdt

A(Σ)
)
]−1

.

Formula (2.5) shows that L∗ contains nontrivial elements of small length.
Coming back to (2.4), notice that (4πt)−g/2θL(t) is the heat kernel of

T g along the diagonal. Hence according to the upper estimate of the heat
kernel provided in [8], we have

(2.6) (4πt)−g/2θL(t) ≤ C ′Vol(B(
√

t))−1

where C ′ is a constant depending only on g and B(
√

t) is any geodesic ball
with radius

√
t in T g.

Combining (2.4) and (2.6) we obtain

(2.7) C ′ (4πt)g/2

B(
√

t)
≥ 4πt

A(Σ)
[1 − exp(

−Cdt

A(Σ)
)]−1.

Let
√

t = D to be the diameter of T g, we obtain the following inequality

(2.8) C ′(4πD)gVol(T g)−1 ≥ 4πD2

A(Σ)
[1 − exp(

−CdD2

A(Σ)
)]−1.
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Inequality (2.8) shows that if D2(A(Σ))−1 is large, the lattice defining
T g cannot be close to the standard lattice.

The inequality (2.3) easily implies the following statement for the L∞

norm of eigenfunction

1
m

m∑
i=1

ϕ2
i (x) ≤ λme

4πm
θ(

1
λm

)

≤ Cde

4πA(Σ)
θ(

1
λm

).

The inequality h̃(t, x, y) ≥ h(t, x, y) can also be improved to the following
sharper inequality∫ ∫

Σ

∫
h̃(α1t, x, z1)h̃(α2t, z1, z2)· · ·h̃(αkt, zk−1, y)dz1· · ·dzk−1 ≥ h(t, x, y)

where αi are positive constants with α1 + · · · + αk = 1.
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