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FOUR-MANIFOLDS WITHOUT EINSTEIN METRICS

Claude LeBrun

Abstract. It is shown that there are infinitely many compact simply con-
nected smooth 4-manifolds which do not admit Einstein metrics, but nev-
ertheless satisfy the strict Hitchin-Thorpe inequality 2χ > 3|τ |. The exam-
ples in question arise as non-minimal complex algebraic surfaces of general
type, and the method of proof stems from Seiberg-Witten theory.

1. Introduction

A smooth Riemannian metric g is said to be Einstein if its Ricci curva-
ture r is a constant multiple of the metric:

r = λg.

Not every 4-manifold admits such metrics. A necessary condition for the
existence of an Einstein metric on a compact oriented 4-manifold is that
the Hitchin-Thorpe inequality 2χ(M) ≥ 3|τ(M)| must hold [8, 26, 4].
Moreover, equality can hold only if M manifold is finitely covered by a
torus or K3 surface. We will say that M satisfies the strict Hitchin-Thorpe
inequality if 2χ(M) > 3|τ(M)|.

The purpose of this note is to prove the following result:

Theorem A. There are infinitely many compact simply connected smooth
4-manifolds which do not admit Einstein metrics, but nevertheless satisfy
the strict Hitchin-Thorpe inequality.

The examples we shall consider arise as non-minimal complex surfaces
of general type. The proof hinges on scalar curvature estimates that come
from Seiberg-Witten theory.

2. Scalar curvature and topology

In this section, we will develop a new lower bound for the L2-norm
of the scalar curvature of Riemannian metrics on a non-minimal complex
surfaces of general type. Let us begin by reviewing some definitions and
results.
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Definition 1. Let M be a smooth compact oriented 4-manifold. A polar-
ization of M is a linear subspace H+ ⊂ H2(M, R) on which the restriction
of the intersection form is positive-definite, and which is a maximal sub-
space with this property.

The example of interest is the following: let g be a Riemannian metric,
and let H+(g) be the space of harmonic self-dual 2-forms with respect to
g. Then H+(g) is a polarization. If H+ is a given polarization, and if
H+(g) = H+, we will say that g is adapted to H+.

If J is an orientation-compatible almost-complex structure on M , J
induces a spinc-structure c on M , and for every metric g one then has a
pair of rank-2 complex vector bundles V± which formally satisfy

V± = S± ⊗ L1/2,

where S± are the left- and right-handed spinor bundles of g, and L is the
anti-canonical line bundle of J . For each unitary connection θ on L, we
have a Dirac operator Dθ : C∞(V+) → C∞(V−), and one can then consider
the Seiberg-Witten equations [30]

DθΦ = 0
F+

θ = iσ(Φ)

for an unknown section Φ of V+ and an unknown unitary connection θ.
Suppose that H+ is a polarization such that the orthogonal projection
c+ of c1(L) into H+ is non-zero. Let g be any H+-adapted metric, and
consider the moduli space of solutions of a generic perturbation of the
Seiberg-Witten equations modulo gauge equivalence. This moduli space
consists of a finite number of oriented points, and the Seiberg-Witten in-
variant nc(M, H+) is defined to be the number of points in this moduli
space, counted with signs. This is independent of all choices. Indeed, if
b+(M) > 1, it is even independent of H+.

A Weitzenböck argument yields the following curvature estimate [15]:

Theorem 1. Let (M, H+, c) be a smooth compact oriented polarized 4-
manifold with spinc structure such that nc(M, H+) �= 0. If c1(L) ∈
H2(M, R) is the anti-canonical class of this spinc structure, let c+

1 be its
orthogonal projection to H+ with respect to the intersection form. Then
every H+-adapted Riemannian metric g satisfies∫

M

s2 dµ ≥ 32π2(c+
1 )2.

