
Mathematical Research Letters 3, 149–166 (1996)

A STABILIZATION THEOREM FOR HERMITIAN FORMS

AND APPLICATIONS TO HOLOMORPHIC MAPPINGS

David W. Catlin and John P. D’Angelo

Introduction

We consider positivity conditions both for real-valued functions of sev-
eral complex variables and for Hermitian forms. We prove a stabilization
theorem relating these two notions, and give some applications to proper
mappings between balls in different dimensions. The technique of proof
relies on the simple expression for the Bergman kernel function for the unit
ball and elementary facts about Hilbert spaces. Our main result general-
izes to Hermitian forms a theorem proved by Polya [HLP] for homogeneous
real polynomials, which was obtained in conjunction with Hilbert’s seven-
teenth problem. See [H] and [R] for generalizations of Polya’s theorem of a
completely different kind. The flavor of our applications is also completely
different.

We begin by describing our main result. Let Cn denote complex Eu-
clidean space of n dimensions, with the complex Euclidean squared norm
||z||2 =

∑n
j=1 |zj |2. Suppose that f : Cn → R is a polynomial in the

variables z and z, and that it is homogeneous of the same degree m in
each of these variables. We write f(z, z) =

∑
|α|=m

∑
|β|=m cαβzαzβ .The

condition that f take only real values is equi-valent to cαβ = cβα. We call
the Hermitian matrix (cαβ) the underlying matrix of coefficients. Then we
have the following conclusion. The function f achieves a positive minimum
value on the unit sphere if and only if there is an integer d so that the
matrix (Eµν) is positive definite, where (Eµν) is the underlying matrix of
coefficients for the function ||z||2df(z, z), that is

||z||2df(z, z) =
∑

Eµνzµzν .
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Consequently there is a homogeneous holomorphic vector-valued polyno-
mial g such that

||z||2df(z, z) = ||g(z)||2.

When (cαβ) is itself positive definite, then f must be positive on the
sphere; this is the case d = 0. In general the smallest possible value for
the integer d depends on the original underlying matrix of coefficients. We
note that, once the form is positive for some d, it remains positive for
all larger values, and this suggests the name “stabilization”. In case the
original underlying matrix of coefficients is diagonal, this theorem implies
the classical theorem of Polya in the real case. Even in the diagonal case
the smallest possible integer d can be arbitrarily large. See Example 2 and
Remark 1.

It is elementary that when the underlying matrix of coefficients is pos-
itive definite the underlying polynomial is the squared norm of a holo-
morphic mapping. We conclude that, although f(z, z) may not be the
squared norm of a holomorphic mapping, for sufficiently large integers d,
||z||2df(z, z) is such a squared norm ||g(z)||2. Furthermore this function
vanishes only at the origin.

We next indicate how this result applies to holomorphic mappings. In
Theorem 3 we let f be an arbitrary polynomial which is positive on the
sphere; using Theorem 1 we construct a holomorphic polynomial mapping
g (finite-dimensionally valued) such that f(z, z) = ||g(z)||2 on the sphere.
Theorem 3 easily implies Theorem 2. In Theorem 2, we consider a holomor-
phic polynomial mapping p whose Euclidean norm on the closed ball in Cn

is everywhere less than unity. Then we can find a holomorphic polynomial
mapping g such that p⊕g maps the sphere to some sphere; in other words,
p equals some of the components of a proper holomorphic polynomial map-
ping between balls. We must allow the target dimension to be arbitrarily
large. This cannot be improved, because even in the homogeneous case, the
(minimum) embedding dimension of p ⊕ g depends on the integer d from
Theorem 1. In Theorem 4, we give a result on allowable denominators for
rational proper mappings between balls.

We also interpret Theorem 1 in terms of tensor products of mappings.
If h and g are vector valued functions, we define their tensor product h⊗ g
to be the mapping whose components are all possible products hjgk of
the components of h and g, in some determined order. Then ||z||2d =
||Hd(z)||2 for a certain holomorphic mapping Hd, namely the d-fold tensor
product of the identity mapping with itself. See [D1] for many uses of this
mapping. We observe that we may always write a real-valued polynomial
p as p(z, z) = ||P (z)||2 − ||N(z)||2 for holomorphic mappings P and N .
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Theorem 1 then implies that p is positive on the sphere if and only if there
is an integer d so that we can write

Hd ⊗ N = L(Hd ⊗ P )

where L is a linear transformation in the unit ball of the space of linear
transformations. See equivalence 5 of Theorem 1 for the precise statement.

