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GENERAL WALL CROSSING FORMULA

T. J. Li and A. Liu

Introduction

Let M be an oriented four-manifold. Given a Riemannian metric g and
a spinc structure L on M , there are associated spinc bundles S+ and S−
and a canonical isomorphism

τ : End(S+) −→ Λ+ ⊗ C.

The Seiberg-Witten equations [W] are equations for a pair (A, ψ), where A

is a connection on L = det(S+) and ψ is a section of S+. These equation
read

DAψ = 0 and P+FA =
1
4
τ(ψ ⊗ ψ∗)

where DA : Γ(S+) −→ Γ(S−) is the Dirac operator on the spinc bundle
and P+ : Λ2T ∗X −→ Λ+ is the orthogonal projection. It is quite useful to
consider perturbations which are of the form

DAψ = 0 and P+FA =
1
4
τ(ψ ⊗ ψ∗) + µ

where µ is a fixed, imaginary valued, anti-self-dual 2-form on M . (The
notation is from [T].)

The Seiberg-Witten invariant SW (L) for the given spinc structure L is
obtained by making a suitable count of solutions. The group C∞(M ;S1)
naturally acts on the space of solutions and acts freely at solutions where
ψ is not identically zero. The quotient is the moduli space and is denoted
by M. Fix a base point in M and let C∞

0 (M, S1) denote the group of
maps which map said point to 1. Let M0 denote the quotient of the space
of solutions by C∞

0 (M, S1). M0 is called the based moduli space. When

Received July 14, 1995.

797



798 T. J. LI AND A. LIU

M is a smooth manifold, the projection M0 −→ M defines a principle
S1-bundle.

By a theorem of Uhlenbeck ([FU]), when b+
2 ≥ 1, the space of solutions

will contain no points where ψ ≡ 0 for a generic metric or choice of µ as
long as c1(L) is not rationally trivial (here generic means off of a set of
codimension b+

2 ). For a Baire subset of µ in C∞(Λ+), M will be a compact
smooth orientable manifold of dimension d = 1

4c1(L)2− 1
4 (2χ(M)+3σ(M)).

For such a µ, the Seiberg-Witten invariant SW (L) is defined as follows: 1.
if d < 0, then the SW invariant is zero; 2. if d = 0, then M is a finite union
of signed points and the SW invariant is the sum of the corresponding of
±1’s; 3. if d > 0, the SW invariant is obtained by pairing the fundamental
class of M with the maximal cup product of the Euler class of the S1-bundle
M0 −→ M.

So, when b+
2 > 1, the value of SW (L), a cobordism invariant of M,

is independent of the choice of metric and perturbing form µ. It only
depends on L up to isomorphism. However, when b+

2 = 1, for two generic
pairs (g, µ)0 and (g, µ)1, it is possible that a generic smooth path of pairs
(g, µ)t with these two pairs as end points cannot avoid a bad pair (g, µ)cr

where ψ ≡ 0 solutions occur. So singularity occurs in the cobordism and
breaks the invariance of SW (L). But it is believed that the jump of SW (L)
can be analyzed and there should be some wall crossing formulas.

The wall crossing formula of Seiberg-Witten invariants for four-manifolds
with b+

2 = 1, b1 = 0 and zero-dimensional moduli spaces was given by
Kronheimer and Mrowka [KM] in their proof of the Thom conjecture. In
this paper, we prove the general wall crossing formula for four-manifolds
with b+

2 = 1. Many interesting applications will appear in [LL].
To state our results, we need to introduce more notations. Let G denote

the product of the space of metrics on M and C∞(Λ+). Let r(t) denote
a path in G with two end points r0 and r1. Suppose rcr is the only point
on the path such that ψ ≡ 0 solutions occur. We first prove the follow-
ing proposition (Prof. Taubes kindly informed us that Proposition 1.1 was
known to Kronheimer and Mrowka, we only include it here for complete-
ness):

Proposition 1.1. Let M be an oriented four-manifold with b+
2 = 1 and

b1 = 0, then the SW invariant of a nonnegative dimensional moduli space
jumps by ±1 when it crosses the wall,

SW (L, r1) − SW (L, r0) = ±1.
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Then we prove our main results in this paper.

