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DISPERSIVE SMOOTHING FOR

SCHRÖDINGER EQUATIONS

Lev Kapitanski and Yuri Safarov

The phenomenon of the global (in time) dispersive smoothing for the
“free” Schrödinger evolution can be described as follows: For any distri-
bution f of compact support, the solution ψ(t, x) of the Cauchy problem
( 1

i
∂
∂t − ∆) ψ(t, x) = 0, t > 0, ψ(0, x) = f(x), x ∈ R

n, is infinitely dif-
ferentiable with respect to t and x, when t > 0 and x ∈ R

n. This is
equivalent to saying that the corresponding fundamental solution (= the
solution S0(t, x, y) of the initial value problem with f(x) = δ(x − y)) is
infinitely differentiable with respect to t, x and y, when t > 0. And we
have, indeed, S0(t, x, y) = e−in π

4 (4πt)−
n
2 exp{i |x − y|2/4t}, with the only

singularity at t = 0.
One would expect that dispersive smoothing should survive “small” per-

turbations of the free Hamiltonian H0 = −∆. The problem is to determine
what perturbations are “small”.

The case when the perturbed Hamiltonian has the form H = H0 + V

with a potential V = V (x), has been examined in [Ze], [OF], [Ki], [CFKS].
The dispersive smoothing takes place, for example, if the potential is infin-
itely differentiable, and it and all its derivatives are bounded, [Ze], [OF].
On the other hand, if V (x) grows quadratically or faster at infinity, then
the singularities may resurrect, as the example of the quantum harmonic
oscillator and Mehler’s formula show ([Ze], [We], [CFKS], [MF]).

If the perturbation affects the metric of the space, i.e., if H0 = −∆ is

replaced by H = −
n∑

j,k=1

∂
∂xj

aj,k(x) ∂
∂xk

, the problem apparently becomes

more subtle. Practically no information on global dispersive smoothing
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in that case has been available until recently. At present, however, the
situation has changed. In their very interesting paper [CKS], W. Craig, T.
Kappeler and W. Strauss prove, in particular, a result that we will now
describe.

Assume that the coefficients aj,k(x) of H are real and C∞, the matrix
(aj,k) is symmetric and positive-definite, and |aj,k(x) − δjk| → 0 suffi-
ciently fast as |x| → ∞. It will be convenient to view the principal symbol

H(x, ξ) :=
n∑

j,k=1

aj,k(x)ξjξk of the operator H as the classical Hamiltonian

and denote by (q(s;x, ξ), p(s;x, ξ)) the corresponding Hamiltonian trajec-
tory emanating from the point (x, ξ) of the phase space R

2n = T ∗(Rn).
The point (x, ξ) is said to be not trapped forwards (respectively, back-
wards) by the bicharacteristic flow if |q(s;x, ξ)| → +∞ as s → +∞
(respectively, s → −∞). Let S(t, x, y) denote the fundamental solution
corresponding to H, i.e., the solution of the initial problem

1
i

∂

∂t
S(t, x, y) +

n∑
j,k=1

∂

∂xj
aj,k(x)

∂

∂xk
S(t, x, y) = 0, t > 0,

S(0, x, y) = δ(x − y) .

Theorem CKS ([CKS, Theorem 1.9]). The point (x, ξ, y, η) ∈ T ∗(Rn) ×
T ∗(Rn) does not belong to the wave front set of the fundamental solution
S(t, ·, ·) for all t > 0 if either (x, ξ) is not trapped backwards or (y, η) is
not trapped forwards.

The authors of [CKS] do not work with such initial data as δ(x − y).
Instead, they work with the class of functions f satisfying (1+ |x|)kf(x) ∈
L2, for all k > 0. Thus, in order to prove their Theorem 1.9, the readers
are instructed to approximate δ-function by the functions f of the above
class, and check that all the intermediate results on the wave front sets of
the solutions, all the estimates, survive passing to the limit.

