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CHARACTERISTIC CLASSES AND
MULTIDIMENSIONAL RECIPROCITY LAWS

J.-L. BRYLINSKI AND D. A. MCLAUGHLIN

1. Introduction

In this note, we formulate and prove a non-commutative generalization
of the reciprocity laws of Parshin and Kato in higher dimensional class field
theory [Kat][P1][P4]. This can be regarded as a geometric realization of
the reciprocity laws implicit in the Gersten-Quillen complex in algebraic
K-theory [Q]. We expect this work to be related to the “higher dimensional
Langlands program”, which has yet to be formulated precisely (although
see [Kap]).

Let X be an k-dimensional complex analytic space (possibly singu-
lar). Let F := (Cy € C1 C --- C Cr = X) be a flag of irreducible
subspaces in X, with dim C; = i (we often omit C} from the nota-
tion). For any analytic open set V' C X, we constructed in [Br-M1]
a homology class kpy € Hy(V;Z) and showed that it satisfies the ho-
mological reciprocity law described in Theorem 2.1. Let ¢, denote the
characteristic class of Deligne-Beilinson [Be] which refines the usual p-
th Chern class c¢,. In section 3, we define the non-commutative symbol
< Cp+1 >rFv at the “place” F, by pulling back ¢r41 via the evaluation
map BGL(n,O(V)) x V.— BGL(n,C) and taking the “slant-product” of
the resulting class with kpy. Here O(V) denotes the algebra of holomor-
phic functions on V' and we are viewing GL(n,O(V)) as a discrete group.
It is important to note that the non-commutative symbol is not just a
number, rather it is the cohomology class in H**1(BGL(n, O(V)),C*) of
a degree k + 1 group cocycle on GL(n,O(V)). Since the homology class
kv satisfies a reciprocity law, we obtain

Theorem 1.1. Let V' be an analytic open subset of X. Fix a partial flag
CocCcCy C--CCjC---CC, =X of irreducible complex-analytic
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spaces, where C‘j means that C; is omitted. Then

H < Cht1 >(CoynnsCror), V=1
Cj

in H**1(BGL(n,O(V)); C*), where the product is taken over all irreducible
subvarieties C lying in the chain Cy C --- C C; C --- C C}, and the product
is finite.

We can pass to the limit over all analytic open subsets V', using a de-
scription of (é41)p,v on the level of complexes. Then we can regard the
symbol as a degree k+ 1 group cohomology class for the group of invertible
n X n matrices over the function field C(X). We then obtain reciprocity
laws which take place in HEFL (GL(n,C(X)); C*).

In the case where X has dimension 1, the non-commutative symbol can
be viewed as a 2-group cocycle for a central extension of the loop group of
GL(n,C) (see Remark 3.3). Theorem 1.1 then reduces to the reciprocity law
for loop groups [A-D-K][W]. This was used by Segal [Se| in his construction
of the conformal blocks and underlies the proof of the Verlinde formula [T-
U-Y].

In the case of GL(1,C), one replaces ¢;+1 by é’f“—the k + 1-st power
of the universal first Chern class. We explain in section 4 how to obtain
the Parshin-Kato symbol from < ¢! >py,. This recovers our geometric
proof of the higher-dimensional reciprocity laws of class field theory given
in [Br-M 1]. When k = 1, we obtain the usual tame symbol

pr(g)

A e [

associated to the two meromorphic functions f, g at the point p [D].

In case X has dimension 2, there is a geometric construction of kg,
which allows one to give a formula for the non-commutative symbol as a
3-cocycle on the double loop group LL GL(n,C). We also apply Theorem
3.1 to construct a central extension of GL(n,O(V)) for a Zariski open set
V' §5. Our construction is really an application of the simplicial structure
on the two-dimensional adeles [P3], although we do not use this language.
It would be fasinating to explore the significance of this central extension
in non-commutative class field theory.

2. The homology class associated to a flag

This is a brief summary of the material in §3 of [Br-M1]. Fix a complete
flag F = (Cy C C; C -+ C Cx—1 C Cr = X). We say that an open set
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U C X is analytic if its complement is a closed analytic subset. Let S; be
the set of analytic open subsets of X satisfying:

(a) UNCj is non-empty (hence dense in Cj);

(b) UNCj_; is empty.

