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ON THE EXISTENCE OF HIGH MULTIPLICITY INTERFACES

Lia Bronsard and Barbara Stoth

A bstract . In many singularly perturbed Ginzburg–Landau type partial differ-
ential equations, such as the Allen–Cahn equation, the nonlocal Allen–Cahn equa-
tion, and the Cahn–Hilliard equation, the question arises whether or not the lim-
iting interfaces can have high multiplicity. In other words, do there exist solutions
of these PDE’s with many transition layers (where the solution passes rapidly be-
tween ±1) which are so close to each other that they collapse to one interface in
the limit. In this paper we prove that there exist interfaces with arbitrarily high
multiplicity by studying the radially symmetric Allen-Cahn equation. We adapt
the energy method of Bronsard-Kohn [BK].

1. Introduction

To motivate the results presented in this paper, we will first consider two
volume preserving gradient flows for the following energy functional:

Eε[uε] :=
∫

Ω

(
ε

2
|∇uε|2 +

1
ε
W (uε)

)
dx,

where W is a smooth symmetric double well potential with strict minima at ±1
(W ′′(±1) > 0) and ε is a small parameter. The first one is the Cahn–Hilliard
flow, which is obtained by taking the gradient flow with respect to the H−1 inner
product, and the second is the so–called nonlocal Allen–Cahn flow, obtained by
using the L2 inner product. The associated PDE’s are respectively:

εuε
t − ∆(−ε∆uε +

1
ε
W ′(uε)) = 0,(CH)

εuε
t−ε∆uε +

1
ε
W ′(uε) − 1

ε

1
|Ω|

∫
Ω

W ′(uε) dx = 0.(nlAC)

In the radially symmetric case, the singular limit as ε → 0 of the Cahn–Hilliard
flow was studied rigorously by Stoth [S], while the singular limit of the nonlocal
Allen-Cahn flow was studied rigorously by Bronsard–Stoth [BS]. These results
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show that the geometric evolution equation satisfied by the limiting interfaces is
of the form:

αṘ(t) +
(n − 1)
R(t)

= νψ(t),

where α is a constant, R(t) is the position of a limiting interface, ν ∈ {0,±1},
and ψ is a function which can be derived explicitly for each flow. For example,
in the case of the equation (nlAC), the function ψ(t) ≡ 0 in the two dimensional
case, if there is an even number of interfaces. In higher dimension, ψ depends on
all interfaces.

However, some information is lost when only considering the limiting geometric
flow. Indeed, it is possible that several transition layers for uε collapse in the
limit ε → 0 to one interface. This interface would then have a multiplicity m
given by the number of transition layers which are collapsing to that interface.
In addition, if an even number of transition layers collapse, then the limiting
interface no longer separates two different phases; this corresponds to ν = 0.
This case was introduced by Bronsard–Stoth in [BS], where such interfaces were
called “phantom” interfaces. The natural question then is whether or not these
high multiplicity interfaces do exist.

The limiting geometric flow contains some information on the multiplicity m.
Indeed, the results of Stoth [S], and Bronsard–Stoth [BS] show that both

αṘ(t) +
(n − 1)
R(t)

= νψ(t)

and

m(αṘ(t) +
(n − 1)
R(t)

) = νψ(t)

must hold. This means that when ψ 
= 0, either m = 1 or ν = 0, i.e. either m = 1
or m is even. In particular, high multiplicity interfaces must be “phantoms”. In
addition, for the Cahn–Hilliard flow, the kinetic coefficient α vanishes, so that
both ν and ψ are nonzero and hence phantom interfaces do not exist, in other
words all interfaces are “true” interfaces with m = 1. However for the nonlocal
Allen–Cahn flow (where α 
= 0), or when ψ = 0, such as for the Allen–Cahn
equation, the limiting geometric flow cannot be used to obtain information about
these high multiplicity interfaces.