If c+
1 �= 0, moreover, equality occurs iff g is Kähler with respect to a c-

compatible complex structure and has constant negative scalar curvature.
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Now if (M, J) is a complex surface of Kähler type with b+ > 1, and
if c is the spinc structure induced by J , then nc(M, H+) = nc(M) = 1.
For complex surfaces with b+ = 1, the picture is more complicated, but
can be summarized as follows. The set of classes α ∈ H2(M, R) with
α2 := α · α > 0 consists of two connected components. One component
contains the Kähler classes of all Kähler metrics on M ; let us call the
elements of this component future pointing, and the elements of the other
past-pointing. Then nc(M, H+) = 1 whenever c+

1 is past-pointing; by
contrast, if b1(M) = 0, then nc(M, H+) = 0 whenever c+

1 is future pointing
[6, 12].

We now come to the technical heart of the article:

Theorem 2. Let X be a minimal complex algebraic surface of general
type, and let M = X#kCP 2 be obtained from X by blowing up k > 0
points. Then any Riemannian metric on M satisfies∫

M

s2dµ > 32π2(2χ + 3τ + k),

where χ and τ are respectively the Euler characteristic and signature of
M .

Proof. Let us think of M concretely as obtained from X by blowing up k
distinct points p1, . . . , pk, so that M comes equipped with an integrable
complex structure J . The key observation [6] is that instead of merely
considering this complex structure alone, it is natural to consider 2k dis-
tinct complex structures, each of which is the pull-back of J via a dif-
feomorphism M → M . To this end, choose a biholomorphism between a
neighborhood of pj ∈ X and the unit ball in C

2 = R
4. Let ψj : X → X

be the identity outside this neighborhood, and act by


1 0 0 0
0 cos πu(#) 0 − sin πu(#)
0 0 1 0
0 sinπu(#) 0 cos πu(#)




on the ball itself; here # is the distance from the origin in R
4, and the

smooth function u satisfies u(#) ≡ 1 for # ≤ 1
3 and u(#) ≡ 0 for # ≥

2
3 . Since ψj is complex anti-linear in a neighborhood of pj , it induces
a diffeomorphism ϕj : M → M . Assuming that the neighborhoods in
question are pairwise disjoint, the ϕj ’s commute with each other, and if
S ⊂ {1, . . . k} is any subset, we may therefore unambiguously define ϕS to
be the composition of those ϕj ’s for which j ∈ S. Now JS = ϕ∗

SJ is an
integrable complex structure on M for each S ⊂ {1, . . . k}; for example,
J∅ = J .
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Let c1(X) denote the pull-back to M of the first Chern class of X via
the blowing-down map M → X, and let E1, . . . , Ek be the Poincaré duals
of the exceptional divisors corresponding to p1, . . . , pk. The first Chern
class of T 1,0

JS
M is then

c1(M, JS) = c1(X) +
∑

εj ,

where

εj =
{

Ej if j ∈ S
−Ej if j �∈ S.

If g is any Riemannian metric on M , the projection of c1(M, JS) into
the space H+(g) ⊂ H2(M, R) of self-dual harmonic 2-forms is therefore
c1(M, JS)+ = c1(X)+ +

∑
ε+j . (Note that c1(X)2 = c2

1(X) > 0, so that
c+
1 �= 0.) Now choose S so that

c1(X)+ · ε+j ≥ 0.

If c is the spinc structure associated with this choice of S, the Seiberg-
Witten invariant of (M, H+, c) is non-zero [6], and Theorem 1 tells us
that

1
32π2

∫
M

s2dµ ≥ (c1(M, JS)+)2

= (c1(X)+ +
∑

ε+j )2

= (c1(X)+)2 + 2
∑

(c1(X)+ · ε+j ) + (
∑

ε+j )2

≥ (c1(X)+)2

≥ (c1(X))2 = c2
1(X)

= 2χ + 3τ + k

because the intersection form is positive-definite on H+ = H+(g).
Now suppose we have a metric g for which this inequality is actually

an equality. Then each of the inequalities in the above calculation is an
equality, and Theorem 1, applied to the first of these, tells us that g is
Kähler with respect to a complex structure Jg compatible with c, and hence
satisfying c1(M, Jg) = c1(M, JS). By the same reasoning, (

