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GENERALIZED MINKOWSKI CONTENT AND THE
VIBRATIONS OF FRACTAL DRUMS AND STRINGS

Christina Q. He and Michel L. Lapidus

Abstract. In [La1], the second author has obtained a sharp error esti-
mate for the eigenvalue distribution of the Laplacian on bounded open
sets Ω ⊂ Rn with fractal boundaries (i.e., ‘fractal drums’). Further, he
and Pomerance [LaPo1,2] studied in detail the case of ‘fractal strings’ (i.e.,
n = 1) and established in the process some unexpected connections with
the Riemann zeta-function ζ = ζ(s) in the ‘critical strip’ 0 < Re s < 1.
Later on, still when n = 1, Lapidus and Maier [LaMa1,2] obtained a new
characterization of the Riemann hypothesis by means of an associated in-
verse spectral problem.

In this paper, we will extend most of these results by using, in particu-
lar, the notion of generalized Minkowski content which is defined through
some suitable ‘gauge functions’ other than the power functions. In the
situation when the power function is not the natural ‘gauge function’, this
will enable us to obtain more precise estimates, with a broader potential
range of applications than in the above papers. Complete proofs of the
results announced here will be provided in [HeLa].

1. Introduction

Let Ω be a nonempty open set in Rn (n ≥ 1), with finite volume and
boundary Γ = ∂Ω. Consider the following eigenvalue problem:

(P )
{ −∆u = λu in Ω

u = 0 on Γ,

where ∆ =
∑n

k=1 ∂2/∂x2
k denotes the Dirichlet Laplacian on Ω.

As is well known, the spectrum of (P) is discrete and consists of a
sequence (λk)∞k=1 of eigenvalues (with finite multiplicity) written in in-
creasing order according to their multiplicity: 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤
· · · , with λk → ∞ as k → ∞. Let N(λ) denote the eigenvalue counting
function of (P); that is, for λ > 0, N(λ) = #{k ≥ 1 : λk ≤ λ}.
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Next, we recall the standard definitions of the Minkowski dimension
and content. (See, e.g., [Fa, La1, Tr].)

Definition 1.1. Given d > 0, the d-dimensional upper Minkowski content
of Γ = ∂Ω is given by

M∗(d; Γ) = lim sup
ε→0+

ε−(n−d)|Γε ∩ Ω|n,(1.1)

where Γε = {x ∈ Rn ∩ Ω : d(x,Γ) < ε}. Similarly, we can define the
lower Minkowski content M∗(d; Γ) by taking the lower limit in ( 1.1 ). The
Minkowski dimension D of Γ is then defined by

D = inf{d : M∗(d; Γ) < ∞} = sup{d : M∗(d; Γ) = ∞}.
Further, we say that Γ is Minkowski measurable if

0 < M∗(d; Γ) = M∗(d; Γ) < ∞ for some d > 0,

and we then call this common value M(d; Γ) the Minkowski content of Γ.
(In this case, it is clear that d = D.)

We say that Γ is ‘fractal’ if D ∈ (n−1, n], and ‘nonfractal’ if D = n−1.
In [La1, Theorem 2.1], Lapidus proved in particular, that if Γ is ‘fractal’

with M∗(D; Γ) < ∞, then Weyl’s asymptotic law with sharp error term
holds:

N(λ) = ϕ(λ) + O(λD/2), as λ → ∞,(1.2)

where ϕ(λ) = (2π)−nBn|Ω|n. Here, |A|n denotes the n-dimensional Lebes-
gue measure of A ⊂ Rn and Bn is the volume of the unit ball in Rn. (For
related results, see, e.g., [BrCa, La2] and the references therein.)