We say that two open sets Uy, Us in S; are j-equivalent (written Uy =,
Ug), if Uy N Cj =Us N Cj.

Let T); be the set of 2j+2-tuples of open sets (Up, Vp, ...., U;, V;) satisfying
the conditions:

(c) Ui, V; belong to S;

(d) Ur = Vi

(€) Vica\ (VieanCi—y) C U, for 1 <1< 5.

Using the exact sequence associated to a triple, it is easy to see that for
each [, these conditions guarantee the existence of a boundary map

0 Hy(Ui—1, U1 \ (Ui-1 N Ci21)) — Hip—1 (UL, U\ (U N CY)).

Now we can define the homology class kK, associated to the flag F' and
any V € Sg. Let us denote the point Cy by p. Note that Sy consists of
those analytic open sets U containing p, and for each such U, we have the
fundamental class o, € Ha,(U,U \ {p}). It is not hard to see that there
exists an element (Up, Vo, ...., Uk, Vi) in T}, with Vi, = V. By composition
of the boundary maps J;, we then obtain the class kpy 1= 0 - ....- Jp(0p) in
Hy(V;Z). In Proposition 3.5 and Theorem 3.6 of [Br-M1], we proved the
homological reciprocity law:

Theorem 2.1. Let V be an analytic open subset of X and let Cy C Cp C
-+ CCj—1 CCjp1 C--- CCr—1 be a partial flag in X. Then

E /£F7V =0
C;j

in H,(V;Z), 0 < j <k — 1, where the sum is taken over all j-dimensional
irreducible subspaces lying in the chain Co C --- C C; C --- C Cy and the
sum is finite.

When X is one-dimensional, a flag F' is just a point p and kr can be
realized as the homology class of a small loop encircling p.

In case X has dimension 2, there is also a geometric construction of
Kkr,v, which was used by Parshin in his work on two-dimensional residues
[P2]. In this situation, a flag F' is a pair (p,C) consisting of a point p on
an irreducible curve C in X. Let B.(p) be a ball of radius e centered at
p. Then for € small enough, B (p) intersects C' transversally in a link K,
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with one component of the link for each branch of C' through p. Now take a
d-neighbourhood Njs(K.) of the link in dB.(p). For 6 << ¢, the boundary
of N5(K.) is a link of disjoint tori ¢; : S* x ST — X \ C. By choosing ¢, §
small enough, we can arrange for each ¢; to lie in any open set V € Si.
It is not hard to see that the homology class in Hy(V;Z) determined by
>, ¢i coincides with kg . This type of description generalizes to higher
dimensions.

3. The non-commutative symbol

Recall the Deligne complex of sheaves [Be| on a complex manifold X:

Z(p)p :=7Z(p) — O — Ql — ... Qp_I’
where O denotes the sheaf of holomorphic functions, Q* denotes the sheaf of
holomorphic i-forms and Z(p) := (27i)PZ. The hypercohomology H*(X;Z
(p)p) of this complex is called the Deligne cohomology. It can be defined
for any simplicial complex-analytic manifold. The Deligne-Beilinson coho-
mology is defined for algebraic manifolds in a similar but more delicate
way, using holomorphic forms with logarithmic poles along the divisor at
infinity of a suitable compactification [Be].
The exponential map induces an isomorphism

HZ(—,Z(]?)D) >~ Hi_l(_; O*@)Ql NN Qp—l)‘

Moreover, for any k-dimensional complex-analytic manifold X, exterior
differentiation induces an isomorphism

HAX; 0" = Q' — ... = QF) =S HAN(X;CY) (3-1)

between the Deligne cohomology group H*+!(X;Z(k +1)p) and the usual
cohomology group H*(X;C*).

Using Deligne-Beilinson cohomology and mixed Hodge theory on the
simplicial scheme BGL(n,C),, Beilinson [Be] has introduced Chern classes
¢y € H*(BGL(n,C)e; Z(p)p), which map to the usual Chern classes under
the projection Z(p)p — Z(p).