It is possible to phrase our result in terms of Hermitian metrics on powers
of the hyperplane section bundle of complex projective space, but we do
not do this here. Because of its interpretation involving tensor products,
our statement might be related to the famous theorem of Kodaira on the
embedding of Hodge manifolds into complex projective spaces, where one
takes sufficiently high tensor powers of a positive line bundle. See [GH].
We do not pursue this here. At the close of the paper we briefly discuss the
geometric meaning of the main theorem in terms of the Veronese mapping.

We close the introduction by giving another interpretation. Letting the
n-torus act on the sphere, we see that the positivity of f as a function
shows that certain trigonometric polynomials are positive. By the easy
direction of Bochner’s theorem characterizing functions of positive type,
all the matrices in a certain family must be positive definite. We relate
the matrix entries of the underlying form for ||z||2df(z, z) to the matrices
in this family when d is sufficiently large. This argument relies on the
elementary observation that

1
(µ − α)!

=
µα + pm−1(µ)

µ!

where |α| = m and pm−1 is of degree m − 1, and on resulting inequalities
for large |µ|. See Corollary 1.

The second author acknowledges both the Institute for Advanced Study
and the Mathematical Sciences Research Institute for support during the
academic year 1993-4. During that time he had productive conversations
with many mathematicians, but he particularly thanks Andy Nicas for dis-
cussions about the mathematics in this paper. The first author acknowl-
edges support from the NSF.

I. Preliminaries

I.1 Notation and linear algebra

We begin by introducing notation and recalling some elementary linear
algebra.
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We often use multi-index notation in this paper, usually without much
comment. If α is an n-tuple of non-negative integers, then we write |α| =∑

αj as usual. We write α! =
∏

αj !. As usual zα =
∏

z
αj

j . Thus super-
scripts are powers, rather than being upper indices. We let T denote the
n-dimensional torus, and we let dθ denote the invariant measure normal-
ized so that

∫
T

dθ = 1. We let θ = (θ1, ..., θn) be an element of T . Thus
eiαθ means

∏
eiαjθj .

It will be important in this paper to distinguish holomorphic polyno-
mials from arbitrary polynomials. To help do so we sometimes write h(z)
when h is holomorphic, and f(z, z) when f is arbitrary. Suppose that g
is a vector-valued holomorphic mapping. We write V(g) = {0} to denote
that the set of common zeroes of the components of g consists of the origin
alone. The most important holomorphic mapping used here is Hd; as men-
tioned in the introduction it is the tensor product of the identity mapping
with itself d times. In coordinates the components of Hd are the monomials
cαzα where |α| = d and |cα|2 = d!

α! of degree d. Note that V(Hd) = {0}.
The components of Hd are a basis for the complex vector space Vd of (holo-
morphic) homogeneous polynomials of degree d in n variables, although we
generally use the monomials without these constants as the standard basis.

Suppose that V is a finite-dimensional complex vector space, that ζ ∈ V ,
and that Q(ζ, ζ) =

∑
µ.ν Qµνζµζν is an Hermitian form. By elementary

linear algebra we can always find vectors Aµ and Bµ so that

(1) Qµν = 〈Aµ, Aν〉 − 〈Bµ, Bν〉.

As a consequence of (1) we see the standard result that

Lemma 1. The Hermitian matrix Q is positive definite if and only if we
have Qµν = 〈Aµ, Aν〉 where the set of vectors {Aµ} form a basis.

Lemma 1 implies the simple but fundamental statement given by Lemma
2.

Lemma 2. Let f =
∑ ∑

cαβzαzβ be a real-valued polynomial that is ho-
mogeneous of degree m in both z and z. Suppose that the underlying Her-
mitian matrix of coefficients cαβ has k+ positive and k− negative eigenval-
ues. Then there are holomorphic vector-valued polynomials P and N , each
homogeneous of degree m, such that

(2) f(z, z) = ||P (z)||2 − ||N(z)||2.

We can always choose P and N to have k+ and k− components respectively.
The underlying matrix of coefficients is positive definite if and only if we
may write

f(z, z) = ||P (z)||2
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where P = THm+d for some invertible linear transformation T . When
the underlying matrix of coefficients is positive definite we also must have
V(P ) = {0}.
Proof. By elementary linear algebra as in (1) we may find vectors so that
cαβ = 〈Aα, Aβ〉 − 〈Bα, Bβ〉. Then we define P by P (z) =

∑
Aαzα and

N by N(z) =
∑

Bαzα. Easy computation then yields (2) and the result
about the number of eigenvalues. The eigenvalues are all positive if and
only if (cαβ) is positive definite. Then the vectors Aα can be chosen to
be linearly independent. Thus the underlying matrix is positive definite if
and only if the matrix (Aβα) is invertible, where we write Aα =

∑
Aβαeβ

in terms of the standard orthonormal basis. This implies the statement
about T as well, because Hm+d includes all monomials of degree m + d.
It remains to prove that V(P ) = {0}. Suppose that there exists w with
P (w) = 0. Then

0 = ||P (w)||2 =
∑

〈Aα, Aβ〉wαwβ = 0.