In [LaPo1,2], Lapidus and Pomerance obtained the following more pre-
cise result in the one-dimensional case (i.e., when n = 1): If Ω ⊂ R has
‘fractal’ boundary Γ which is Minkowski measurable and has Minkowski
dimension D ∈ (0, 1), then

N(λ) = ϕ(λ) − c1,DM(D; Γ)λD/2 + o(λD/2), as λ → ∞,

where c1,D is given by

c1,D = 2D−1π−D(1 − D)(−ζ(D)), ϕ(λ) = π−1|Ω|1λ1/2

and ζ(s) is the Riemann zeta-function. Recall (e.g., from [LaPo2]) that

ζ(s) =
1

s − 1
+

∫ ∞

1

([t]−s − t−s)dt, for Re s > 0.(1.3)

Later on, Lapidus and Maier [LaMa1,2] also examined the correspond-
ing inverse spectral problem. They showed in particular the following
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result: Let ρ = D + iν (0 < D < 1, ν ∈ R) be a zero of the Rie-
mann zeta-function. Then there exists an open set Ω ⊂ R of finite length
and with boundary Γ of Minkowski dimension D, such that as λ → ∞,
N(λ) = ϕ(λ) + CλD/2 + o(λD/2), for some nonzero constant C, but Γ is
not Minkowski measurable.

The goal of the present paper is to extend these theorems and related
results in [LaPo2] by using more general ‘gauge functions’ than the power
function in (1.1). This will significantly broaden the potential range of
applications of the above results.

2. Statement of the main results

We now give the generalized definition of h-Minkowski content which
will be used throughout this paper.

Definition 2.1. Let Ω ⊂ Rn be an open set with finite volume and bound-
ary Γ = ∂Ω. Let h : (0,∞) → (0,∞) be a nondecreasing function. The
upper h-Minkowski content of Γ is defined by

M∗(h; Γ) = lim sup
ε→0+

ε−nh(ε)|Γε ∩ Ω|n.(2.1)

We define similarly the lower h-Minkowski content M∗(h; Γ) by taking the
lower limit in (2.1). Further, we say that Γ is h-Minkowski measurable if
0 < M∗(h; Γ) = M∗(h; Γ) < ∞, and denote this common value M(h; Γ)
the h-Minkowski content of Γ.

Clearly, the standard definition (recalled in Definition 1.1) just corre-
sponds to the case when h(x) = xd.
2.1 One-dimensional case (n = 1). In the following, we will extend
the results in [LaPo] and some of the results in [LaMa].

Let Ω be a nonempty open subset of R with finite length |Ω|1 and with
boundary Γ = ∂Ω. We write Ω as the union of its connected components:
Ω = ∪∞

j=1Ij , where the open intervals Ij are pairwise disjoint and of length
lj . Since |Ω|1 =

∑∞
j=1 lj < ∞, we can assume without loss of generality

that l1 ≥ l2 ≥ · · · ≥ lj ≥ · · · > 0. Further, we say that (lj)∞j=1 is the
sequence associated with Ω. Then, with [γ] denoting the integer part of
γ ∈ R, we have

N(λ) =
∞∑

j=1

[ljx], where x :=

√
λ

π
.(2.2)

Let us specify the family of gauge functions that will be used in the
present case when n = 1.
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Definition 2.2. Given d ∈ (0, 1), let Gd be the class of functions h which
satisfy all the following conditions:

(H1). h : (0,∞) → (0,∞) is a continuous strictly increasing positive
function, and limx→0+ h(x) = 0, limx→∞ h(x) = ∞, limx→0+ h(x)/x = ∞.

(H2). For any t > 0,

lim
x→0+

h(tx)
h(x)

= td,

uniformly in t on any compact subset of (0,∞).
(H3). There exist some constants τ ∈ (0, 1), m > 0, 0 < x0 ≤ 1, 0 <

t0 ≤ 1 such that

h(tx)
h(x)

≥ mtτ , for all 0 < x < x0, 0 < t < t0.

One can check that the functions

h(x) =
xd

(ln( 1
x + 1))a

and h(x) =
xd

(ln(ln( 1
x + 1)))a

(2.3)

are in Gd for all d ∈ (0, 1) and a ≥ 0.
Notation. From now on, given h ∈ Gd, we will always let

g(x) := h−1(1/x), f(x) :=
1

h(1/x)
.(2.4)

The following two theorems extend [LaPo2, Theorems 2.1 and 2.2].