Let X be a k-dimensional complex-analytic space and let F' = (Cy C
Cy C --- C Cy) be a fixed flag. For any smooth open set V' € S, let kp v
be the corresponding homology class in Hy(V;Z) constructed in section
2. There is a natural morphism of schemes ev : V x BGL(n,O(V))s —
BGL(n,C),, which in degree d is given by the obvious evaluation map
evg : V x GL(n,0(V))* — GL(n,C)¢. Here we view GL(n,O(V)) as a
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discrete group, so that V x GL(n,O(V))? is a disjoint union of complex
manifolds, each of which is isomorphic to V.
We now describe a natural pairing (a sort of slant-product):

Hi(V,Z) @ H™(V x BGL(n,O(V))e, Z(k+ 1)p) —

H™ ®BGL(n,O(V))s,Z(1)p).

First we map the Deligne complex Z(k+1)p to the smooth Deligne com-
plex [Br] Z(k 4+ 1)%, in which holomorphic differential forms are replaced
by smooth ones.

Let U = (U;) be an open cover of V' by contractible Stein open sets all
of whose partial intersections are empty or contractible. Given a smooth
map o : A? — V with ¢ < k, there is a natural map (integration over the
simplex o)

CUU x GL(n,O(V))", Z(k + 1)) — T(GL(n,O(V)) 1, C*),

where C is the degree g-term of a Cech double complex. We next introduce
the complex K*® of V such that K9 = Z[Mapsm (A?, V)] when 0 < ¢ < k
and 0 otherwise. We have a triple complex with (p, ¢, r)-term K 9@ CP (U x
GL(n,O(V))",Z(k + 1)p). We consider the associated single complex and
construct a morphism of complexes

Spgirem K~7® CP(U x GL(n,O(V))", Z(k + 1)) —
[(GL(n,O(V))™= C*).
On cohomology, this induces a pairing
Hy(V.Z) ® HP(V x BGL(n, O(V)), Z(k +1)p) —

HP~1"Y(BGL(n,O(V)),C").
This is analogous to similar constructions of regulators in [Be| and in

[So].

We can now define the non-commutative symbol
< épy1 >pve HMYBGL(n,O(V)),,C*)

at the place F. It is equal to the slant product of kpy € Hy(V,Z) and of
the pull-back class

ev ey € H*2(V x BGL(n,O(V))e; Z(k +1)p).
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It is an important feature of our approach that the symbol is a group coho-
mology class for the discrete group GL(n, O(V')). Theorem 2.1 immediately
implies Theorem 1.1 in the Introduction.

Remarks 3.2.

(a) When X is algebraic, Theorem 1.1 can be viewed as a geometric
realization of the reciprocity laws encoded in the following piece of the
Gersten-Quillen complex in algebraic K-theory [Q]:

d o
Brexe-i-0 K11 (C(2) —@pe x -0 K (C(z))—
Brex -+ Kj1(C(x)),

followed by an iterated residue map. Here X (9 denotes the set of irreducible
subvarieties of codimension . This relation between algebraic K-theory and
the non-commutative symbol can be seen by comparing our constructions
to Soulé’s approach to the regulator map [So].

(b) The local symbol can be extended to a cohomology class < éx1 >y,
of the group Map(V, GL(n,C)) of smooth maps V' — GL(n,C). To see this,
one uses throughout the smooth Deligne complex Z(k)%. The details are
left to the reader. The cohomology class < éx1+1 >7y, is called the smooth
symbol.

(c) When k = 1, the class kpy is represented by a loop ¢ : S — V
encircling the point p = F. By naturality, the smooth symbol at the place
p can be computed by pulling back via ¢ to the circle. The local sym-
bol is then a 2-group cocycle for the loop group L GL(n,C) and therefore

represents a central extension LGL(n,C) of L GL(n,C) by C*. Theo-
rem 1.1 implies that this extension has the following property: for any
Riemann surface > whose boundary 9% is a disjoint union of circles, the

extension M ap(@ET,\G/L(n, C)) induced by Baer multiplication of the exten-
sions LGL(n,C) on each boundary component, splits when pulled back to
Hol(X,GL(n,C))-the group of holomorphic maps of ¥ to GL(n,C). This is
the notion of reciprocity used in conformal field theory [A-D-K]|[Se][W][Br-
M2].
4. Recovering the Parshin-Kato symbol
First recall that Z(p)p comes equipped with a cup-product [Be]