Theorem 1.2. Let M be an oriented four-manifold with b+
2 = 1 and b1

even, and L ∈ H2(M ;Z) a spinC structure with dimM(L) ≥ 0, then after
crossing a wall, SW (L) changes by

±(
1
2
(Ω2 · L)[M ])b1/2/(b1/2)! [T b1 ]

where
Ω = c1(U) =

∑
i

xi · yi

U is the universal flat line bundle over T b1 × M , {yi} is any basis of
H1(M ;Z) modulo torsion, and {xi} is the dual basis in H1(T b1 ;Z).

Corollary 1.3. Let M be as in Theorem 1.2. Then there exists a basis
{yi} depending on L such that the b1 × b1 matrix G with entries given by
(yiyj

L
2 )[M ] has the form


0 d1 · · ·

−d1 0 d2 · · ·
0 −d2 0 · · ·
· · · · · · · · ·




and SW (L) changes by ±
∏b1

i=1 di.

Corollary 1.4. Let M be an S2-bundle over a Riemann surface Σ of genus
g or some multiple blowup, and E ∈ H2(M ;Z) with dimM(K−1+2E) ≥ 0.
Then, after crossing a wall, SW (E) changes by

±
(

C1(M) + 2E

2
[S2]

)g

where [S2] is the homology class represented by the fiber.

Combined with Taubes’s results on Seiberg-Witten invariants of sym-
plectic manifolds ([T]), we get

Corollary 1.5. If M is a symplectic four-manifold with b+
2 = 1 and has

metrics of positive scalar curvature, then all the di for the anticanonical
bundle associated to the symplectic structure are ±1.

Corollary 1.6. If M is a symplectic four-manifold with b+
2 = 1 and there

is a y ∈ H1(M ;R) which annihilates H1(M ;R) by cup product, then M

does not have any metric of positive scalar curvature.

Notice that under the assumption of Corollary 1.5, the wall crossing
number is zero for all line bundles, hence Seiberg-Witten invariants are
still smooth invariants of the underlying manifolds.
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Proof of wall crossing formula

In the case b1 = 0, the wall crossing formula was proved for dimension
zero classes by Kronheimer and Mrowka [KM]. We first adapt their ar-
gument to prove the wall crossing formula of higher dimensional classes.
Then, we are going to prove the wall crossing formula when b1 �= 0.

In discussing the wall crossing formula, we need to know what happens
near the reducible solution. The basic fact is the following proposition of
local model.

Proposition 2.1. If (A, ψ) is a solution of the SW equation over a four-
manifold M , a neighborhood of (A, ψ) in M is modelled on a quotient
φ−1(0)/Γ(A,ψ) where

φ : Ker δ ⊕ KerDA −→ Coker P+d ⊕ Coker DA

is a ΓA,ψ-equivariant map, δ = d∗ + P+d and ΓA,ψ is the isotropy group of
the solution.

This proposition is the analogue of Proposition 4.2.23 in [DK] for ASD
connections and is used by Kronheimer and Mrowka in their proof of the
Thom conjecture. If b1(M) = 0, the idea is to separate the PDE system
P+FA = 1

4τ(ψ ⊗ ψ∗) + rµ, DAψ = 0 into two parts in the Banach space,
then after cut by the first part (transcendental part), the PDEs can be
reduced to equations in finite dimensional spaces.