∑
ε+j )2 = 0,

and hence
∑

ε+j = 0. In particular, c1(M, JS)+ = c1(M, JS̃)+, where
S̃ = {1, . . . , k} − S, so, even if b+ = 1, the Seiberg-Witten invariant of
(M, H+, c̃) is also non-zero, where c̃ is the spinc structure determined by
JS̃ . But since c+

1 (JS̃) = c+
1 (JS), Theorem 1 also tells us that g is Kähler

with respect to an orientation-compatible complex structure J̃g such that
c1(M, J̃g) = c1(M, JS̃); and c1(M, JS̃) �= c1(M, JS), so Jg �= J̃g. Hence g
has holonomy in SU(2), and so is hyper-Kähler. But this implies [4] that
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g is Ricci-flat, and so has s ≡ 0. But since c+
1 �= 0, Theorem 1 guarantees

that g has negative scalar curvature, and this contradiction shows that our
assumption was therefore false; the inequality is always strict.

3. Einstein metrics

Theorem 3. Let X be a minimal complex algebraic surface of general
type, and let M = X#kCP 2 be obtained from X by blowing up k > 0
points. If k ≥ 2

3c2
1(X), then M does not admit Einstein metrics.

Proof. For any Riemannian metric g on M , one has the generalized Gauss-
Bonnet formula

2χ + 3τ =
1

4π2

∫
M

(
2|W+|2 +

s2

24
− | ◦

r |2
2

)
dµ

where s,
◦
r, and W+ are respectively the scalar, trace-free Ricci, and self-

dual Weyl curvatures of g; pointwise norms are calculated with respect to
the metric, and dµ is the metric volume form. If g is an Einstein metric,
◦
r= 0, and Theorem 2 therefore implies that

c2
1(X) − k = 2χ + 3τ =

1
4π2

∫
M

(
2|W+|2 +

s2

24

)
dµ

>
32π2

4 · 24π2
(2χ + 3τ + k)

=
1
3
c2
1(X),

so that
2
3
c2
1(X) > k,

contradicting our assumption. Hence M cannot admit an Einstein met-
ric.

Our main result now follows.

Theorem A. Even up to homeomorphism, there are infinitely many
smooth simply connected compact 4-manifolds which do not admit Ein-
stein metrics, but nonetheless satisfy the strict Hitchin-Thorpe inequality.

Proof. If X is any minimal complex surface of general type with c2
1 ≥ 3,

there is then at least one integer k satisfying c2
1 > k ≥ 2

3c2
1. Because of the

Miyaoka-Yau inequality χ ≥ 3τ , the complex surface M = X#kCP 2 then
automatically satisfies the strict Hitchin-Thorpe inequality 2χ > 3|τ |, but
does not admit Einstein metrics by Theorem 3.
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The oriented-homeomorphism invariant b+ is invariant under blowing
up, so it suffices to produce a sequence of simply connected minimal sur-
faces Xj of general type with c2

1 ≥ 3 such that the sequence of integers
b+(Xj) is increasing. One such sequence is given by the Fermat sur-
faces wm + xm + ym + zm = 0 of degree m = j + 4, with b+(Xj) =
1 + (j + 1)(j + 2)(j + 3)/3.

4. The symplectic case

In order to keep our discussion as concrete and elementary as possible,
we have thus far assumed that our 4-manifolds arose as compact complex
surfaces. The proof of Theorem 2, however, only depends on the non-
vanishing of certain Seiberg-Witten invariants of M = X#kCP 2. Now
if X admits a symplectic structure, the symplectic blow-up construction
of McDuff [18] supplies a family of such structures on M , and a result of
Taubes [23] then provides us with the non-vanishing invariants we need to
prove the following:

Theorem 4. Let (X, ω) be a symplectic manifold, and let M = X#kCP 2.
If b+(X) = 1, assume that c1(X) · [ω] < 0. Then any Riemannian metric
on M satisfies ∫

M

s2dµ > 32π2c2
1(X).