The underlying Hermitian form then has a non-trivial kernel unless wα

must vanish for all α. Hence, if it is positive definite, the variety must
consist of the origin alone. �
Example 1. When f(z, z) = ||P (z)||2, and V(P ) = {0}, the underlying
form might be only semi-definite. Consider the simple example |z1|4 +
|z2|4. The underlying form is diagonal, with eigenvalues 1, 0, 1. Theorem 1
implies however that we can obtain a positive definite underlying form by
multiplying by the squared norm.

I.2 Positivity conditions

Next we study positivity (away from the origin) of f as a function.
Suppose that f is our given bihomogeneous polynomial, and that f(z, z) >
0 for z �= 0. Simple examples (see example III.2) reveal that the underlying
matrix of coefficients can have eigenvalues of both signs, so the Hermitian
form on Vm defined by this matrix need not be positive. Nevertheless the
positivity of f as a function has many consequences.

By compactness there is an ε > 0 such that f(z, z) ≥ ε on the unit
sphere. By homogeneity we have

(3) f(z, z) ≥ ε||z||2m

everywhere. Now let the torus T act on the sphere. This implies that, for
all θ,

(4) g(θ) =
∑

cαβzαzβeiθ(α−β) ≥ ε||z||2m
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as well. Integrating over the torus reveals that
∑

cαα|z|2α ≥ ε||z||2m holds.
To obtain more general inequalities we define Aµν by

Aµν(z, z) = Aµν =
∑

β

c(β+µ−ν)βzβ+µ−νzβ

Note that Aµν(z, z) =
∫

T
e−i(µ−ν)θg(θ)dθ.

Proposition 1. Suppose that (3) holds. For all non-zero z the matrix Aµν

is positive definite and its minimum eigenvalue is at least ε||z||2m.

Proof. We estimate
∑

Aµνζµζν as follows.

∑
Aµνζµζν =

∑ ∫
T

ζµζνe−i(ν−µ)θg(θ)dθ

=
∫

T

|
∑

µ

e−iµθζµ|2g(θ)dθ

≥
∫

T

ε||z||2m|
∑

µ

e−iµθζµ|2dθ

= ε||z||2m

∫
T

|
∑

µ

e−iµθζµ|2dθ

= ε||z||2m||ζ||2.

The inequality comparing the first and last expression proves the proposi-
tion. �

Next we make a simple observation that will enable us to relate these
matrices to values of f .
Observation. Let µ and α be multi-indices, and suppose that |α| = m.
Then there is a polynomial pm−1 on Rn of degree m−1 such that 1

(µ−α)! −
µα

µ! = pm−1(µ)
µ! . Hence there is a constant C > 0 so that | 1

(µ−α)! −
µα

µ! | <

C |µ|m−1

µ! .
Proposition 2. Given ε > 0, there is an N0 so that |µ| > N0 implies that

| 1
(µ − α)!

− µα

µ!
| < ε|µ|m

Proof. This follows immediately from the observation and the definition of
the limit, applied to lim|µ|→∞

pm−1(µ)
|µ|m = 0. �
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I.3 Elementary Hilbert space considerations

We now recall some facts about the Hilbert space of holomorphic square
integrable functions on the unit ball Bn. First of all, the Bergman kernel
function K(z, ζ) for a bounded domain Ω is the kernel of the integral op-
erator that projects the square integrable functions L2(Ω) onto the closed
subspace A2(Ω) of holomorphic square integrable functions. It satisfies
K(z, ζ) =

∑
φα(z)φα(ζ) where {φα} is a complete orthonormal set for

A2(Ω). For the unit ball (and a few other domains) normalized monomials
form such a complete orthonormal set and the series can be summed explic-
itly. For the unit ball Bn the result is that K(z, ζ) = n!

πn (1− 〈z, ζ〉)−(n+1).
We can decompose A2 = A2(Bn) as an orthogonal sum A2(Bn) =

∑
Vk

where Vk is the subspace of holomorphic homogeneous polynomials of de-
gree k.

We say that a linear operator T : L2 → L2 is positive if there is a positive
number c so that 〈Tg, g〉 ≥ c〈g, g〉. Here the inner product is the usual one
given by integration.

Lemma 3. Suppose that (cαβ) is the matrix of an Hermitian form on Vm.
Let f(z, ζ) =

∑
cαβzαζ

β
be the corresponding bihomogeneous polynomial.