Some time ago, not knowing of the research undertaken by Craig, Kap-
peler and Strauss, the authors of the present paper also obtained a result
on dispersive smoothing for the Schrödinger equations with variable coeffi-
cients. Originally, this was done in the line of our work on the parametrix
for the Schrödinger equations ([KS]; the work was reported by Yu. S. at
the conference in Saint Jean de Monts, France, in the spring of 1990, and
by L. K. at the Special Analysis Seminar at the Courant Institute in the
fall of 1990). The result on the singularities of the fundamental solution
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that we needed and proved at that time was quite primitive compared to
Theorem CKS. Namely, we showed that S(t, x, y) has no singularities for
t > 0 provided all the points of the phase space T ∗(Rn) are not trapped
forwards.

Our approach is very different from that of [CKS]. Fortunately, we can
handle some cases and situations not covered by the technique of [CKS];
for example, the initial boundary-value problems and systems of equations.
Also, our method is simpler, and we believe that it provides an important
additional insight into the basic properties of the Schrödinger equations.

The essence of our method is in exploiting the correspondence between
the flows generated by the Schrödinger and hyperbolic equations and then
using the “decay” of the local energy of the latter.

The correspondence between the flows is described by the following rela-
tion between the fundamental solutions of the Schrödinger and wave equa-
tions,

(1) S(t) =
e−i π

4

√
4πt

∫
ei τ2

4t W(τ) dτ , t > 0,

where S(t) is the fundamental solution of the Schrödinger equation,

(2)
1
i

∂

∂t
S(t) + A S(t) = 0, t > 0, S(0) = I,

and W(τ) is the fundamental solution of the corresponding wave equation,

(3)
∂2

∂τ2
W(τ) + A W(τ) = 0, τ > 0, W(0) = I,

∂

∂t
W(0) = 0.

Here A is an operator that in the simplest case will be a perturbed Lapla-
cian, and I is the identity operator.

An informal proof of (1) goes as follows. First, notice that the scalar
function

k(t, τ) =
e−i π

4

√
4πt

ei τ2
4t

is the fundamental solution of the 1-dimensional Schrödinger equation,

1
i

∂

∂t
k(t, τ) − ∂2

∂τ2
k(t, τ) = 0, t > 0, k(0, ·) = δ(·).
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Therefore,

(4a)

(1
i

∂

∂t
+ A

) ∫
k(t, τ)W(τ) dτ

=
∫ (1

i

∂

∂t
k(t, τ) W(τ) + k(t, τ) A W(τ)

)
dτ

=
∫ (∂2

∂τ2
k(t, τ) W(τ) + k(t, τ) A W(τ)

)
dτ

=
∫

k(t, τ)
(∂2

∂τ2
+ A

)
W(τ) dτ = 0.

Hence, the right hand side of (1) does indeed represent the fundamental
solution of the Schrödinger equation (2).

The argument showing that the fundamental solution S(t) becomes
regular for t > 0 is based on the following observation:

(4b)

t2A S(t) = t2A

∫
k(t, τ)W(τ) dτ = t2

∫
k(t, τ) A W(τ) dτ

= t2
∫

k(t, τ) · d2

dτ2
W(τ) dτ = t2

∫
∂2

∂τ2
k(t, τ) · W(τ) dτ

= i
t

2
S(t) − 1

4

∫
k(t, τ)τ2W(τ) dτ.

In other words, multiplying by t2 improves the regularity in spatial direc-
tions. Since 1

i
∂
∂tS(t) = −AS(t), it improves the regularity in t as well. Of

course, we will have to justify the above manipulations, and, in particular,
the fact that the regularity of

∫
k(t, τ)τ2W(τ) dτ is the same as that of∫

k(t, τ)W(τ) dτ .
In what follows, we first justify (1) in an abstract setting, and then show

how it works in applications.