Here, of course, c1(X) is the first Chern class of an almost-complex struc-
ture adapted to the symplectic structure. The assumption that c1(X) ·
[ω] < 0 if b+ = 1 is needed to compensate for the fact that Taubes’ proof
involves large perturbations of the Seiberg-Witten equations, whereas the
relevant scalar curvature estimates stem from the unperturbed equations.

This immediately yields a generalization of Theorem 3:

Theorem 5. Let (X, ω) be a symplectic manifold, and let M = X#kCP 2.
If b+(X) = 1, assume that c1(X) · [ω] < 0. If k ≥ 2

3c2
1(X), then M does

not admit an Einstein metric.

Of course, this is a trivial consequence of the Hitchin-Thorpe inequality
unless c2

1(X) > 0. On the other hand, it is unnecessarily weak if X is itself
the blow-up of another symplectic manifold. In analogy with the Enriques-
Kodaira classification, it is therefore natural to introduce a definition which
characterizes the natural setting for applications of these results:

Definition 2. A minimal symplectic 4-manifold (X, ω) is of general type
if

: (a) c2
1(X) > 0; and

: (b) c1(X) · [ω] < 0.
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A symplectic 4-manifold of general type is defined as an iterated symplectic
blow-up of such a minimal symplectic manifold of general type.

If b+ > 1, Taubes [24, 25] has shown that condition (b) is automatic
and that (a) fails only for minimal symplectic manifolds with c2

1 = 0.
Minimal manifolds of the latter type may be considered to be symplectic
generalizations of elliptic surfaces.

5. Yamabe constants and minimal volumes

Theorem 1 tells us that any Riemannian metric on a non-minimal sur-
face M = X#kCP 2 of general type satisfies the scalar-curvature estimate∫

M

s2dµ > 32π2c2
1(X),

where X is the minimal model for M . In fact, this estimate is sharp.
To see this, let us first consider the case in which X does not contain any
(−2)-curves. This assumption implies [3] that c1(X) < 0, and hence [2, 31]
that X admits a Kähler-Einstein metric ǧ; we then have∫

X

s2
ǧdµǧ = 32π2c2

1(X).

Choose disjoint complex coordinate charts centered at the points p1, . . . , pk

which are to be blown up to obtain M , with the property that

ǧ = δ + O(#2)

where δ and # are respectively the Euclidean metric and radius associated
with the chart, and set h1 = δ − ǧ. Let h2 denote the pull-back of the
Fubini-Study metric on CP 1 to C

2−0 via the tautological projection, and
use these same charts to transplant h2 to a punctured neighborhood of
each of the p1, . . . , pk. Let φ : R → R be a non-negative smooth function
which is identically 1 on (−∞, 1

2 ) and identically 0 on (1,∞), and, for each
sufficiently small t < 0, let gt be the smooth Riemannian metric on the
blow-up M whose restriction to the open dense set X − {p1, . . . , pk} is
given by

gt = ǧ + φ(
#

t
)[h1 + t4h2].

For # < t/2, this metric coincides up to scale with the Burns metric [13]
on the blow-up of C

2 at the origin, and so has scalar curvature s ≡ 0; and
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for # > t, it coincides with ǧ. In the transition region # ∈ (t/2, t), one has

‖gt − δ‖ ≤ Ct2

‖Dgt‖ ≤ Ct

‖D2gt‖ ≤ C

where D is the Euclidean derivative operator associated with the given
coordinate system, and the constant C is independent of t. Thus s2(gt) is
uniformly bounded as t → 0, and since the volume of the annular transition
region is of order t4, we conclude that

lim
t→0+

∫
M

s2
gt

dµgt
=

∫
X

s2
ǧdµǧ = 32π2c2

1(X).