Let R : A2 → A2 be the operator defined by

Rg(z) =
∫

Bn

f(z, ζ)g(ζ)dV (ζ).

Then R is the zero operator on V ⊥
m and R maps Vm to itself. Furthermore

(cαβ) is positive definite if and only if the operator R is positive on Vm.

Proof. We expand g as a convergent power series, writing g(ζ) =
∑

gγζγ .
We compute

Rg(z) =
∫ ∑

α,β

∑
δ

cαβzαζ
β
gδζ

δdV (ζ).

By the orthogonality of the monomials in A2(Bn) we get zero unless β = δ.
This yields

Rg(z) =
∑
α,β

cαβzαgβ ||zβ ||2A2

and hence proves the first statement. Writing dα = ||zα||2A2 , we see that

〈Rg, g〉 =
∫ ∫ ∑

α,β

∑
γ,δ

cαβzαζ
β
gδζ

δgγzγdV (z)dV (ζ) =
∑
α,β

cαβdαdβgαgβ .
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Thus, as a form on Vm, R has underlying matrix (cβαdαdβ). This is
positive if and only if (cαβ) is, because of Lemma 1, and because the dα

are positive numbers. �

We continue to let f =
∑

cαβzαζ
β

be our given bihomogeneous polyno-
mial. Let Rk+m denote the operator on A2(Bn) whose kernel is
〈z, ζ〉kf(z, ζ). The main point of Theorem 1 is to show that f positive
as a function implies for sufficiently large d that ||z||2df(z, z) has a positive
definite underlying form. By Lemma 3, it suffices to show that Rd+m is a
positive operator on Vm+d for sufficiently large d.

II. Statement and proof of Theorem 1

We are now prepared to give equivalent conditions for the positivity of a
homogeneous polynomial on the sphere. Theorem 1 is the principal result
of this paper.

Theorem 1. Let f(z, z) =
∑ ∑

cαβzαzβ be a real-valued polynomial that
is homogeneous of degree m in z and also in z. The following are equivalent.

1) f achieves a positive minimum value on the sphere.
2) There is an integer d such that the underlying Hermitian matrix for

||z||2df(z, z) is positive definite. Thus

||z||2df(z, z) =
∑

Eµνzµzν

where (Eµν) is positive definite.
3) There is an integer d such that the operator Rm+d defined by the

kernel kd(z, ζ) = 〈z, ζ〉df(z, ζ) is a positive operator from Vm+d ⊂ A2(Bn)
to itself.

4) There is an integer d and a holomorphic homogeneous vector-valued
polynomial g of degree m + d such that V(g) = {0} and such that
||z||2df(z, z) = ||g(z)||2.

5) Write f(z, z) = ||P (z)||2 − ||N(z)||2 for holomorphic homogeneous
vector-valued polynomials P and N of degree m. Then there are an integer
d and a linear transformation L such that the following are true:

5. 1) I − L∗L is positive semi-definite.
5. 2) Hd ⊗ N = L(Hd ⊗ P ).
5. 3) V(

√
I − L∗L(Hd ⊗ P )) = {0}.

Proof. The hard implication is that 1) implies 3), so we do this last. It
follows immediately from Lemma 3 that 2) and 3) are equivalent. We next
observe that 2) implies 4), immediately from Lemma 1. To prove that
2) implies 5), we recall that ||g ⊗ h||2 = ||g||2||h||2 and also that ||z||2d =
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||Hd(z)||2. We plug these into ||g(z)||2 = ||z||2d(||P (z)||2−||N(z)||2), which
is part of the hypothesis. After moving terms we obtain

||Hd ⊗ N ||2 + ||g||2 = ||Hd ⊗ P ||2.

Thus (Hd ⊗ N) ⊕ g and Hd ⊗ P are holomorphic mappings with the same
squared norms. Hence, see [D1], after perhaps including enough zero com-
ponents, there is a constant unitary matrix U such that (Hd ⊗ N) ⊕ g =
U(Hd ⊗ P ). Writing this matrix in terms of blocks, one of which is L, we
obtain submatrices L and

√
I − L∗L such that 5.1), 5.2), and 5.3) hold.

Notice that we obtain the formula that g =
√

I − L∗L(Hd ⊗ P ). Thus 4)
and 5) are equivalent, without passing through 1).

That 5) implies 1) is also easy. Given 5), define g by g =
√

I − L∗L(Hd⊗
P ). Then 5.2) and the definition of f imply that

||z||2d||N(z)||2 + ||g(z)||2 = ||z||2d||P (z)||2.