Z(p)p ® Z(q)p — Z(p + q) D,

which refines the usual cup-product in ordinary cohomology. We may there-
fore consider the (k + 1)-st power of the universal first Chern class;

&l e HPHY(BCE; Z(k +1)p) = H*TY(BCE 0" — Q' — ... — QF).
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For any simplicial space X,, let X¢>; denote its truncation in degrees
> k. Since the first Chern class ¢; really lies in H?(BC}~,,Z(1)p), its
(k 4 1)-st power lives in H**2(BCj., ;Z(k + 1)p). Notice that as the
truncated simplicial manifold BC}.,,, starts with (C*)**!, we have an
edge homomorphism

e: H*2(BClyp 413 Z(k + 1)p) — HF((C)* 1 Z(k + 1)p),

arising in the spectral sequence for hypercohomology of a simplicial mani-
fold.

To give a concrete description of the class, let (wq, ..., wk41) denote the
standard coordinates on the (k + 1)-fold Cartesian product C* x --- x C*.
In view of the isomorphism H°(—;0*) = H'(—;Z(1)p), we can regard
each w; as a 1-cocycle for Z(1)p. Taking the cup-product wy U .... U wgy1
then defines a class in H**1((C*)**!;Z(k + 1)p), which we denote by
(w1, ..., wg+1]. We have

Proposition 4.1. The class (w1, ..., wx11] € H*L((C*)* L Z(k+1)p) is
the image of ¢¥ € HF+2 (BCyspy1;Z(k+1)p) under the edge homomor-
phism e : H***2(BCj,;  ; Z(k + 1)p) — HM((C)" Z(k +1)p).

It is easy to see that the “slant product” of ev*é'f“
mined by its image under e. This leads to...

with kpy is deter-

Theorem 4.2. Let F be a fized flag in X and V' an analytic open subset of
the complement of F. For any k + 1-tuple (f1, ..., fx+1) of invertible holo-
morphic functions on V', we may regard the cup-product (f1,...., fx+1] as a
class in H*(V;C*) using the isomorphism (3-1). Let [(f1,.., fer1], KFV]
denote the non-zero complex number obtained by pairing this cohomology
class with the homology class kpy of §2. Then the function

OV) x..xOV)" —-C*

defined by
(f1yoos for1) —< (f1s oo froqr1] BEV >

is a group (k + 1)-cocycle, whose cohomology class in H*1(BO(V)*;C*)
coincides with the symbol < ¥ >p .

Now we recall the Parshin-Kato symbol [P4]. Suppose for simplicity
that the flag F = Cy C C; C --- C Cr = X is such that C; is irreducible
along C;_; for all i. Introduce valuations vy (f),...,vx(f) associated to
a meromorphic function f as follows; v1(f) is just the order of f along
Ck-1. To define vy, choose a meromorphic function z; with vy(2z1) = 1.
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Then f - 2z, U1l can be restricted to a meromorphic function on C_o
and vy(f) is just the order of this function along Cj_o. To define vs,
choose z9 satisfying v1(2z2) = 0 and vy(22) = 1, so that f - zfvl(f) . z;w(f)
can be restricted to a meromorphic function on Cy_3. Set v3(f) equal
to the order of this function along C_3. Proceeding in this manner, we
obtain k valuations vy, ...,v5. These are not intrinsic; different choices for
the functions z; satisfying v;(z;) = 6;; (Kronecker delta) induce “gauge
transformations” v, — vy + 11 -v1 + ... + lin—1 - U;m—1, for some integers ;.
However, if we set

K(fisoo fre)ri= Y O wlf)Q_vilf2) -~ QO vilfr1))s

Ic{1,...,k} iel el iel

then it is easy to verify that the sign (—1)¥# is independent of the choices
of the z;.

Definition 4.3. Let fi,..., ft41 be k + 1 meromorphic functions on X.
The Parshin-Kato symbol { f1, ..., fe+1}F is defined by the expression

—1 i+ll/ ,...,Ai,..., :
[(_1)KHfi( ) (f15000f karl)]F7

1

where v(g1,...,gx) is defined to be the determinant of the k x k-matriz
(vi(g;)). The expression inside the square brackets has all valuations vy, .
.., Vg equal to zero and can therefore be evaluated at the point Cy of the flag.
The square brackets are used to denote this evaluation. If the flag F' is not
irreducible, then the symbol is defined by taking a product of such expres-
sions over all the irreducible components of F'. When k = 1, Definition 4.3
reduces to the usual formula for the tame symbol given in the introduction.
In [Br-M1], we showed the following.