We are mainly interested in the case where ψ = 0, ΓA,0 = S1. The local
model of the cobordism near the reducible solutions looks like φ−1(0)/S1

where

φ : R ⊕ H1(M ;R) ⊕ KerDA −→ Coker P+d ⊕ Coker DA

is S1-equivariant and R is the parameter direction (note that this map is
not exactly the map φ in Proposition 2.1, nevertheless, we still denote it by
φ). As discussed in KM’s paper, we can merely perturb the cobordism (the
deformation) such that the R factor maps to CokerP+d ∼= R with nonzero
differential. Therefore, for our purpose we can assume φ is a map from
H1(M ;R)⊕KerDA to Coker DA. Reducible solutions are parametrized by
(not canonically) the torus H1(M ;R)/H1(X;Z) and have S1 as stabilizer,
while irreducible solutions have trivial stabilizer.

Now, we prove Proposition 1.1.
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Proposition 1.1. Let M be an oriented four-manifold with b+
2 = 1 and

b1 = 0, then the SW invariant of a nonnegative dimensional moduli space
jumps by ±1 when it crosses the wall,

SW (L, r1) − SW (L, r0) = ±1.

Proof. Since the zero-dimensional case was exclusively dealt with in [KM],
we assume that the dimension of the moduli space d is positive. Let us
denote the SW moduli space of class E with deformation parameter r by
M(E, r), and the based moduli space by M0(E, r). If there is no wall, then
B =

∐
r0≤r≤r1

M(E, r) forms a smooth cobordism. Let e be the Euler class
of the S1-bundle; the invariant is defined to be

SW (E, ri) =
∫
M(E,ri)

ek,

where 2k = dimM(E, r). As observed by several people, Stokes theorem
shows the invariance of SW.

On the other hand, if the singular point (unique) actually shows up,
then B is no longer a smooth manifold. Let B0 =

∐
r0≤r≤r1

M0(E, r),
then B(E, r) can be described as the S1 quotient of the based cobordism
B0(E, r). The neighborhood of the unique reducible solution in the based
cobordism locally looks like Ck+1 and therefore after taking S1 quotient
the punctured neighborhood, we obtain CP k. This implies

SW (E, r1) − SW (E, r0) = ±1.

The proof of Proposition 1.1 is complete. �

Remark. The above calculation can be interpreted homologically via the
map M −→ A× (Γ(E ⊕ K−1 ⊗ E) − 0)/S1.

In general, if b1 �= 0, the reducible solutions are parametrized by the
torus H1(M ;R)/H1(M ;Z), where H1(M ;Z) is naturally isomorphic to the
group of components of the U(1) gauge transformations. In this case, we
must glue the local pictures from points to points, and finally the cobordism
near the reducible solutions can be described by the following data.

KerDA
φ−→ Coker DA

↘ ↙ ∗
H1(M ;R)/H1(M ;Z)
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Then φ−1(0) is the neighborhood of T b1 (the reducible solutions) in the
cobordism.

Notice that the dimensions of KerDA and CokerDA can jump. Later
we will use a somewhat standard method to deal with this phenomenon.
Unlike the corresponding case of b1 = 0, the torus is not always imbedded
in the cobordism. It often happens that only some subvariety (possibly
singular) in T b1 actually contributes to wall crossing. Especially when b1

is large, the geometry can be extremely complicated. It is very hard to
understand how the torus “interacts” with the cobordism and calculate
the contribution directly.

We will not argue the wall crossing formula directly case by case. In-
stead, we are going to propose a wall crossing formula which holds in special
cases, and later we will show it is true in general.

The following is our plan:

1. Assume that the “index bundle” does not jump. Under this as-
sumption, we propose a wall crossing formula which would be true
if the dimension of the cobordism is big enough and the torus is
imbedded into the cobordism.

2. Show that the formula still holds without the assumption that the
torus imbeds into the cobordism.

3. Remove the assumption that the “index bundle” is of constant rank.

In the following, we will denote KerDA by V+ and CokerDA by V−.
The simplist case is that V− = 0. In this case, (*) tells us that the torus
itself is imbedded in the cobordism as the zero section. Removing the zero
section and dividing by the S1-action, we find that the new end E of the
cobordism is a projective bundle P (V+) over the torus and the Euler class
of the S1-bundle comes from the Euler class of the tautological line bundle
of the projective bundle.