We see immediately that, on the sphere, ||N(z)||2 + ||g(z)||2 = ||P (z)||2.
Recalling that f(z, z) = ||P (z)||2 − ||N(z)||2, we see that the minimum
value of f on the sphere equals the minimum value of g on the sphere,
which is positive because V(g) = {0} by 5.3).

Thus the theorem follows if we can show that 1) implies 3). Let S be
the operator on A2 whose kernel is K(z, ζ)f(z, ζ). We claim that there are
positive constants cj,n such that cj,nRj equals the restriction of S to Vj .
The orthogonality of the spaces Vj shows that Rj is the zero operator off
Vj . Therefore the power series expansion

(1 − 〈z, ζ〉)−n−1 =
∑ (

j + n

j

)
〈z, ζ〉j

implies the claim. To prove that Rd+m is a positive operator on Vm+d for
sufficiently large d, it therefore suffices to prove that the operator S has
only finitely many non-positive eigenvalues.

It remains only to show that 〈Sg, g〉 ≥ c||g||2A2 for g ∈ Vj for sufficiently
large j. We introduce the operator T on L2, whose kernel is K(z, ζ)f(z, z).
Then we have

〈Tg, g〉 =
∫ ∫

K(z, ζ)f(z, z)g(z)g(ζ)dV (ζ)dV (z) =
∫

f(z, z)|g(z)|2dV (z)

by the reproducing property of the Bergman kernel. If we now introduce a
cut-off function φ that is positive at the origin, and invoke the positivity of
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f as a function, we obtain that 〈(T + φ)g, g〉 ≥ c||g||2L2 . Here φ is smooth,
non-negative, positive at the origin, and has compact support in the ball.

Next we write the operator equation S = (T + φ) + (E − φ) where
E = S − T . We observe that the kernel of E vanishes at z = ζ. Since
this compensates for the singularity of K(z, ζ) at z = ζ on the boundary
of the ball, E is a compact operator. Since φ is smooth and compactly
supported we also have that E − φ is a compact operator. Since E − φ is
a compact operator on L2, we can approximate it in norm by an operator
L with finite-dimensional range. See [Ru] (pages 97-107) for the necessary
statements about compact operators. We write |||L||| for the operator norm
of L.

Then S = (T +φ)+(E−φ−L)+L. Write Lj for the restriction of L to
Vj . Because L has finite-dimensional range, |||Lj ||| < c/3 for j sufficiently
large. Also we may assume that |||E − φ − L||| < c/3. Therefore, on Vj

for sufficiently large j, the operator S is a small perturbation of T + φ.
Therefore S is also a positive operator on Vj for sufficiently large j. Hence
S has only finitely many non-positive eigenvalues, so Rd+m is a positive
operator on Vm+d for d sufficiently large. This proves that 1) implies 3)
and completes the proof. �

The proof of Theorem 1 doesn’t give a value for d; the value of d is
useful because it is closely related to the embedding dimensions of mappings
discussed in the next section, and because there is interest in the analogous
exponent in the classical theorem of Polya [R]. We therefore relate the
numbers Eµν to the numbers cαβ and to the matrices Aµν from Proposition
1.

Corollary 1. Let f(z, z) =
∑

cαβzαzβ be a bihomogeneous polynomial
that is positive away from the origin. There is an integer N such that the
matrix Lµν defined for |µ| = |ν| = N by

Lµν =
∑

α−β=µ−ν

cαβ(
µ

|µ| )
α(

ν

|ν| )
β

is positive definite. Similarly there is an integer N ′ so that the matrix

Aµν(
√

ν

|ν| ,
√

ν

|ν| ) =
∑

α−β=µ−ν

cαβ(
ν

|ν| )
α+β

is positive definite when |µ| = |ν| = N ′.

Proof. For each positive integer d we write Eµν(d) for the underlying matrix
of coefficients for the function

||z||2df(z, z).
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Then the multinomial expansion and interchange of summation yields

Eµν(d) = d!
∑

α−β=µ−ν

cαβ
1

(µ − α)!(ν − β)!
.

We put |µ| = |ν| = N and rewrite using the observation to get

Eµν(d) =
N !

Nm + pm−1(N)

∑
α−β=µ−ν

cαβ(µα + pm−1(µ))(νβ + pm−1(ν))
1√
µ!ν!

.

Next we multiply and divide by Nm to get

Eµν(d) =
N !√

µ!ν!(1 + O(1/N))

∑
α−β=µ−ν

cαβ(
µ

|µ| + O(1/N))α(
ν

|ν| + O(1/N))β .