Theorem 4.4. Fiz a flag F and k 4+ 1 meromorphic functions fi, ..., fxt+1
on X. Let V be an analytic open set in the complement of Cx_1 and of the
divisors of the functions f;. Then the Parshin-Kato symbol at the place F
is equal to the pairing < (fi,..., fx+1], KEv >.

The reciprocity laws of higher dimensional class field theory [Kat|[P4]
now follow directly, up to a root of unity, from Theorem 2.1.. Using Theo-
rem 4.2 we may conclude:

Theorem 4.5. Let V' be an analytic open subset of the complement of
Cr—1 and of the divisors of the meromorphic functions fi,..., fx+1. The
assignment

(frses Jowr) — {f1s s fogrtr € C

determines a cohomology class in H**1(BO(V)*; C*) which coincides with

~k+1

< >FV-
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5. The two-dimensional theory

Suppose that X is an irreducible complex analytic space of dimension
2, so that a flag F' in X is a pair (p,C) consisting of a point p on an
irreducible curve C. Let V be an analytic open subset of the complement
of . We now give an explicit formula for the local symbol < é3 >py.
Suppose for simplicity that C' is locally irreducible in some neighbourhood
of p. We saw in §2 that the homology class kpy € Ha(V;Z) can then be
represented by a map ¢ : St x St — V. By naturality, we may pull back to
the torus via the map ¢, so that the local symbol can be realized as a group
3-cocycle on the double loop group LL GL(n,C). We have Beilinson’s
third Chern class é3 € HS(BGL(n,C)e;Z(3)p). Let gi(s,t),i = 1,2,3 be
elements of LL GL(n,C) = Map(R?/Z? GL(n,C)). We assume n > 3
and we work with the homogeneous space GL(n,C)/GL(2,C). Note that
GL(n,C)/GL(2,C) is 4-connected and we have

H5(GL(n,C)/GL(2,C),Z) = H*(GL(n,C),Z) = Z.

Let v be a closed GL(n,C)-invariant 5-form on GL(n,C)/GL(2,C) whose
cohomology class is the generator. Let 1 € GL(n,C)/GL(2,C) denote the
base point. For three elements (g1, g2, g3) of LL GL(n,C), we construct a
smooth mapping o, g, 45 : T2 x A% — GL(n,C)/GL(2,C) as follows. For
g € LL GL(n,C), and for (s,t) € T?, choose a path 7,(s,t) from 1 to g(s, )
inside GL(n,C)/GL(2,C).

Since GL(n,C)/GL(2,C) is 2-connected, we may assume that the paths
T4(s,t) depend smoothly on the parameters s and ¢. For each pair (g1, g2),
and for each fixed (s,t), the composition of paths 74, * [g1 - 7g,] ¥ 7, ,, is a
loop in GL(n,C)/GL(2,C). Since GL(n,C)/GL(2,C) is simply-connected,
this loop bounds a 2-simplex 7, 4,(s,t). Since GL(n,C)/GL(2,C) is in
fact 3-connected, we may assume that 7y, 4,(s,t) depends smoothly on
(s,t). Now, for fixed (s,t), and for (¢1,92,93) € LL GL(n,C) there
are four possible 2-simplices whose vertices are 1, ¢1(s,t), g2(s,t), g3(s,t);
these four simplices are the boundary of a tetrahedron oy, g,.4,(s,t) in
GL(n,C)/GL(2,C). Since GL(n,C)/GL(2,C) is 4-connected, we may pick
Tgs.92.95 (5, 1) to be a smooth function of (s,t). Then we view oy, 4, 4, as a
smooth map S! x 1 x A% — GL(n,C)/GL(2,C), where A3 is the standard
3-simplex. Using to these constructions we can prove:

Theorem 5.1. Let v be an invariant 5-form on GL(n,C)/GL(2,C) which
transgresses to the third Chern class. The assignment