S ↪→ π∗
+(V+)

φ−→ π∗
+(V−)

↙ ↓ ↙ ↓
V+ P (V+) V−

π+

↘
�π+

π−
↙

T b1

If V− ≡ 0, then the torus (reducible solutions) imbeds into the whole
cobordism as a singular set. As can be seen easily, if in this case T b1 imbeds
in the cobordism with trivial normal bundle, then

∫
E edim E/2 = 0 and the
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invariant does not jump. Then the most important question is to ask when
the normal bundle is trivial. The normal bundle is V+ in this case since
V− ≡ 0. We can calculate the Chern classes (see Lemma 2.5); let us see
what this tells us. The new end of the cobordism looks like a complex
projective space bundle over T b1 , and the invariant jump is calculated by
±

∫
P (V+)

eb1/2+dimC V+−1. Since in this case the SW moduli spaces must be
of positive dimensions and we only care about the change up to sign, it is
the same as

∫
P (V+)

Hb1/2+dimC V+−1 where H is the hyperplane line bundle
on the projective bundle P (V+). It is fairly easy to calculate it using the
universal relation ([BT]).

Now, let us take the bundle V− into the picture. The easy case is that
φ maps surjectively onto V−. Then Kerφ is an honest bundle which is
equivalent to V+−V− and we reduce to the previous calculation. In general,
V− is viewed as the obstruction bundle. The strategy is to cut the fattened
moduli space by the zero set of the obstruction bundle, as was done in
gauge theory, symplectic geometry or Mirror symmetry. More precisely,
cut P (V+) by a generic section of π∗

+V− ⊗C H. If the zero set is zero-
dimensional, we count the signed points. If it is of positive dimension, we
calculate

∫
E edim E/2, because E imbeds into P (V+) and the Euler class e

of the S1 bundle comes from the pull back of −c1(H). Moreover, the zero
section is Poincare dual to the Euler class of π∗

+V− ⊗ H in P (V+). So we
propose the formula of invariant jump ±

∫
P (V+)

Hb1/2+p−1−qcq(V− ⊗ H).
We absorb all the signs into a single sign in front of the integral.

As the reader may notice, there is no reason to assume that the new
corner in the cobordism is as simple as we just described. In fact, if d is
zero, the cobordism locally looks like several line segments ending at the
big torus, therefore the new corner will not cover the whole torus (by the
projection π). In general, the description of the local geometry around
the touching points is quite hard and delicate. However, in the following
“localization lemma”, we are going to show that under the assumption that
V+ and V− are of constant rank we can compute the final result without
knowing in detail what they really look like.

Lemma 2.2. (Localization lemma) If V+ and V− have constant ranks p
and q, ∫

P (V+)

Hb1/2+p−1−qcq(V− ⊗ H) =
∫
E

Hb1/2+p−q.

Proof. Let S be the tautological line bundle in π∗
+V+ over P (V+). φ shall



804 T. J. LI AND A. LIU

still represent the pull back bundle map. Let E denote the new corner in
the cobordism. E is smooth though the image of E in T b1 is singular in
general. E imbeds into P (V+). If dim E is zero, we count the signed points,
if dim E is positive, we calculate

∫
E edim E/2. Since counting points can be

thought as formal integration over oriented zero-dimensional manifolds, the
following calculation is true regardless of the dimension.