Theorem 1 implies that this matrix is positive definite when d is suffi-
ciently large. By Lemma 1 we do not alter the positive definiteness if we
divide by N !√

µ!ν!
, obtaining

(5)

Dµν(d) =
1

(1 + O(1/N))

∑
α−β=µ−ν

cαβ(
µ

|µ| + O(1/N))α(
ν

|ν| + O(1/N))β .

Now it is clear that, for sufficiently large |N |, the matrix (5) is positive
definite if and only if

∑
α−β=µ−ν

cαβ(
µ

|µ| )
α(

ν

|ν| )
β

is positive definite. This proves the first statement.
To prove the second, replace µ by µ = ν + α − β in the term ( µ

|µ| +
O(1/|N |))α arising in (5). Since the multi-indices α and β have fixed length
m, we see that µ+α−β

|µ| can be also written as ν
|ν| + O(1/N). Thus the

matrix Aµν(
√

ν
|ν| ,

√
ν
|ν| ) is also positive definite for sufficiently large N .

This proves the Corollary. �
Observe that Proposition 1 guarantees that Aµν(z, z) is positive defi-

nite for each z. In Corollary 1 however the entries are evaluated at points
depending on the indices. Corollary 1 enables one to obtain quantitative in-
formation on the integer d without explicitly performing the multiplication
by ||z||2d, but we do not develop this reasoning further here.
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III. Examples and applications

We first observe that the smallest possible value of the integer d from
Theorem 1 can be arbitrarily large.
Example 2. Consider the one parameter family of polynomials pc on C2

with variables (z, w) defined by

pc(z, w, z, w) = |z|4 + |w|4 − c|zw|2.

Here c is a real number. Then pc is positive on the sphere if and only
if c < 2. The original underlying matrix is diagonal, with eigenvalues of
1,−c, 1. After multiplying through by (|z|2+ |w|2)d we also obtain diagonal
matrices Ld of size d + 3 by d + 3. If we let d(c) denote the minimum d for
which Ld is positive definite, then we compute that d(c) > (3c− 2)/(2− c)
and hence that limc→2 d(c) = ∞.

This example indicates that the computations from Theorem 1 are easier
when the original underlying matrix is diagonal. In fact this special case is
equivalent to the theorem of Polya [HLP]. Polya began with a homogeneous
polynomial in several real variables, assumed to be positive on the positive
part of the hyperplane defined by |x| =

∑
xj = 1. He proved that there is

an integer d so that
|x|dp(x) = q(x)

where all the coefficients of q are positive. The value of this theorem is that
p is then expressed as a quotient of polynomials with positive coefficients.
When the underlying matrix of coefficients is diagonal, Theorem 1 implies
Polya’s theorem, and conversely. The correspondence between them is
given by writing xj = |zj |2 and observing that a diagonal matrix is positive
definite if and only if all the diagonal elements are positive. Our proof of
Theorem 1 yields a new proof of Polya’s theorem. On the other hand the
computations in Corollary 1 yield a direct proof, which we include now.

Proof of Polya’s theorem

Put f(x) =
∑

cαxα. Then

|x|df(x) = d!
∑

µ

(
∑
α

cα

(µ − α)!
)xµ.

By the observation we can write the coefficient of xµ as

d!
µ!

(f(µ) + pm−1(µ))
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Suppose that f(µ) ≥ ε|µ|m. By Proposition 2 we can choose |µ| sufficiently
large that |pm−1(µ)| < ε

2 |µ|m. Then f(µ)+pm−1(µ) > ε
2 |µ|m and the result

follows. �
Remark 1. The theorem fails in the positive semi-definite case. In other
words, the following is true. There exist real-valued polynomials f(z, z)
that are non-negative as functions, and for which the underlying Hermitian
form for ||z||2df(z, z) has a negative eigenvalue for every d. One example
is |z|4 − 2|zw|2 + |w|4 = (|z|2 − |w|2)2.

Next we give a concrete corollary obtained by applying the theorem
when n = 2. Suppose that C = (cab) is a Hermitian symmetric matrix
of size m + 1. We define a new matrix E(C) by the following operation:
E(C) = C ⊕ 0 + 0 ⊕ C. This means that we augment C by including a
leading row and column of zeroes, augment C by including a last row and
column of zeroes, and add the two matrices to get a Hermitian symmetric
matrix of size m + 2. Then Theorem 1 gives a necesssary and sufficient
condition for there to be an integer d for which Ed(C) is positive definite.

Corollary 2. There is an integer d for which Ed(C) is positive definite if
and only if

∑m
a=0

∑m
b=0 cabt

at
b

> 0 for all non-zero complex numbers t.

Proof. Replace t by z/w in the given condition, and multiply through by
|w|2m. The condition then becomes

m∑
a=0

m∑
b=0

cabz
awm−azbwm−b > 0.