In this paper, we study this question for the radially symmetric Allen–Cahn
equation in the unit ball in Rn (this flow is with respect to the H1 inner product):

εuε
t − ε

(
uε

rr +
(n − 1)

r
uε

r

)
+

1
ε
W ′(uε) = 0, uε(r, t)|r=1 = −1,

since this flow gives simple and clear answers. We show that there exist interfaces
of arbitrarily high multiplicity by adapting the energy method introduced by
Bronsard–Kohn [BK]. More precisely, we show that uε can have any given number
of transition layers which are O(εα) apart (0 < α ≤ 1

3 ) for times of order one.
We note that this method applies directly to the one–dimensional Allen–Cahn
equation.
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2.

Since the limiting interface will be moving by the mean curvature flow, we
introduce a moving coordinate system in which the solution uε will be asymp-
totically stationary. Let ρ0 ∈ ( 1

2 , 1) and let ρ(t) be the solution to the mean
curvature flow

ρ̇(t) =
−(n − 1)

ρ(t)
, ρ(0) = ρ0,

i.e. ρ(t) =
√

ρ2
0 − 2(n − 1)t. In addition, define T1 by ρ(T1) = 1

2 . Since the
distance to the moving sphere of radius ρ(t) is given by R = r − ρ(t), we define
w(R, τ) = wε(R, τ) = uε(R + ρ(τ), τ). The equation for w becomes

εwτ − ε

(
wRR − (n − 1)R

ρ(τ)(R + ρ(τ))
wR

)
+

1
ε
W ′(w) = 0

−ρ(τ) ≤ R ≤ 1 − ρ(τ),

with boundary conditions

wR(−ρ(τ), τ) = 0, w(1 − ρ(τ), τ) = −1.

If we let ϕ = ϕ(R, τ) solve

ϕR =
−(n − 1)R

ρ(τ)(R + ρ(τ))
ϕ,

then the equation for w becomes

εwτ − ε
1
ϕ

(ϕwR)R +
1
ε
W ′(w) = 0.

We choose, as in the paper of Bronsard–Kohn [BK],

ϕ(R, τ) = e−(n−1)R/ρ(τ)

(
1 +

R

ρ(τ)

)(n−1)

.

This function has the following properties:

0 ≤ ϕ ≤ 1, ϕ(−ρ(τ), τ) = 0, ϕ(0, τ) = 1, ϕτ ≤ 0.

In addition, using the Taylor expansion of ϕ, we see that

ϕ(R, τ) ≥ 1 − (n − 1)2

ρ(T1)2
R2 ≥ 1

2
, for |R| ≤ a and τ ≤ T1,

if we define a = ρ(T1)√
2(n−1)

= 1
2
√

2(n−1)
.
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Using the properties of ϕ, Bronsard–Kohn [BK] have shown that the weighted
energy functional

Eϕ[wε](τ) :=
∫ 1−ρ(τ)

−ρ(τ)

ϕ(R, τ)
[
ε

2
|wε

R|2 +
1
ε
W (wε)

]
dR,

is a Lyapunov functional. More precisely, they have shown that

(EE)
d

dτ
Eϕ[wε](τ) ≤ −ε

∫ 1−ρ(τ)

−ρ(τ)

ϕ(R, τ)|wε
τ |2 dR.

An important property of this weighted energy is that the energy associated
to an interface is now given by a constant instead of being given in terms of the
position of the interface. In other words, the problem is now closer to the one
dimensional Allen–Cahn equation, where the energy only counts the number of
interfaces and is independent of their location. This is due to the use of the
moving coordinate frame.

Next we introduce some definitions. First, for some 0 < α < 1, we let

vε(R) :=
{
−1, R < −εα, R > εα

1, −εα < R < εα.

In addition, let g(s) :=
∫ s

0

√
2W (λ) dλ, so that g(1) > 0, g(−1) = −g(1) and we

set g0 = g(1)−g(−1). This function is very important in the energy approach we
use and the constant g0 can be thought of as the surface tension of an interface,
and represents the energy associated to the presence of one interface. We are
now ready to state our main Theorem.