Recall E = φ−1(0)/S1. The key observation is that the zero set of
a section of the bundle map by φ can be naturally identified as zeros of a
section of S∗⊗π∗

+V−, which is Poincare dual to the Euler class of S∗⊗π∗
+V−

which is cq(S∗ ⊗ π∗
+V−). But S∗ is just the hyperplane bundle H, so∫

E
edim E/2 =

∫
E
(−H)dim E/2 =

∫
P (V+)

(−H)dim E/2cq(H ⊗ π∗
+V−)

Formally, this picture is consistent with KM’s calculation. In their case,
b1 = 0, p − q = 1 and the dimension of the moduli space is zero. Our
formula gives ±

∫
P (V+)

cq(V− ⊗ H). Notice that in this case, the torus is
a single point and P (V+) is simply a projective space, and V+ is a vector
space. Then ±

∫
P (V+)

cq(V− ⊗ H) = ±
∫

CP q Hq = ±1. �
Next we prove the stabilization lemma, which tells us that we can assume

that V− is trivial.

Lemma 2.3. (Stablization lemma) If V+ and V− have constant rank p
and q, and Ṽ− is a q̃ dimensional complex vector bundle on T b1 such that
V− ⊕ Ṽ− is trivial, then∫

P (V+)

H
b1
2 +p−1−qcq(V− ⊗ H) =

∫
P (V+⊕Ṽ−)

H
b1
2 +p−1−qcq+q̃(Cq+q̃ ⊗ H).

Proof. P (V+) is Poincare dual to cq̃(Ṽ− ⊗ H) in P (V+ ⊕ Ṽ−). Also note
that cq and cq̃ are top Chern classes of V− and Ṽ− respectively, so

cq+q̃((V− ⊕ Ṽ−) ⊗ H) = cq(V− ⊗ H)cq̃(Ṽ− ⊗ H)

and the proof follows. �
The tautological line bundle on T b1×M has first Chern class Ω =

∑
i xiyi

where {yi} is a basis of H1(M,Z) modulo torsion and {xi} is the dual basis
in H1(T b1 ,Z) . T b1 is the Albanese torus H1(M ;R)/H1(M ;Z). Taking
the powers of Ω produces

∏
yi1 · · · yik

. The following simple lemma shows
that for our purpose, the only even power of yi which contributes to Chern
character is 2.
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Lemma 2.4. For a four-manifold M with b+
2 = 1, yi1yi2yi3yi4 = 0.

Proof. We can assume i1, i2, i3, i4 are distinct. Without loss of generality,
let us assume the four y’s that violate the equality are y1, y2, y3, y4. Then
yiyj �= 0 for all six combinations and furthermore they are linearly inde-
pendent. If not, then

∑
cijyiyj = 0 and some cij �= 0. By permutation,

we can assume c12 �= 0. Wedging with y3y4, it is easy to see c12 = 0.
Contradiction! So yiyj , 1 ≤ i, j ≤ 4, forms a six-dimensional subspace in
H1(M ;R) and the quadratic form on this subspace has signature 0. Since
b+
2 = 1, we reach a contradiction. �

Still assume that V+ = KerD, V− = Coker D form two vector bundles
over T b1 . Let ci = ci(V+ − V−), then we have

Lemma 2.5. The Chern classes are given by ci = 1
i!c

i
1.

Proof. By the family index theorem,

ch(indaD) = ch(U)[Â(M)eL/2][M ]

= ch(inda D)0 + (Ω +
1
2
Ω2 +

∑
j≥3

1
j!

Ωj)(1 + L/2 +
1
2
(L/2)2)[M ]

= ch(inda D)0 +
Ω2

2
L/2[M ].

So

c1(inda D) =
Ω2

2
L
2

[M ],

and for i ≥ 2,
ch(inda D)[i] = 0.

Written in terms of formal Chern roots zj , we get, for i ≥ 2,

∑
j

zi
j

i!
= 0,

i.e., the Newton polynomial of Chern roots si vanishes for i ≥ 2. Using the

relation ci =
si
1

i!
+ f(s2, s3, · · · ), the lemma is proved. �

The following reduction lemma tells us that under the assumption that
V− is trivial, our formula gives the correct answer.
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Lemma 2.6. (Reduction Lemma) If V− is a trivial bundle, then

∫
P (V+)

Hb1/2+p−1−qcq(V− ⊗ H) = ±
∫

T b1

c b1
2

(V+ − V−).