(gl(sat)792(37t)7g3(87t)) I exp(?n’i/ 0217927931/)
S1xS1xA3
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defines a degree 3 group cocycle on the double loop group LL GL(n,C) with
coefficients in C*. The corresponding cohomology class in H},.,,.,(LL GL
(n,C);C*) is independent of the choices involved in constructing o and

coincides with the local symbol < é3 >3y,

Let us recall that for any discrete group G, the 3-dimensional cohomol-
ogy group H, Smup(G; C*) can be interpreted as the group of equivalence
classes of abstract kernels [E-M]. An abstract kernel is a pair (6, L) con-
sisting of a non-abelian group L with center C*, together with a homo-
morphism 6 : G — Out(L). Given such a kernel (6, L), the obstruction
to the existence of an extension of G by L with “group of operators” 0,
defines a class in H,,,,(G;C*). Eilenberg and Mac Lane showed that all
elements of H3,,,.(G;C*) arise as obstructions in this manner. If an ex-
tension exists corresponding to some abstract kernel, we will refer to it as
an object of the kernel. If we have some extension 1 - A —- F — G — 1
corresponding to a given abstract kernel, then any other such extension
is obtained by twisting F by a central extension of G by C*. There is a
natural product of abstract kernels, as well as a notion of equivalence of
kernels. The group of equivalence classes of abstract kernels identifies with
the group Hp,,,,(G; C*).

Let V be a fixed analytic open subset of the two-dimensional complex
analytic space X. In [Br-M1], we showed that there are only finitely many
flags F' = (p, C) for which the corresponding homology class ;)1 is non
trivial. Let Sy be the set of points which occur in these flags, and let S
be the set of curves which occur. For simplicity, we fix a kernel (Lp,60r)
for each flag F' = (p, C) where p € Sy and C' € C;. The reciprocity laws of
83 admit the following strengthening:

Proposition 5.2.
(i) For each p € Sy, there exists a canonical object E, of the product

abstract kernel HCap,Cesl (Lp,cy, Op,0))-
(ii) For each C € Sy, there exists a canonical object Ec of the product

abstract kernel Hpec,peso (Lp,cy, Op,0))-
The proof uses the language of simplicial gerbes [Br-M2| rather than the

language of kernels.
We may then consider the abstract kernel given by the double product

11 (Lp,c),0p,0))-
(pvc)pESOaCGSI

There are now two ways to obtain an object of this product kernel. On
one hand, we can consider the product [[~, FE¢ of the local objects Ec
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corresponding to the curves C' which belong to S7. On the other hand, we
can take the product Hp E,, where the product ranges over all points p
which belong to Sp. Since we have two objects of the same trivial kernel
(with the same group of operators), it follows that they differ by a unique
central extension of GL(n, O(V)) by C*.

We briefly explain how to find a group 2-cocycle ¢ for the central exten-
sion of GL(n,O(V)). For each pair (p,C) € Sy x S1, we have a 2-torus
bp,cy- For g1,92 € LL GL(n,C) we have the map

Ngr,g2 (0, C) St x St — Map(A2,GL(n, C)/GL(2,C)).

By triangulating S' x S', we obtain a 2-cycle (also called 7y, 4, (p,C)) in
Map(A?,GL(n,C)/GL(2,C)). Then for each p € Sy we construct a 3-chain
ag,.9,(p) in Map(A%,GL(n,C)/GL(2,C)) whose boundary is ZCB}? Ng1,g2
(p, C); similarly for each C' € S; we construct a 3-chain by, 4,(C) in
Map(A?%,GL(n,C)/GL(2,C)) whose boundary is > pec Mgiga(p: C). The
construction of these a and b’s is similar to that done at the beginning of
the section. Then

v(g1,92) = Z agy,g:(P) — Z bgy,9.(C)

pESo pES]

is a 3-cycle in Map(A?%,GL(n,C)/GL(2,C)). Note we can integrate a 5-
form on GL(n,C)/GL(2,C) over vy, 4,. Then we put:

c(g1,92) = exp(2mi - / V).

Vg1,92

The construction of the central extension of GL(n, O(V')) depends on the
choice of the system of curves and of points. In fact, it is very likely that the
central extension is trivial if the open set V is Stein; so the central extension
should be viewed as a semi-local (or semi-global) invariant attached to a
system of curves and points.
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