The existence, uniqueness and regularity properties of solutions for the
Schrödinger equation will be viewed against the backdrop of a scale of
Hilbert spaces Hs, s ∈ R. We will also use the sets Hcomp

s of elements of
Hs with compact support, and the space H loc

s , the “dual” of Hcomp
−s . (One

may think of Hs as the usual Sobolev space Hs(Rn), then Hcomp
s and

H loc
s have the natural meaning.) In order to localize the elements of H loc

s

we use the “cut-off functions”. Let Υ denote the set of cut-off functions or
operators of multiplication by such functions (in practice, Υ ≈ C∞

0 (Rn)).
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Naturally, we assume that for every f ∈ Hcomp
s there is ζ ∈ Υ such that

f = ζ f .
The operator A will be thought of as a (second order) linear operator

that maps Hs continuously into Hs−2 for any s ∈ R. We make an addi-
tional assumption that A and its adjoint, A∗, map Hcomp

s into Hcomp
s−2 .

We will assume that the hyperbolic problem has a solution W(t) in the
following sense. First, d�

dt� W ∈ C([0, t1] → Hom(Hs, Hs−�)), for all t1 > 0,
" = 0, 1, . . . , and for every s ∈ R. Here Hom(Hs, Hs−�) is the space
of bounded linear operators from Hs into Hs−�, and the continuity with
respect to t is understood in the strong operator topology. Second, given
f ∈ Hs, the function w(t) = W(t)f satisfies w(0) = f , wt(0) = 0, and
(wtt(t) + Aw(t), η) = 0, for all η ∈ H−s+2.

We also have to make some assumptions on the behavior of W(τ) for
large |τ |. In applications, W(τ) will be the solving operator corresponding
to an initial boundary-value problem for a single hyperbolic differential
equation or a hyperbolic system. Not much can be said about the long-
term behavior of W(τ) in the general case. However, if the so-called non-
trapping condition is satisfied, then the local structure of W(τ) for large
|τ | is known in considerable detail. By “local structure” we mean the
structure of the operators ζ2 ·W(τ) · ζ1 with arbitrary smooth, compactly
supported functions ζ1(·) and ζ2(·) of spatial variables x. In our abstract
setting, we make the assumptions on W(τ) that are in complete analogy
with the most general known results on the long-term behavior of solutions
of hyperbolic problems (with non-trapping condition), see [V 4], Theorems
10.3.4 and 10.3.6, and [Rau 1], Theorem 3.

Hypothesis (�). For any pair of cut-off functions ζ1, ζ2 ∈ Υ, there exists
T > 1 such that for τ ≥ T − 1 the operator ζ2 · W(τ) · ζ1 can be written
in the following form:

(5a) ζ2 · W(τ) · ζ1 =
N−1∑
j=1

φj(τ) e−iλjτ Wj + W̃N (τ),

where the λj’s are complex numbers with nonnegative imaginary parts, the
scalar functions φj(z) are holomorphic in the half-plane Re z > T −1 and
satisfy there the following condition: for every finite interval [a, b] there
exists an integer "j ≥ 0 such that

(5b) sup
a≤θ≤b

1
τ �

�∑
m=0

|d
m

dτm
φj(τ + iθ)| = O(τ−2) as τ → ∞, ∀" ≥ "j .
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The operators W1, . . . , WN−1 do not depend on τ and are smoothing in the
sense that each Wj is bounded from Hs1 to Hs2 for any pair of s1, s2 ∈ R.

Finally, the operator W̃N (τ) and all the derivatives d�

dτ� W̃N (τ), are
smoothing for all τ ≥ T − 1. Moreover, for any M > 0 there is an integer
κM ≥ 0 such that, given s1, s2 ∈ R,

(5c) ‖d�

dτ �
W̃N (τ)‖Hs1→Hs2

= O(τ−M ), as τ → ∞,

" = κM , κM + 1, . . . ,

where ‖ · ‖Hs1→Hs2
denotes the norm of an operator from Hs1 to Hs2 .