Theorem 2.3. (a) Let (lj)∞j=1 be an arbitrary nonincreasing positive se-
quence such that for some h ∈ Gd and some constant L > 0, we have

lj ∼ Lg(j), as j → ∞(2.5)

(i.e., lj/g(j) → L as j → ∞). Then

∞∑
j=1

[ljx] =


 ∞∑

j=1

lj


 x + ζ(d)Ldf(x) + o(f(x)), as j → ∞.(2.6)

(b) In particular, if the sequence (lj)∞j=1 associated with Ω satisfies hy-
pothesis (2.5), then by letting x =

√
λ/π in (2.6), we deduce that

N(λ) = ϕ(λ) + π−dζ(d)Ldf(
√

λ) + o(f(
√

λ)), as λ → ∞,(2.7)

where ϕ(λ) = π−1|Ω|1λ1/2 = π−1(
∑∞

j=1 lj)λ1/2 .
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Theorem 2.4 (characterization of h-Minkowski measurability).
The sequence (lj)∞j=1 associated with Ω satisfies hypothesis (2.5) if and
only if Γ = ∂Ω is h-Minkowski measurable. Further, in this case, the
h-Minkowski content of Γ is given by

M(h; Γ) =
21−d

1 − d
Ld.(2.8)

By combining Theorems 2.3 and 2.4, we obtain the desired extension of
[LaPo2, Corollary 2.3].

Corollary 2.5. Let Ω be an open set of R with finite length such that
Γ = ∂Ω is h-Minkowski measurable for some h ∈ Gd. Then we have

N(λ) = ϕ(λ) − c1,dM(h; Γ)f(
√

λ) + o(f(
√

λ)), as λ → ∞,(2.9)

where c1,d = 2−(1−d)π−d(1 − d)(−ζ(d)). (Note that c1,d > 0.)

The following theorem characterizes the situation when we obtain sharp
remainder estimates. It provides an extension of [LaPo2, Theorem 2.4].

Theorem 2.6. Let Ω be an open subset of R with finite length. Let (lj)∞j=1

be the associated sequence, and let h ∈ Gd for some d ∈ (0, 1). Then the
following assertions are equivalent:

(1) lj � g(j), as j → ∞;
(2) 0 < M∗(h; Γ) ≤ M∗(h; Γ) < ∞;
(3)

∑∞
j=1{ljx} � f(x), as x → ∞;

(4) ϕ(λ) − N(λ) � f(
√

λ), as λ → ∞.
Here, {γ} = γ−[γ] denotes the fractional part of the real number γ. Fur-

ther, ‘v(x) � w(x) as x → a’ means that there exist positive constants c1, c2

such that c1v(x) ≤ w(x) ≤ c2v(x), for all x in some neighborhood of a.

We also obtain the following partial extension of [LaMa2, Theorem 3.2].

Theorem 2.7. Suppose h ∈ Gd is a differentiable function with
xh′(x)/h(x) ≥ µ > 0, for all x > 0 and some constant µ. Furthermore, let
ρ = d+iν (0 < d < 1, ν ∈ R) be a zero of the Riemann zeta-function. Then
we can construct an open set Ω ⊂ R such that Γ = ∂Ω is not h-Minkowski
measurable, but

N(λ) = ϕ(λ) + cf(
√

λ) + o(f(
√

λ), as λ → ∞,

for some constant c < 0. Moreover, 0 < M∗(h; Γ) ≤ M∗(h; Γ) < ∞.
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2.2 Higher dimensional case. Let n be any integer ≥ 2. We will
make the following assumption on the gauge function h in this case:

(C1). h : (0,∞) → (0,∞) is a positive nondecreasing function. More-
over, limx→0+ h(x) = 0, limx→∞ h(x) = ∞.

(C2). There exist constants k1, k2, with 2n−1 < k1 ≤ k2 ≤ 2n, such
that k1h(x) ≤ h(2x) ≤ k2h(x), for all x small.