Proof. Since V− is trivial, cq(V− ⊗ H) = Hq. Hence the left-hand side is∫
P (V+)

Hb1/2+p−1. On P (V+), we have the universal relation

b1/2∑
j≥0

Hp−jcj(V+) = 0.

We would like to inductively prove the following formula:

Hp−1+l =
b1/2∑
i=l

( ∑
0≤j≤l−1

(−1)j

(
i

j

))ci
1

i!
Hp−1−i+l.

If l = 1, it is just the relation. Assume that it is proved for l, then, for
l + 1,

Hp−1+l+1 = Hp−1+lH

=
b1/2∑
i=l

( ∑
0≤j≤l−1

(−1)j

(
i

j

))ci
1

i!
Hp−1−i+l

=
∑

0≤j≤l−1

(−1)j

(
l

j

)
cl
1

l!
Hp +

b1/2∑
i=l+1

( ∑
0≤j≤l−1

(−1)j

(
i

j

))ci
1

i!
Hp−1−i+l+1

= (−1)l−1(−1)
(b1/2−l∑

r=1

(l + r)!
l!r!

) cl+r
1

(l + r)!
Hp−r

+
b1/2∑

i=l+1

( ∑
0≤j≤l−1

(−1)j

(
i

j

))ci
1

i!
Hp−1−i+l+1.

Set r + l = i in the first term; the two terms in the last equality can be
combined into

b1/2∑
i=l+1

( ∑
0≤j≤l

(−1)j

(
i

j

))ci
1

i!
Hp−1−i+l+1.
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This is exactly what we want. Note that we have used

(−1)(−1)l =
l−1∑
j=0

(
l

j

)
(−1)j ,

which follows from (1 − 1)l = 0.
When l = b1/2,

Hb1/2+p−1 =
( ∑
0≤j≤b1/2−1

(−1)j

(
b1/2

j

)) c
b1/2
1

b1/2!
Hp−1.

Using (1 − 1)b1/2 = 0, we get

Hp+b1/2−1 = (−1)b1/2+1 c
b1/2
1

(b1/2)!
Hp−1.

Now interpret Hp−1 as cutting by p − 1 hyperplanes along the fiber. We
get ∫

P (V+)

Hp+q−1 =
∫

T b1

(−1)b1/2+1 c
b1/2
1

(b1/2)!
,

and the lemma is proved. �
We have assumed that the index virtual bundles are the difference of

actual bundles V+ and V−. In fact, this kind of assumption is not always
realistic. We are going to show that even though the kernel and cokernel
do not form vector bundles (the dimensions jump), the general case can
be reduced to the special case where kernel and cokernel do form vector
bundles.

In the argument of local models, one actually splits the first SW equation
into two parts; 0 = DAψ = P (DAψ) + (1 − P )DAψ, where P is the pro-
jection onto CokerDA. Now forget PDAψ = 0 first, cut the configuration
space by two equations P+FA = 1

4τ(ψ ⊗ ψ∗) + rµ and (1 − P )DAψ = 0.
The locus is a nonlinear object in the configuration space which we call
the premoduli space. At a reducible solution a0, KerDa0 is tangent to the
premoduli space (up to first jet).

It is well known that ( [AS], [BGV]) for a compact family of Dirac op-
erators on compact manifolds, there exists some zeroth order perturbation
such that the index bundle of the new operator has constant rank. But it
is not enough for our purpose, though we still need a similar construction.
First we add a trivial bundle to Γ(M, S+) to kill the cokernel.
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Lemma 2.7 ([BGV]). If the base manifold is compact, there exists an
integer N and a map η : CN −→ Γ(M, S−) such that Dη = D ⊕ η :
Γ(M, S+) ⊕ CN −→ Γ(M, S−) is surjective at every point.