Theorem. Let 0 < α ≤ 1
3 , and assume that Eϕ[wε](0) ≤ 2g0 + c1ε

2α for some
constant c1 > 0, independent of ε, and that for a as above,∫ a

−a

|g(wε(R, 0)) − g(vε)| dR <
g(1)
4

εα.

Let Tε be the first time that∫ a

−a

|g(wε(R, Tε)) − g(wε(R, 0))| dR =
g(1)
4

εα.

Then Tε ≥ min(T1, C) for some positive constant C independent of ε, i.e. Tε is
of order one in ε. In particular, wε(R, τ) has exactly two transitions layers in
(−a, a), which are located in (−2εα, 2εα) for all τ ≤ Tε.

Remark. A more accurate statement of the last part of the Theorem is the fol-
lowing: for all τ ≤ Tε, there are points

−2εα < R1 < R2 < 0 < R3 < R4 < 2εα
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with the property that

wε(R1, τ) < −1 + c4ε
1−α

2 , wε(R2, τ) > 1 − c4ε
1−α

2 ,

wε(R3, τ) > 1 − c4ε
1−α

2 , wε(R4, τ) < −1 + c4ε
1−α

2 ,

for some positive constant c4 defined explicitly in the Lemma below. In addition
wε(·, τ) is positive in (R2, R3) and negative in (−ρ + δ(ε), R1) ∪ (R4, 1 − ρ), for
some δ(ε) → 0 with ε.

Corollary. There can exist limiting interfaces of arbitrarily high multiplicity.

This follows since the above Theorem holds true if for example we let vε be a
step function with any given number N ≥ 2 of “jumps” or interfaces around R = 0
located at distances 2εα apart. In this case, we must assume that Eϕ[wε](0) ≤
Ng0 + c1ε

2α.
We note that there are initial data which satisfy the conditions of the Theorem.

Indeed, let Hε(R) := Ξ(R) tanh(R+εα

ε ) + (1 − Ξ(R)) tanh(R−εα

ε ), where supp
Ξ(1−Ξ) ⊂ (− εα

2 , εα

2 ). This function has two transition layers around ±εα in the
sense that it is converging (in fact exponentially) to ±1 on the appropriate sides
of ±εα. In addition, its weighted energy is bounded by 2g0 + Cε2α. (In fact, the
error is exponentially small.)

To prove this Theorem we need the following Lemma.

Lemma. If for some smooth function h∫ a

−a

|g(h) − g(vε)| ≤ g(1)
2

εα and Eϕ[h](τ) ≤ C1,

then
Eϕ[h](τ) ≥ 2g0 − c2ε

1−α − c3ε
2α,

for τ ≤ T1, where c2 = 4c2
4||g′′||C0([−1,1]) with c4 = 4

√
C1

√
1

W ′′(1) , and c3 =

32g0(n − 1)2. If in addition Eϕ[h](τ) ≤ 2g0 + c1ε
2α as in the Theorem, then h

has exactly two transition layers in (−a, a), which are located in (−2εα, 2εα), in
the sense of the Remark above.

This Lemma is variational in character: it has nothing to do with the particular
solution we are studying. It basically says that if a function is sufficiently close
to vε and its energy is bounded, then it must have two transitions layers and its
energy must be close to the energy associated to functions with two transition
layers.

Proof of the Lemma. By the assumptions of the Lemma and the definition of vε,
we know that

(∗)
∫ −εα

−a

|g(h) − g(−1)| dR ≤ g(1)
2

εα.
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Let S+ := {R|h(R) ≥ 0} and S− := {R|h(R) < 0}. It follows from (∗) that

|S+ ∩ (−a,−εα)| ≤ 1
2
εα.

Indeed for R ∈ S+, we have g(h(R)) > 0. Hence

|S+ ∩ (−a,−εα)| ≤ 1
g(1)

∫
S+∩(−a,−εα)

|g(h) − g(−1)| dR ≤ εα

2
,

since g(−1) = −g(1). This means that

(∗∗) |S− ∩ (−2εα,−εα)| ≥ εα

2
.