(C3). h(x) ≤ cxn−1 for some constant c > 0 and for all x small.
(C4). h(x)/xn → 0 as x → ∞.
For example, if h is given by (2.3) with d ∈ (n − 1, n) and a ≥ 0, then

it satisfies (C1)—(C4).
We can now state our extension of [La1, Theorem 2.1] to this setting.

Theorem 2.8 (error estimate). Suppose that h satisfies (C1)—(C4).
Let Ω ⊂ Rn be an open set with finite volume and with boundary Γ = ∂Ω
of finite upper h-Minkowski content; i.e., M∗(h; Γ) < ∞. Then we have

N(λ) = ϕ(λ) + O(f(
√

λ)), as λ → ∞.(2.10)

We will see in Example 4.1 that the above error estimate in (2.10) is
sharp in general.

Full statements and proofs of our results announced here are provided
in [HeLa].
Remark 2.9. After this work was completed, we have learned that a result
analogous to Theorem 2.8—generalizing [La1] Theorem 2.1 along the lines
of [La1] Remark 2.4(e), p. 481 for gauge functions of the type of Eq.
(2.3)—was obtained independently by A. M. Caetano in [Ce2], §5.

3. Sketch of the proof of Theorem 2.3

The following preliminary results are used in the proof of Theorem 3.2
below as well as throughout the proofs of other theorems in §2.1.

Proposition 3.1. Suppose h ∈ Gd for some d ∈ (0, 1). Then:
(i) Let (aj)∞j=1 in (0,∞) be bounded away from 0 and ∞, and let (bj)∞j=1

in (0,∞) be such that bj → 0 as j → ∞. Then we have

lim
j→∞

h(ajbj)
ad

jh(bj)
= 1.

(ii) Suppose (aj)∞j=1 is as in (i) and limj→∞ bj = ∞. Then we have

lim
j→∞

g(ajbj)

a
−1/d
j g(bj)

= 1.
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(iii)

lim
x→∞

∫ ∞
x

g(u)du

xg(x)
=

d

1 − d
.

We now provide a sketch of the proof of Theorem 2.3, which we restate
as follows.

Theorem 3.2. Suppose l1 ≥ l2 ≥ · · · > 0 and lj ∼ Lg(j) as j → ∞,
for some constant L > 0 and h ∈ Gd. Let δ(x) = (

∑∞
j=1 lj)x−

∑∞
j=1[ljx] =∑∞

j=1{ljx}. Then

δ(x) ∼ −ζ(d)Ldf(x), as x → ∞.

Proof. Let J(ε) = max{j ≥ 1 : lj ≥ ε}. Since lj
g(j) = lj

h−1( 1
j )

→
L as j → ∞, by Proposition 3.1(i), we have h(lj)

h(h−1(1/j)) = h(lj)
1/j =

jh(lj) → Ld, as j → ∞. Thus J(ε)h(lJ(ε)) → Ld as ε → 0+. We note that
lJ(ε)

ε → 1 as ε → 0+, and so, by Proposition 3.1(i) again, h(lJ(ε))/h(ε) → 1
as ε → 0+. Hence

J(ε)h(ε) = J(ε)h(lJ(ε))
h(ε)

h(lJ(ε))
→ Ld · 1 = Ld, as ε → 0+.(3.1)

Let k ≥ 2 be an arbitrary fixed integer. We obtain as in [LaPo2, Eq.
(4.16)], upon applying Abel’s summation formula, that

δ(x) = x
∑

j>J(1/x)

lj +
∑

j≤J(k/x)

{ljx} +
k∑

q=2

J( q−1
x )∑

j=J(q/x)+1

{ljx}

=: A + B + C,

where

A := x
∑

j>J(k/x)

lj , B := kJ(
k

x
) −

k−1∑
q=1

J(
q

x
),

C :=
∑

j≤J(k/x)

({ljx} − 1).

We now estimate, for fixed k, each of these terms as x → ∞.
Since −1 ≤ {ljx} − 1 < 0, we have −J(k/x) ≤ C < 0; thus as x → ∞:

0 ≤ −L−dh(
1
x

)C ≤ L−d h(1/x)
h(k/x)

J(
k

x
)h(

k

x
) → L−d · k−d · Ld = k−d.