The original SW equations can be changed to the following equations of
triples (A, ψ, w) ∈ A × Γ(M, S+) × CN (N as in Lemma 2.7) by adding
dummy variables,

DAψ = 0

P+FA =
1
4
τ(ψ ⊗ ψ∗) + rµ

xi = 0, i = 1, · · · , N

where xi are the coordinate functions of w ∈ CN .
Denote Tη the projection onto KerDη

a0
. KerDη

a0
is not tangent to the

premoduli space. However, the crucial observation is that, by rescaling
η, KerDη

a0
is very close to Ker Da0 such that under the projection Tη,

KerDa0 maps injectively into KerDη
a0

. So by the inverse function theorem,
(and notice that the torus of reducible solutions is compact) the fattened
premoduli space can be viewed sitting inside KerDη

a0
. To get the real

moduli space, we need to cut the premoduli space by xi. This is easily done
by viewing the xi as maps to the trivial bundle CN . Hence, the moduli
space (or the relative cobordism) is the zero locus of a S1 equivariant map
φ from KerDη to CN . The proof of Theorem 1.2 is complete. �

Proof of Corollary 1.3. Now

c1(V+ − V−) =
1
2

∑
i 
=j

xixj(yiyjL/2)[M ]

=
∑
i<j

(yiyjL/2)[M ]xixj ∈ H2(T b1 ;R)
.

Therefore, c
b1/2
1 /(b1/2)! = cb1 is the Pfaffian of the b1 × b1 matrix G with

entries given by (yiyj
L
2 )[M ]. Notice that G ∈ Mb1(Z), the ring of b1 by

b1 integer matrices. By simultaneous row and column operations, we can
change to a new basis over Z such that G̃ looks like




0 d1 · · ·
−d1 0 d2 · · ·
0 −d2 0 · · ·
· · · · · · · · ·


 .
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Namely, there exists Γ ∈ Mb1(Z) invertible over Z such that ΓGΓT = G̃.
This just implies that if we change the basis of the free part of H1(M ;Z)

from {yi} to {Γyi}, the above matrix is skew-diagonal. We call {Γyi} the
symplectic basis (in general, the symplectic basis is not canonical up to
SP (b1), it depends on L). Clearly, c b1

2
=

∏
di. �

Proof of Corollary 1.4. For a ruled surface over a Riemann surface of genus
g ≥ 1, the entire H1 comes from the base. In this case, the symplectic
basis is canonical up to SP (g). For the symplectic basis, the Pfaffian can
be further reduced to ( c1(M)+2E

2 [S2])g. �
Proof of Corollary 1.5. By Lemma 2.4 in [LL], the SW invariant of K−1

jumps by ±1, so Corollary 1.5 follows from Corollary 1.3. �
Proof of Corollary 1.6. Under a change of a R-basis, the matrix has a trivial
row, so the Pfaffian is zero. �

Notice that, by the hard Lefshetz theorem, the above assumption is never
satisfied for Kahler surfaces. The corollary also implies that if a symplectic
manifold has psc metric, then it is similar to Kahler manifolds in the above
sense.

Remark. Up to now, we do not know any example of a non-Kahler symplec-
tic manifold of the above type. For Kahler manifolds, ruled surfaces have
psc metrics and the theorem constrains the canonical bundles of symplectic
forms. For some elliptic surface with elliptic base, b+

2 = 1 and b1 = 2; the b1

comes from the base. Because for elliptic surfaces, K−1 consists of a fiber
class, which (after multiplying a large integer) comes from the base also,
the wall crossing number is even, so it does not have psc metrics. Blowups
of this manifold give examples of even type K−1.

Remark. Based on some techniques of algebraic geometry, especially a the-
orem of Fulton on determinantal loci, we can describe (assuming the geo-
metric objects are holomorphic) in some detail the local geometry. Due to
the complexity of the singularities when b1 >> 0, this description is far
from complete. But we do see some patterns, and more importantly, for
b1 ≤ 6, the description is more or less complete and leads to the direct
calculation of the invariant jump.
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