The bound is therefore sharp, as claimed.
Even if X contains (−2)-curves, the above conclusion still holds. In-

deed, each connected component of the union of the (−2)-curves in X is
a Hirzebruch-Jung string. The space X̌ obtained by blowing down these
curves therefore [3] only has A-D-E singularities, and so may be given
the structure of a complex orbifold with singularities modeled on C

2/Γ,
Γ ⊂ SU(2). Because X̌ admits pluri-canonical embeddings into projective
space, it has c1 < 0 in the orbifold sense, and the Aubin-Yau proof, with-
out essential alterations, shows [10, 29] that it therefore admits an orbifold
Kähler-Einstein metric ǧ. Since the Ricci form ρ of ǧ, pulled back to X,
represents 2πc1, it follows that∫

X̌

s2
ǧdµǧ = 8

∫
X

ρ2 = 8(2πc1(X))2 = 32π2c2
1(X).

Choose ǧ-geodesic coordinates around each orbifold point of X̌, as well as
geodesic coordinates around k distinct nonsingular points as before. On
the A-D-E resolutions of C

2/Γ, one can find asymptotically flat hyper-
Kähler metrics [11], and we may modify our previous definition of gt by
defining h2(t) on the orbifold charts so that δ + t4h2(t), rather than being
a Burns metric, is instead a Kronheimer metric for which the Hirzebruch-
Jung string has area ∝ t4. The previous estimates are then still valid, and
we once again have

lim
t→0+

∫
M

s2
gt

dµgt =
∫

X̌

s2
ǧdµǧ = 32π2c2

1(X).

This proves
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Theorem 6. Let X be a minimal algebraic surface of general type, and
let M = X#kCP 2. Let M denote the space of Riemannian metrics on
M . Then

inf
g∈M

∫
M

s2
gdµg = 32π2(2χ + 3τ + k),

where χ and τ are the Euler characteristic and signature of M . Moreover,
this infimum is never attained if k > 0.

The scale-invariant Riemannian functional
∫

s2dµ has a less distin-
guished pedigree than the Hilbert action

∫
s dµ, which [4] has historically

played a central rôle in the theory of Einstein spaces. Because the Hilbert
action is not scale invariant, it is usual to restrict it to the set of met-
rics of volume 1; this is equivalent to instead studying the scale-invariant
functional

S(g) =
∫

s dµ√∫
dµ

.

Let C denote the set of conformal classes on M4. For each conformal class,
one defines the Yamabe constant Y ([g]) by

Y ([g]) = inf
g∈[g]

S(g),

and a remarkable result of Yamabe, Trudinger, Aubin, and Schoen [17, 20]
asserts that this infimum is always attained by a metric of constant scalar
curvature. One may then define an invariant of M , known as the Yamabe
invariant or sigma constant, by

Y (M) = sup
[g]∈C

Y ([g]) = sup
[g]∈C

inf
g∈[g]

S(g),

and if this sup inf is attained, any metric which attains it is necessarily
Einstein. The following observation shows that we have already essen-
tially calculated the Yamabe invariants of surfaces of general type; cf. [1,
Theorem 7.3].

Lemma 1. Let M be a smooth compact 4-manifold, and let [g] be a con-
formal class with negative Yamabe constant. Then

inf
g∈[g]

∫
s2

gdµg = |Y ([g])|2,

and this infimum is precisely achieved by the metrics of constant scalar
curvature.
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Proof. Let g ∈ [g] be any metric in the conformal class, and let ĝ = φ2g
be a metric of constant scalar curvature. The smooth positive function φ
then satisfies

ŝφ3 = 6∆φ + sφ,

where the scalar curvature ŝ < 0 of ĝ is constant. Since the volume form
of ĝ is d̂µ = φ4dµ, we have∫

s2dµ =
∫

(ŝφ2 − 6
∆φ

φ
)2dµ

=
∫

ŝ2φ4dµ − 12ŝ

∫
φ∆φdµ +

∫
(6

∆φ

φ
)2dµ

=
∫

ŝ2d̂µ + 12|ŝ|
∫

|∇φ|2dµ +
∫

(6
∆φ

φ
)2dµ

≥
∫

ŝ2d̂µ = Y ([g])2.