Thus we have a bihomogeneous polynomial in two variables. On the
other hand, the operation E is easily seen to be equivalent to multiplying
the function defining the underlying matrix of coefficients by |z|2 + |w|2,
and recomputing the underlying matrix of coefficients of the product. Thus
the result follows from Theorem 1. �

It may be worth remarking that the special case of Corollary 2 when
the matrix is diagonal is a version of the Polya theorem for inhomogeneous
polynomials in one variable.

IV. Applications to proper mappings between balls

We give several applications to proper mappings between balls. We
consider two questions. First, suppose that p : Cn → Ck is a (holomorphic)
polynomial mapping and that ||p(z)|| < 1 for all z in the closed unit ball.
We will show that p consists of some of the components of a proper mapping
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from Bn to some BN . We prove in Theorem 2 that there is a positive integer
N − k and a polynomial mapping g : Cn → CN−k such that p ⊕ g is the
required mapping. In Theorem 4 we suppose that q is a given polynomial
function with q(0) = 0 and that |q(z)| < 1 on the closed ball. We prove
that there is a rational proper mapping, reduced to lowest terms, with
denominator 1 + q.

Theorem 2. Suppose that p is a homogeneous vector-valued polynomial on
Cn and that ||p(z)||2 < 1 on the unit sphere. Then there is a polynomial
mapping g such that p ⊕ g defines a proper holomorphic mapping between
balls.

We derive Theorem 2 from the following related result.

Theorem 3. . Suppose that f(z, z) is a real-valued polynomial of de-
gree m (not necessarily homogeneous), and that f(z, z) > 0 on the unit
sphere. Then there is a (holomorphic) polynomial mapping g with finite-
dimensional range such that f(z, z) = ||g(z)||2 on the unit sphere.

Proof of Theorem 2 assuming Theorem 3. The result is obvious if p is a
constant. Given a non-constant p, we consider f(z, z) = ||z||2m − p(z, z).
Then f satisfies the hypotheses of Theorem 3, so that f(z, z) = ||g(z)||2 on
the sphere for some g. Then p⊕g is a non-constant holomorphic polynomial
mapping whose squared norm ||p||2 + ||g||2 equals unity on the sphere. By
the maximum principle p ⊕ g is the required mapping. �
Proof of Theorem 3. We are given that f is degree m in both z and z, so of
total degree 2m. We may assume that m is even, because we may replace
f by ||z||2f otherwise without changing the hypothesis on f . Given f =∑

|α|
∑

|β| cαβzαzβ , we homogenize it by adding a new complex variable t,
and put

F (z, t, z, t) =
∑
α

∑
β

cαβzαtm−|α|zβt
m−|β|

.

Since F (z, eiθ, z, e−iθ) = f(ze−iθ, zeiθ), we see that F is positive when both
||z||2 = 1 and |t|2 = 1. By homogeneity we then have

F (z, t, z, t) ≥ c(||z||2 + |t|2)m

on the set ||z||2 = |t|2. We can therefore choose a constant C so that, away
from the origin (0, 0),

F (z, t, z, t) + C((||z||2 − |t|2)m > 0.

By Theorem 1, applied when the domain dimension is one larger, there
is an integer d and a holomorphic polynomial mapping g such that
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(8) (||z||2 + |t|2)dF (z, t, z, t) + C((||z||2 − |t|2)m = ||g(z, t)||2.

Setting t = 1 to dehomogenize (8), we see that

(9) (||z||2 + 1)df(z, z) + C((||z||2 − 1)m = ||g(z, 1)||2.

It follows immediately from (9) that 2df(z, z) = ||g(z, 1)||2, so Theorem 3
follows. �
Remark. Theorem 2 is easier when p is homogeneous. One then applies
Theorem 1 directly to the form by f(z, z) = ||z||2m−||p(z)||2. By statement
2) there is an integer d and a holomorphic mapping g such that

||g||2 = ||z||2d(||z||2m − ||p(z)||2).

The holomorphic mapping g ⊕ p then satisfies

||p⊕ g||2 = ||p||2 + ||g||2 = ||p||2 + ||z||2d||p||2 = ||z||2(m+d) = ||Hm+d||2 = 1

on the unit sphere.

Remark. Lempert [L1, L2] has proved an analog of Theorem 3 for functions
extending holomorphically past the boundary of any strongly pseudocon-
vex domain whose boundary is real-analytic. Løw [L] proved an analog
of Theorem 3 for functions holomorphic on a smoothly bounded strongly
pseudoconvex domain that extend continuously up to the boundary. For
the particular case of the ball his result gives a version of Theorem 2.
The mapping g he obtains will be finite-dimensionally valued, but not a
polynomial. We repeat for emphasis that we obtain in Theorems 2 and 3
holomorphic polynomial mappings g with finite-dimensional ranges.