But by hypothesis, Eϕ[h](τ) ≤ C1, and hence

∫
S−∩(−2εα,−εα)

ϕ
1
ε
W (h) dR ≤ C1.

Therefore, using (∗∗) and that ϕ(R, τ) ≥ 1
2 for |R| ≤ a and τ ≤ T1, we conclude

that there exists

R1 ∈ S− ∩ (−2εα,−εα),

such that

1
2

εα

2
W (h(R1)) ≤ C1ε.

This means that (for sufficiently small ε)

h(R1) ≤ −1 + c4ε
1−α

2 ,

where c4 = 4
√

C1

√
1

W ′′(−1) . Similarly, there exists points R2 ∈ (−εα, 0), R3 ∈
(0, εα) and R4 ∈ (εα, 2εα) such that

h(R2) ≥ 1 − c4ε
1−α

2 , h(R3) ≥ 1 − c4ε
1−α

2 , h(R4) ≤ −1 + c4ε
1−α

2 .
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In consequence, we obtain

Eϕ[h](τ) ≥∫ R2

R1

ϕ

[
ε

2
|hR|2 +

1
ε
W (h)

]
dR +

∫ R4

R3

ϕ

[
ε

2
|hR|2 +

1
ε
W (h)

]
dR

≥
∫ R2

R1

ϕ
√

2|hR|
√

W (h)dR +
∫ R4

R3

ϕ
√

2|hR|
√

W (h)dR

=
∫ R2

R1

ϕ|∂Rg(h)|dR +
∫ R4

R3

ϕ|∂Rg(h)|dR

≥ ϕ(R1, τ) (g(h(R2)) − g(h(R1))) + ϕ(R4, τ) (g(h(R3)) − g(h(R4)))

≥ ϕ(R1, τ) [g0 − (g(1) − g(h(R2))) − (g(h(R1)) − g(−1))]

+ ϕ(R4, τ) [g0 − (g(1) − g(h(R3))) − (g(h(R4)) − g(−1))]

≥ ϕ(−2εα, τ)
[
g0 − ||g′′||C0([−1,1])

(
(1 − h(R2))2 + (h(R1) + 1)2

)]
+ ϕ(−2εα, τ)

[
g0 − ||g′′||C0([−1,1])

(
(1 − h(R3))2 + (h(R4) + 1)2

)]
≥ ϕ(−2εα, τ)

(
2g0 − 4||g′′||C0([−1,1])c

2
4ε

1−α
)

≥ 2g0 − c2ε
1−α − 32g0(n − 1)2ε2α,

since ϕ(−2εα, τ) ≥ 1 − (n−1)2

ρ(T1)2
(2εα)2, for τ ≤ T1.

If we now assume that Eϕ[h] ≤ 2g0 + c1ε
2α, then the above inequality implies

in addition that the energy corresponding to the complement of the transition
region C := (−ρ, 1 − ρ)\(R1, R2) ∪ (R3, R4) is small∫

C

ϕ|∂Rg(h)| dR ≤
∫

C

ϕ

[
ε

2
|hR|2 +

1
ε
W (h)

]
dR ≤ (c1 + c3)ε2α + c2ε

1−α.

Since ϕ is strictly positive away from R = −ρ, we may conclude that h does not
change sign in (R2, R3), (R4, 1−ρ) and in (−ρ+δ(ε), R1) for some δ(ε) → 0 with
ε. Since R = −ρ corresponds to the origin, there might be at most a transition
zone near the origin, which vanishes in the limit ε → 0.

We are now ready for the

Proof of the Theorem.
If Tε ≥ T1, there is nothing to prove. Suppose that Tε ≤ T1. We recall that

for all τ ≤ T1, we have

(∗) min
(−a,a)

min
τ≤Tε

ϕ(R, τ) ≥ 1
2
.