Several situations where Hypothesis (�) is valid will be described later.

Theorem 1. Under the above assumptions on W(t), there exists S(t)
that solves (2) in the following sense. First,

d�

dt�
S ∈ C([0, t1] → Hom(Hcomp

s , H loc
s−2�)), ∀t1 > 0, " = 0, 1, . . . ,

for every s ∈ R. Second, given f ∈ Hcomp
s , the function u(t) = S(t)f

satisfies u(0) = f and ( 1
i

∂
∂tu(t)+Au(t), η) = 0, for all η ∈ Hcomp

−s+2 and all
t > 0.

The operator S(t) has the following smoothing property:

(6)




for every integer k > 0,

the operator-valued function t �→ t2kAkS(t) is continuous in t

with values in Hom(Hcomp
s , H loc

s ).

The operator S(t) can be expressed in terms of the operator W as
follows. For arbitrary ζ1, ζ2 ∈ Υ, there exists T > 1 so that for any C∞

function ϑ0(τ) on R that equals 1 for |τ | ≤ T and 0 for |τ | ≥ T + 1,
there exists a smoothing operator C(t) (with infinitely smooth Schwartz
kernel C(t, x, y)) such that

(7) ζ1 · S(t) · ζ2 =
∫

k(t, τ)ϑ0(τ)ζ1 · W(τ) · ζ2 dτ + C(t).

Sketch of the proof. We regularize integral (1) by inserting an extra factor
e−ετ2

, ε > 0, into the integrand and then letting ε → 0. Denote

Sε(t) =
∫

k(t, τ)e−ετ2
W(τ) dτ.
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Our plan is to show first that, given f ∈ Hcomp
s , the limit

lim
ε↓0

(Sε(t)f, η) = (S(t)f, η)

exists for every η ∈ Hcomp
−s and correctly defines an operator

S(t):Hcomp
s → H loc

s .

Second, we have to check that ψ(t) = S(t)f is a distributional solution of
the problem 1

i
∂
∂tψ +Aψ = 0, ψ(0) = f . Finally, we have to justify (6) and

(7).
The first step is the most involved. We pick two arbitrary cut-off func-

tions ζ1,2 ∈ Υ. By Hypothesis (�), there is T > 1 so that (5a) holds for
t ≥ T − 1. Let ϑ0(τ) be a smooth real function that equals 1 for τ ≤ T

and 0 for τ ≥ T +1. Noting that W(τ) is an even function of τ , we write

ζ1 · Sε(t) · ζ2 = 2

∞∫

0

k(t, τ)e−ετ2
ϑ0(τ) ζ1 · W(τ) · ζ2 dτ

+ 2

∞∫

0

k(t, τ)e−ετ2
(1 − ϑ0(τ)) ζ1 · W(τ) · ζ2 dτ = S(0)

ε (t) + S(1)
ε (t).

The integral S
(0)
ε (t) converges to S(0)(t) = 2

∞∫
0

k(t, τ) ϑ0(τ) ζ1·W(τ)·ζ2 dτ

in the strong operator topology in any of the spaces Hs, as is obvious.
To treat S

(1)
ε (t), we use (5). The part of S

(1)
ε (t) corresponding to W̃N

in (5a) can be regularized by repeatedly using the equality

exp{( i

4t
− ε)τ2} = {2τ(

i

4t
− ε)}−1 ∂

∂τ
exp{( i

4t
− ε)τ2},

and integration by parts. The other terms in (5a) lead to the integrals of
the form ∞∫

0

k(t, τ)e−ετ2
e−iλjτ φj(τ) (1 − ϑ0(τ)) dτ Wj ,

where Im λj ≥ 0. We treat these integrals essentially in the same fashion as
textbooks handle the convergence of