We consider briefly the consequences that p ⊕ g is a proper mapping
between balls when p is a vector-valued polynomial of degree m. Then
||p(z)||2 + ||g(z)||2 = 1 on the sphere. We write p =

∑m
k=0 pk for the

decomposition of p into its homogeneous parts and similarly for g. The
tensor product operation enables us to homogenize. We have the equation
(on the sphere)

m+d∑
k=0

〈gk, gl〉 + 〈pk, pl〉 = ||z||2(m+d).

Replace z by eiθz, where now θ is on the circle. We obtain the following
equations on the sphere:∑

(||gk||2 + ||pk||2) = ||z||2(m+d)
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when we consider the constant term, and
∑

(〈gl+s, gl〉 + 〈pl+s, pl〉) = 0

for s �= 0, when we equate Fourier coefficients. As in [D2] we can ho-
mogenize these equations by tensoring each gk or pk with Hm+d−k. We
obtain∑

k

(||Hm+d−k ⊗ gk||2 + ||Hm+d−k ⊗ pk||2) = ||z||2(m+d) = ||Hm+d||2

from the constant term, and for s �= 0, the equations (10),

(10)∑
l

(〈Hm+d−l ⊗ gl+s, Hm+d−l ⊗ gl〉 + 〈Hm+d−l ⊗ ql+s, Hm+d−l ⊗ ql〉) = 0.

Hence the conclusion of Theorem 2 implies additionally that g satisfies
all these orthogonality relations. In Proposition 1 from [D2], we are given
an orthogonal direct sum of monomials of degree at most m − 1. We can
find a monomial of degree m that makes the entire expression into a proper
mapping between balls, provided a certain form is positive semi-definite.
Theorem 2 reveals that the orthogonality conditions are not needed.

We next prove the theorem about allowable denominators.

Theorem 4. Suppose that q is a holomorphic polynomial that satisfies
q(0) = 0 and |q| < 1 on the unit ball in Cn. Then there is some N and
a polynomial mapping p : Cn → CN such that p

1+q is a proper rational
mapping between balls that is reduced to lowest terms.

Proof. Since |q| < 1 on the sphere, for sufficiently small positive ε, |(1 +
ε)q| < 1 there as well. By Theorem 2 (1 + ε)q is a component of a proper
polynomial mapping q⊕ g between balls. We consider an automorphism of
the target ball (See [D1] for example) of the form φa(w) = w−La(w)

1−〈w,a〉 , where
a = −1

1+ε ⊕ 0. Then the composition φa(q ⊕ g) has denominator 1 + q. By
considering the numerator it is easy to prove that the map constructed in
this manner is reduced to lowest terms, in the sense that 1 + q does not
divide all the components of the numerator. �

Observe that the dimension N depends on how close q gets to unity.
Wono Setya-Budhi [W] proved Theorem 4 in the special case when q is a
monomial.

In this paper we have considered forms defined by polynomials. This
enables us also to consider rational mappings. The reader may wonder
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whether this may be too restrictive. Our results about proper mappings
apply rather generally, because of a theorem of Forstneric. [F]. Suppose that
the domain dimension is at least two, and that f is a proper holomorphic
mapping between balls. If f is smooth (of class C∞) on the closed ball, then
f must be a rational mapping. For rational mappings p

q we consider the
Hermitian form defined by ||p||2−|q|2 and the methods of this paper apply.
We hope to find further applications of these ideas to rational mappings.

Finally we remark on a geometric way to view Theorem 1. Consider
the polynomial mapping from Cn to CN defined by ζα(z) = zα. Here we
assume that N equals the dimension of the space of homogeneous poly-
nomials of degree m in n variables. The image of this mapping is an
algebraic variety called the Veronese variety Mm,n. Our theorem has the
following reformulation. Suppose that Q is an Hermitian form on CN , and
that Q(ζ, ζ) is positive for all ζ ∈ Mm,n except the origin. By example 2,
Q need not be positive everywhere. There is however a Veronese variety
Md+m,n of higher degree and an Hermitian form EdQ on it, defined by the
process of multiplying the corresponding function by ||z||2d and taking the
underlying matrix of coefficients, such that the form is positive not only on
Md+m,n, but on the entire space (except the origin). A moment’s thought
shows that both conditions are open. Thus the theorem remains true for
varieties close to the Veronese. We can think of the Veronese manifold as a
testing manifold for positivity. This suggests that there is a generalization
of Theorem 1 to more general testing manifolds for positivity.
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