From the assumptions of the Theorem, it follows that∫ a

−a

|g(wε(R, Tε)) − g(vε)| dR ≤ g(1)
2

εα.
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In addition, since the weighted energy is a Lyapunov functional, we have

Eϕ[wε](Tε) ≤ Eϕ[wε](0) ≤ 2g0 + c1ε
2α.

Therefore the Lemma applies and using the definition of Tε, inequality (∗) and
the energy estimate (EE), we find

g(1)
4

εα =∫ a

−a

|g(wε(R, Tε)) − g(wε(R, 0))|dR

≤
∫ a

−a

∫ Tε

0

|∂τg(wε(R, τ))|dτdR

≤ 2
∫ a

−a

∫ Tε

0

ϕ|∂τwε|
√

2W (wε)dτdR

≤ 2

(
δε1−α

∫ Tε

0

∫ a

−a

ϕ|∂τwε|2dRdτ +
1

δε1−α

∫ Tε

0

∫ a

−a

ϕW (wε)dRdτ

)

≤ 2
(

δ

εα
(Eϕ[wε](0) − Eϕ[wε](Tε)) +

εα

δ
TεEϕ[wε](0)

)

≤ 2
(

δ

εα
(c1ε

2α + c2ε
1−α + c3ε

2α) +
εα

δ
TεEϕ[wε](0)

)
.

Therefore

Tε ≥
(

g(1)
8

εα − δ(c1ε
α + c2ε

1−2α + c3ε
α)

)
δ

εαEϕ[wε](0)

=
(

g(1)
8

− δ(c2ε
1−3α + c1 + c3)

)
δ

Eϕ[wε](0)
≥C(g0, c1, c2, c3),

as long as δ > 0 is chosen sufficiently small and 1 − 3α ≥ 0, i.e. α ≤ 1
3 . This

completes the proof of the Theorem.

Remark. By iterating this proof, we can show that the high multiplicity interface
constructed above exists until ρ(t) reaches the origin. Indeed, by repeating the
proof a finite number of times, we can show that the interface exists up to time
T1. For that, we iterate our argument as follows. We start with the initial data
wε(R, Tε) and we define the next time step T

(2)
ε to be the first time such that

∫ a

−a

|g(wε(R, T (2)
ε )) − g(wε(R, Tε))| dR = 2

g(1)
4

εα.
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This means that we must replace g(1)
4 by 2 g(1)

4 in the statement of the Theorem
and we must replace g(1)

2 by g(1) in the statement of the Lemma. Going through
the proof of the Lemma, we see that at the mth step (∗∗) must be replaced by

|S− ∩ (−(m + 1)εα,−εα)| ≥ m
εα

2
,

and that now R1 ∈ S− ∩ (−(m + 1)εα,−εα). This means that c4 becomes c4√
m

and hence that c2 must be replaced by c2
m . In addition, since ϕ(−(m+1)εα, τ) ≥

1 − (n−1)2

ρ(T1)2
((m + 1)εα)2, we see that c3 becomes c3(m+1

2 )2. Therefore following
the proof of the Theorem, we obtain that at the mth step

T (m)
ε ≥

(
m

g(1)
8

− δ(
c2

m
ε1−3α + c1 + c3(

m + 1
2

)2)
)

δ

Eϕ[wε](0)
≥ C ′(g0, c1, c2, c3),

if we choose δ = δ′ 1
m+1 with a suitably small δ′ = δ′(g0, c1, c2, c3) > 0. In

particular T
(m)
ε is of order one at each step, hence we can reach T1 in finitely

many steps. If we now define times Tk by ρ(Tk) = 1
2k we may reiterate our

argument until ρ(t) has reached the origin.

Remark. As another consequence of the Lemma we see that the limit as ε → 0
of the energy of a phantom interface of multiplicity two is 2g0.

Conclusion

In conclusion, we have shown that there exist interfaces of arbitrarily high
multiplicity by studying the radially symmetric Allen–Cahn flow and adapting
the energy method introduced by Bronsard–Kohn [BK]. In particular, the limiting
geometric curvature motion for the phase boundary does not retain the complete
structure of the evolving interfaces for the PDE.
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