∫ +∞
−∞ eiτ2

dτ (by moving the contour,
etc.). Again, integration by parts and use of (5b) take care of regularization.
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The same technique works to show that, given f ∈ Hcom
s ,

lim
ε↘0

∞∫

0

(
Sε(t)f, (

1
i

∂

∂t
+ A∗)η(t)

)
dt =

1
i

(
f, η(0)

)
,

for all η ∈ C∞
0 (R;Hcom

−s+2) that vanish for large t.
The smoothing property is proved following the computation (4b) except

for that we start with t2 A Sε(t) and then at the final step we let ε ↘ 0.
We skip the details. �

Remark. Note that we make no assumption that the operator A be self-
adjoint. It is known, however, that if A is not self-adjoint, the initial value
problem (2) may turn out to be ill-posed, at least in the L2-based Sobolev
spaces, see [Tak], [Mi], and [Ich], for the discussion of necessary and of
sufficient conditions for well-posedness. Moreover, if A differs from A∗ by
an operator of order ≥ 1, then, in general, there are no energy estimates
available for problem (2), and already the existence of solutions becomes
problematic. Nonetheless, our Theorem 1 provides a construction for the
solutions corresponding to the initial data of compact support.

Let us now turn to examples. The Hypothesis (�) is evidently the
most restrictive ingredient of our approach. That hypothesis is motivated
by the uniform local energy decay theorems for the wave equation in “non-
trapping” exterior domains. The systematic study of that phenomenon has
been initiated by C. S. Morawetz, and P. D. Lax and R. S. Phillips, and
taken up by many other mathematicians (see, e.g., [Mo], [LP], [LMP], [Ral],
[V], [S], [Rau 1], [Tay], [Me], [MS]). In the situations that were studied first,
Hypothesis (�) holds with functions φj and exponents kj ∈ C such that
all |D�

τφj(τ)e−ikjτ | do actually decay as τ → +∞. Consider the following
example.

Let Ω ⊂ R
n, n ≥ 2, be a non-compact connected domain with compact,

C∞ boundary ∂Ω. Let S(t, x, y) be the Schwartz kernel of the solution
operator S(t): f(·) �→ u(t, ·) corresponding to the initial boundary-value
problem

1
i

∂

∂t
u(t, x) − ∆u(t, x) = 0, t ∈ R, x ∈ Ω,(8a)

Bu(t, x) = 0, x ∈ ∂Ω,(8b)

u(0, x) = f(x), x ∈ Ω ,(8c)
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where B is the boundary operator corresponding to either the Dirichlet or
Neumann boundary condition.

Corollary 2. Assume that Ω is non-trapping in the sense that for every
sufficiently large R > 0 there exists TR > 0 such that no generalized ge-
odesic of length T ≥ TR lies completely within the ball {|x| ≤ R}. (The
generalized geodesics are the projections into Ω of the generalized bichar-
acteristics, see [MS 2], Definition 3.1.) Then the fundamental solution
S(t,x,y) of problem (8) is C∞ in (0,∞) × Ω × Ω.

Proof. We choose the scale of Hilbert spaces generated from H0 = L2(Ω)
by the powers of the square root of the operator A, which, in our case,
is (−∆) with the boundary condition B. The set Υ is comprised of the
restrictions to Ω of the functions from C∞

0 (Rn). That Hypothesis (�)
is true follows from [Me], [Ral 2], and [V 3]. In particular, the functions
φj(τ), j = 1, . . . , N − 1, in (5a) can be omitted, i.e., N = 1. Given s1, s2,
the Hs1 → Hs2-norm of d�

dτ� W̃1(τ) behaves like d�

dτ� φ̃1(τ) for large τ ,
where φ̃1(τ) = e−rτ with r > 0, in the case of odd n, and φ̃1(τ) = τ−n,
if n is even. �

Our next example is the Schrödinger equation with variable coefficients
in R

n, n ≥ 1. Let

(9a) A = − aj,k(x)
∂2

∂xj∂xk
+ bj(x)