Moreover, equality only occurs if φ is constant.
Now if X is a minimal surface of general type, and if M = X#kCP 2,

some Seiberg-Witten invariant is non-zero for every metric on M , and
hence the Yamabe constant of every conformal class is negative. Thus

Y (M) = − inf
[g]∈C

|Y ([g])| = − inf
g∈M

[∫
M

s2dµ

]1/2

= −4π
√

2c2
1(X).

Moreover, the Yamabe minimax is unattained if k > 0. To summarize:

Theorem 7. Let M be obtained from a minimal surface X of general
type by blowing up k ≥ 0 points. Then the Yamabe invariant Y (M) is
independent of k, and is given by

Y (M) = −4π
√

2c2
1(X).

Moreover, this sup inf is unachieved if k > 0.

It is therefore impossible to construct Einstein metrics on a non-minimal
surface of general type by the Yamabe minimax program of [9, 20].

Which compact complex surfaces (M, J) actually admit Einstein met-
rics? Given such a metric g, the Hitchin-Thorpe inequality forces c2

1(M) >
0 unless (M, g) has a finite isometric cover (M̃, g̃) which is hyper-Kähler.
In the latter case, we may equip M̃ with the pulled-back complex struc-
ture J̃ , and observe that (M̃, J̃) is of Kähler type because b1(M̃) is even
[21, 3]; by averaging a Kähler form over the action of the fundamental
group, we thus conclude that (M, J) is itself of Kähler type. Moreover,
b+(M̃) = 3, so the Seiberg-Witten invariant of (M̃, [J̃ ]) is well-defined and
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non-zero. But since M̃ admits a scalar-flat metric, Theorem 1 implies that
c1(M̃, J̃) is zero in real cohomology, and hence that c1(M, J) is a torsion
class. Thus (M, J) is a minimal surface of Kodaira dimension 0, and [31]
admits a compatible Ricci-flat Kähler metric.

If instead c2
1(M) > 0, the information available is only slightly weaker,

as the Kodaira classification of complex surfaces [3] tells us that M is either
rational or of general type; in particular, (M, J) is again of Kähler type.
On the other hand, Theorem 3 and the above discussion make it seem
plausible that non-minimal surfaces of general type never admit Einstein
metrics. This leads to the following speculation:

Conjecture 1. Let (M, J) be an irrational compact complex surface.
Then M admits an Einstein metric iff it admits a Kähler-Einstein metric
compatible with some small deformation of J .

The uniqueness theorem of [14] might even lead one to hope for more:

Conjecture 2. Let (M, J) be an irrational compact complex surface.
Then any Einstein metric on M is Kähler with respect to some defor-
mation of J .

However, further progress on either of these conjectures would seem to
require new estimates for |W+|2.

Notice we have excluded the rational surfaces from the above conjec-
tures. The Seiberg-Witten invariants vanish for such surfaces; even worse,
CP 2#CP 2 admits a non-Kähler Einstein metric, discovered by Page [19].
However, the Page example is conformally Kähler [4], and so does not rule
out

Conjecture 3. Let (M, J) be a compact complex surface. Then M admits
an Einstein metric iff it admits an Einstein metric which is conformally
Kähler with respect to some small deformation of J .

Indeed, in light of the highly developed existence theory [22, 27, 28] avail-
able for Kähler-Einstein metrics on rational surfaces, this differs from Con-
jecture 1 only by hypothesizing the existence of an Einstein conformally
Kähler metric on CP 2#2CP 2. For further discussion, see [16].