(3.2)
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Next, we deduce from the definition of B and (3.1) that

L−dh(
1
x

)B → k1−d −
k−1∑
q=1

q−d, as x → ∞.(3.3)

Further, we claim that

L−dh(
1
x

)A → k1−d d

1 − d
, as x → ∞.(3.4)

Indeed, since αj = lj/g(j) → L as j → ∞ and J(ε)h(ε) → Ld as ε → 0+,
we see that for each ε > 0, there is some x0 > 0 such that for all x ≥ x0,
we have αj ∈ (L − ε, L + ε), for all j > J(k

x ). Thus, for all x ≥ x0,

L−dh(
1
x

)A ≤ L−d(L + ε)xh(
1
x

)
∫ ∞

J(k/x)

g(t)dt

= (L + ε)L−dx

(
h(1/x)
h(k/x)

) (
h(

k

x
)J(

k

x
)
)

·

g (J(k/x))

g
(

1
h(k/x)

)

 g

(
1

h(k/x)

) ∫ ∞
J(k/x)

g(t)dt

J(k/x)g (J(k/x))

= (L + ε)L−dx · k−d · Ld · L−1 · k

x
· d

1 − d
(1 + o(1))

= (1 +
ε

L
)k1−d d

1 − d
(1 + o(1)), as x → ∞,(3.5)

where we have used (H2), (3.1), as well as Proposition 3.1 (ii) and (iii) in
the second equality. Similarly, we can prove that

L−dh(
1
x

)A ≥ (1 − ε

L
)k1−d d

1 − d
(1 + o(1)), as x → ∞.(3.6)

Since ε can be chosen arbitrarily small, we see by combining (3.5) and (3.6)
that (3.4) holds.

Thus, for fixed k, by (3.3) and (3.4), we have as x → ∞,

L−dh(
1
x

)(A + B) → k1−d d

1 − d
+ k1−d −

k−1∑
q=1

q−d = wk(d) +
1

1 − d
,

(3.7)

where wk(s) :=
∫ k

1
(t−s − [t]−s)dt (= − 1

1−s + 1
1−sk1−s − ∑k−1

q=1 q−s). It
follows from (1.3) that wk(d) + 1

1−d → −ζ(d), as k → ∞.

Putting (3.2) and (3.7) together, we deduce that limx→∞ L−dh( 1
x )δ(x)

= −ζ(d). This yields Theorem 3.2, and hence Theorem 2.3.
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4. Example

In this section, we illustrate our results by an example which will show
in particular that our estimate in Theorem 2.8 is in general best possible.
Example 4.1 In [Ce1], Caetano constructed the following bounded open set
Ω in R2 (see Fig. 1), which extends Example 5.1′ in [La1]. Let a(x) =
x−1 lnx and let

Ω := ∪∞
j=3(a(j + 1), a(j)) × (−1

2
,
1
2
).(4.1)

a(3)✲

✻

a(4)a(5)a(6)

1
2

− 1
2

Fig. 1 The open set Ω : fractal comb

Let

h(x) =
x3/2

(ln(x−1 + 1))1/2
.(4.2)

It can be shown that h satisfies (C1)—(C4) and 0 < M∗(h; Γ) ≤ M∗(h; Γ)
< ∞. Thus, by Theorem 2.8 above, we have as λ → ∞,

N(λ) − ϕ(λ) = O(f(
√

λ)) = O(λ3/4(lnλ)1/2).(4.3)

We actually obtain a sharp estimate in this case. Indeed, by Corollary
2.15 in [Ce1], we have as λ → ∞,

N(λ) − ϕ(λ) � λ3/4(lnλ)1/2.(4.4)

Similar results, involving a broad range of gauge functions, hold for a
large family of the open sets constructed in [Ce1]. Furthermore, as in [La1],
Examples 5.1 and 5.1′, such examples can clearly be constructed in any
dimension n ≥ 1. In particular, when n = 1, they can be used to illustrate
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many of our results in §2.1. Other examples, related to Theorems 2.3, 2.6
and 2.7, are provided in [HeLa].
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