∂

∂xj
+ b0(x) ,

with summation over the repeated indices assumed. The coefficients aj,k,
bj and b0 are supposed to be infinitely differentiable, the matrix {aj,k(x)}
is real, symmetric and positive definite, uniformly with respect to x ∈ R

n.
The coefficients bj and b0 are, in general, complex valued. In addition,
we assume that aj,k, bj and b0 stabilize outside some ball:

(9b) aj,k(x) = ajk
∞, bj(x) = bj

∞, b0(x) = b0
∞, for |x| ≥ R.

Let (q(s;x, ξ), p(s;x, ξ)) be the Hamiltonian trajectory corresponding to
the Hamilton function H(q, p) = aj,k(q)pjpk and starting at q(0;x, ξ) = x,
p(0;x, ξ) = ξ.

Corollary 3. Assume that |q(s;x, ξ)| → ∞ as s → +∞, for all x ∈
R

n and ξ ∈ R
n \ 0 (the non-trapping condition). Then there exists a
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one-parameter family S
A
(t), 0 < t < +∞, of operators S

A
(t): E ′(Rn) →

C∞(Rn) that solves the initial-value problem

(9c)
1
i

∂

∂t
ψ + Aψ = 0, ψ

∣∣
t=0

= f,

for all f ∈ E ′(Rn), i.e., ψ(t, x) = (S
A
(t)f)(x) is a solution of (9c). (Here

E ′(Rn) is the space of distributions of compact support on R
n.)

Proof. If necessary, we can change the independent variables x → y =
Mx to set Ma∞M ′ = diag{1, . . . , 1}, and seek the solution of (9c) in the
form ψ(t, x) = exp{ω · y − i ω0t}φ(t, y). Choosing ω = − 1

2Mb∞ and
ω0 = b0

∞ − 3
4Mb∞ · Mb∞, we get for φ(t, y) a similar problem but with

an elliptic operator stabilizing to −∆ outside some ball {|y| ≤ R′}. Thus,
from the very beginning we may assume that ajk

∞ = δjk and b0
∞ = b1

∞ =
· · · = bn

∞ = 0.
Next, we use Theorem 1 with the cut-off functions from Υ = C∞

0 (Rn).
Because of our non-trapping assumption, the corresponding version of Hy-
pothesis (�) holds true. Again, the functions φj(τ), j = 1, . . . , N − 1, in
(5a) can be omitted, and we have φ̃1(τ) = e−rτ with r > 0, if n is odd,
and φ̃1(τ) = τ−n, if n is even. This follows from [V 4], chapters 9 and 10,
and [Rau 1]; for the case of the formally selfadjoint A see also [PoS]. �

A generalization to systems of Schrödinger equations is straightforward.
Consider, for example, the following version of the Schrödinger evolution
in a locally curved space with a gauge magnetic field.

Let g = gjk(x) dxj dxk be a smooth Riemannian metric in R
n, flat out-

side a ball: gjk(x) = δjk, if |x| ≥ R > 0. Let A1(x), . . . , An(x) be a given
n-tuple of smooth functions of x with values in the Lie algebra g"(m, C)
of all complex m×m-matrices, m ≥ 1. We assume that A1(x), . . . , An(x)
are constant outside of the ball |x| ≤ R} and satisfy there the following
commutator condition:

(10a) [Aj + A†
j , Ak + A†

k ] = 0, ∀j, k,

where A†
j is the Hermite conjugate of Aj .

The Schrödinger field will be represented by a column vector :ψ(t, x) ∈
C

m. We denote ∇j = i ∂
∂xj

+ Aj(x) , the j-th covariant derivative, and
∇∗

j , its conjugate with respect to the L2-product

(:ξ, :η) =
∫

gjk(x) ξj(x) ηk(x)
√

g dx.
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Finally, denote

(10b) A =
1
2

n∑
j=1

(∇∗
j ∇j + ∇j ∇∗

j ),

and consider the Cauchy problem

(10c)
1
i

∂

∂t
:ψ + A:ψ = 0, :ψ |t=0 = :ψ 0.