Finally, let us discuss Gromov’s notion of minimal volume [7] and some
generalizations thereof. Fix a smooth manifold, and let M|K| be the set
of metrics on M whose sectional curvature K satisfies |K| ≤ 1. Then
Gromov’s minimal volume invariant is

Vol|K|(M) := inf
g∈M|K|

∫
M

dµg.
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Let us now assume that M is 4-dimensional, and let MK , Mr, and Ms

respectively denote the set of metrics satisfying K ≥ −1, r ≥ −3g and
s ≥ −12. Then, in the spirit of [5], we may also define invariants

VolK(M) := inf
g∈MK

∫
M

dµg

Volr(M) := inf
g∈Mr

∫
M

dµg

Vols(M) := inf
g∈Ms

∫
M

dµg

which we shall call the sectional, Ricci and scalar minimal volumes of M .
Notice that our conventions are chosen so that M|K| ⊂ MK ⊂ Mr ⊂ Ms;
consequently, we automatically have

Vol|K|(M) ≥ VolK(M) ≥ Volr(M) ≥ Vols(M).

Now if M is a complex surface of Kodaira dimension ≥ 1, some Seiberg-
Witten invariant is non-zero for every metric, and for each metric the
minimum of the scalar curvature is therefore necessarily negative. Thus
Vols is the infimum of the volumes of metrics with min s = −12. By
rescaling, it follows that

Vols(M) = inf
g∈M

(min sg)2

144

∫
dµg.

The following observation now comes to our aid:

Lemma 2. For a conformal class [g] with negative Yamabe constant on
any smooth compact 4-manifold,

inf
g∈[g]

(min sg)2
∫

dµg = inf
g∈[g]

∫
s2

gdµg = |Y ([g])|2

and is attained precisely by the metrics of constant scalar curvature.

Proof. Let g again be any metric in [g], and let ĝ = φ2g again be a metric
of constant scalar curvature ŝ < 0. At the maximum of φ, the equation

ŝφ3 = 6∆φ + sφ

tells us that ŝφ3 ≥ sφ, so that ŝ(max φ)2 ≥ min s, and hence

|ŝ|(max φ)2 ≤ |min s|.
Thus

(min s)2
∫

dµ ≥
∫

ŝ2(max φ)4dµ ≥
∫

ŝ2φ4dµ =
∫

ŝ2d̂µ = |Y ([g])|2.
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Moreover, equality occurs only if φ is constant.
If X is now a minimal surface of general type, and if M = X#kCP 2,

we therefore have

Vols(M) = inf
[g]∈C

inf
g∈[g]

(min sg)2

144

∫
dµ = inf

g∈M
1

144

∫
M

s2
gdµg =

2π2

9
c2
1(X).

This proves

Theorem 8. Let M be obtained from a minimal surface X of general
type by blowing up k ≥ 0 points. Then the scalar minimal volume of M is
independent of k, and is given by

Vols(M) =
2π2

9
c2
1(X) > 0.

If k > 0, no metric on M actually realizes this minimal volume.

In particular, this shows that the Gromov minimal volume Vol|K| is
non-zero for any complex algebraic surface of general type. Of course,
one expects that Vol|K| > Volr > Vols for most such surfaces, but it is
also apparent that Volr = Vols when M = X is minimal and contains
no (−2)-curves. It would certainly be interesting to know precisely when
these tautological inequalities are actually strict.

Finally, it should be mentioned that Gromov introduced [7, 4] a
fundamental-group invariant called the simplicial volume in order to esti-
mate his minimal volume Vol|K|, and observed that this provides a method
distinct from the Hitchin-Thorpe inequality for showing that certain 4-
manifolds with large fundamental group cannot admit Einstein metrics.
It is for this reason1 that the author chose to focus on simply connected
manifolds in Theorem A.
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1Shortly after the November, 1995 posting of this article as dg-ga e-print 9511015,
independent infinite-π1 examples were described by Andrea Sambusetti, An Obstruction
to the Existence of Einstein Metrics on 4-Manifolds, Preprint 95-179, December 1995,
Ecole Normale Supérieur de Lyon. Sambusetti uses the entropy inequalities of Besson-
Courtois-Gallot [5] to show, for example, that the connected sum of two copies of any
real-hyperbolic 4-manifold never admits Einstein metrics, even though such a space
satisfies the strict Hitchin-Thorpe inequality.
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