Corollary 3. If the metric g has no trapped geodesics then the (matrix
valued) fundamental solution S 1

i
∂
∂t

+A
(t, x, y), corresponding to (10c), is

infinitely differentiable for t > 0, x, y ∈ R
n.

Remark 4. In many cases, including those considered above for n ≥ 3, the
localized solving operator for the hyperbolic problem, ζ2 · W(τ) · ζ1, does,
in fact, decay as τ−3 when τ → ∞, which makes the justification of the
abstract scheme, given in the opening paragraphs, quite trivial. Also, then
we get a simpler representation for ζ2 · S(t) · ζ1, namely,

(7b) ζ1 · S(t) · ζ2 =
∫

k(t, τ) ζ1 · W(τ) · ζ2 dτ.

As a serendipitous consequence, we obtain the following time-decay result
for the perturbed Schrödinger evolution:

(11) ‖ζ1 · S(t) · ζ2‖Hs→Hs
≤ c(s, ζ1, ζ2)√

t
,

for all s and any pair of cut-off functions ζ1,2. In particular, if n ≥ 3, then
at least 1/

√
t-decay rate holds for each of the three examples considered

above.
The time-decay for the solutions of 1

i
∂
∂tψ − ∆ψ + V ψ = 0 has been

studied by several authors for different classes of the potentials V , see
[Ste], [Rau 2], [J], [JK], [Mu]. It has been shown, in particular, that the
1/
√

t-decay is generic, while for special classes of potentials the rate of
decay may be higher.
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Concluding remarks

Thus we have shown that the simple relation (1) between the Schrödinger
and wave evolutions allows us to prove the smoothness of the fundamental
solution for the Schrödinger equation, and also, the local time decay. The
method works in the cases where the local energy decay for the hyperbolic
evolution is known. We think that (1), though transparent, is important.
It should be mentioned that (1) was implicitly used in [BdeM] in the study
of the propagation of singularities for equations with double characteristics.

Comparing our results with those of Craig, Kappeler and Strauss, [CKS],
one notices that we avoid microlocal statements. The reason is that there
is no microlocal version of the local energy decay for hyperbolic problems
available.

Question. Under what conditions on the operator (9a) and the pseudo-

differential operators ζ1,2(x, Dx) does the operator ζ2 · W(τ) · ζ1 satisfy
(5) for large τ?

We conjecture that at least the following holds. Let K ⊂ R
n
x be a

compact set and Γ ⊂ R
n
ξ be a cone. Let A be a uniformly elliptic operator

of the form (9a) with smooth coefficients that stabilize at infinity so that
A = −∆ for |x| ≥ R > 0. Denote by (q(s;x, ξ), p(s; x, ξ)), as before, the
Hamilton trajectories corresponding to H(q, p) = aj,k(q)pjpk. We say that
the conic set K ×Γ is non-trapping if all the rays starting from the points
in K × (Γ \ 0) go to infinity: |q(t;x, ξ)| → ∞ as t → ∞.

Let υ(x, ξ) be a (full) symbol from S0(Rn
x ×R

n
ξ ), which has support in

the conic set K × Γ. Denote ζ1(x, Dx) = Op υ. Let ζ2 ∈ C∞
0 (Rn). As

before, W(τ): f �→ w(τ) will be the solution operator of the hyperbolic
problem wττ + Aw = 0, w(0) = f , wτ (0) = 0.

Conjecture. If K × Γ is non-trapping, then for all sufficiently large τ > 0
the operator ζ2 · W(τ) · ζ1 is smoothing and its Hom(Hs1 , Hs2)-norms
decay as τ → ∞.
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