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CLASSICAL VERSUS FREE DOMAINS OF ATTRACTION

H. Bercovici and V. Pata

Abstract. The domains of attraction of stable laws in Voiculescu’s free
probability theory are determined, and they are compared with the corre-
sponding domains of attraction in classical probability theory. It is shown
that each free domain of attraction is equal to some classical domain of
attraction, but the corresponding attracting laws are quite different. Con-
versely, every classical domain of attraction occurs as a free domain of
attraction.

Denote by M the family of all probability measures defined on the real
line R. Two measures µ, ν in M will be said to be equivalent if there
exist real numbers a, b, with a > 0, such that µ(σ) = ν(aσ + b) for every
Borel set σ ⊂ R. We will write µ ∼ ν if µ and ν are equivalent, and we
denote by [ν] the equivalence class of ν. On the set M there are defined
two associative composition laws denoted ∗ and �. The measure µ ∗ ν
is the classical convolution of µ and ν. In probabilistic terms, µ ∗ ν is
the probability distribution of X + Y , where X and Y are (commuting)
independent random variables with distributions µ and ν, respectively. The
measure µ � ν is the free (additive) convolution of µ and ν introduced by
Voiculescu [10] (for compactly supported measures; free convolution was
extended by Maassen [7] to measures with finite variance and by Bercovici
and Voiculescu [2] to the whole class M). Thus, µ � ν is the probability
distribution of X + Y , where X and Y are free random variables with
distributions µ and ν, respectively.

An important class of measures occurs in connection with the study of
the limit laws of probability. A measure µ which is not a point mass will
be said to be ∗-stable (resp. �-stable) if for every ν1, ν2 ∈ M such that
ν1 ∼ µ ∼ ν2 it follows that ν1 ∗ ν2 ∼ µ (resp. ν1 � ν2 ∼ µ). The stable
measures were determined by Lévy (cf. [5]) in the classical context and by
Bercovici and Voiculescu [2] in the context of free convolution.
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Before stating the main property of stable distributions we need one
more definition. If µ, ν ∈ M, we will say that µ belongs to the ∗-domain
(resp. �-domain) of attraction of ν if there exist measures µ1, µ2, . . . such
that

(i) µn ∼ µ ∗ µ ∗ · · · ∗ µ︸ ︷︷ ︸
n times

(resp. µn ∼ µ � µ � · · · � µ︸ ︷︷ ︸
n times

), and

(ii) µn converges weakly to ν, i.e.,
∫ ∞
−∞ f(t) dµn(t) →

∫ ∞
−∞ f(t) dµ(t)

for every bounded continuous function f .

We will indicate this relationship between µ and ν by writing µ ∈ D∗(ν)
(resp. µ ∈ D�(ν)). Clearly D∗(ν) and D�(ν) only depend on the equiv-
alence class of ν, and hence we can define the sets D∗([ν]) = D∗(ν) and
D�([ν]) = D�(ν). Observe that a stable law belongs to its own domain of
attraction, and in fact the following is true.

1. Theorem. Assume that µ ∈ M is not a point mass. Then µ is ∗-stable
(resp., �-stable) if and only if D∗(ν) (resp., D�(ν)) is not empty.

(The definition of stable laws, and the above result, could be extended
to include point masses, but there are good reasons for not doing so. Con-
vergence to a point mass is the object of laws of large numbers.)

Theorem 1 was proved by Lévy (cf. [5]) in the classical case and by Pata
[8] in the free case.

The main result we want to announce here is as follows.

2. Theorem. A measure µ ∈ M belongs to a ∗-domain of attraction if
and only if it belongs to a �-domain of attraction. More precisely, there
exists a bijection [ν] ↔ [ν′] between equivalence classes of ∗-stable laws [ν]
and equivalence classes of �-stable laws [ν′] such that D∗([ν]) = D�([ν′]).

To illustrate the theorem, let us consider the case when ν is Gaussian.
The corresponding �-stable law ν′ is the semicircle law (i.e., an absolutely
continuous measure on [−1, 1] with density 2

√
1 − t2/π, t ∈ [−1, 1]) as

shown by Voiculescu’s free central limit theorem [10]. The free central
limit theorem was extended to measures with finite variance by Maassen
[7]. Finally, Pata [9] proved that in fact D∗([ν]) = D�([ν′]) in this case.

An analogous result for the weak law of large numbers was established
in [6] and [1]. Namely, it was shown that the classical weak law of large
numbers holds for a measure µ if and only if the free weak law of large
numbers holds for µ. The necessary and sufficient condition for the classical
weak law of large numbers was given by Kolmogorov in terms of tail-sums.
It is as follows:

lim
t→∞

tµ({x : |x| > t}) = 0.
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The characterization of probability measures in a domain of attraction
involves regularly varying functions in the sense of Karamata (see [3] for
a comprehensive account). We recall the basic definitions. A function f :
(0,+∞) → (0,+∞) is said to be slowly varying if limx→∞ f(tx)/f(x) = 1
for every t > 0. A function F : (0,+∞) → (0,+∞) is said to be regularly
varying with index β ∈ R if f(x) = x−βF (x) is a slowly varying function.

The following result is a characterization of domains of attraction (see
for instance [4] for the classical case).

3. Theorem. A measure µ ∈ M belongs to a classical (resp. free) domain
of attraction if and only if the following two conditions are satisfied:

(1) The function F (x) = µ((−x, x)) varies regularly with exponent 2 −
α, where α is some number in (0, 2];

(2) If α �= 2 then the limit

p = lim
x→∞

µ((x,+∞))
µ((−∞,−x)) + µ((x,+∞))

must exist.
If (1) and (2) are satisfied, then the class [ν] (resp. [ν′]) such that µ ∈
D∗([ν]) (resp. µ ∈ D�([ν′])) is uniquely determined by the numbers α ∈
(0, 2] and p ∈ [0, 1].

As mentioned above, the classical version of Theorem 3 is well known.
In our approach we first prove Theorem 3 in the free case, and then deduce
Theorem 2 as an immediate corollary. It seems very desirable to obtain a
more direct proof of Theorem 2. This might unveil a new link between free
and classical convolutions.

The classical results on stable laws can be approached in several ways,
the most powerful of which involves Fourier analysis. An analogue of the
Fourier transform for free convolution was discovered by Voiculescu [11],
originally for measures with compact support. This was extended in [7] to
measures with finite variance, and in [2] to the whole class M. Our proof
of Theorem 3 involves this analogue of the Fourier transform and therefore
we provide a brief description of the technique. Given µ ∈ M one considers
analytic functions Gµ, Fµ : {z ∈ C : �z > 0} → C defined by

Gµ(z) =
∫ ∞

−∞

1
z − t

dµ(t),

and Fµ(z) = 1/Gµ(z). The function Fµ(z) is close to z if |z| → ∞ in such
a way that �z/�z stays bounded. Thus Fµ has an inverse F−1

µ defined,
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say, in ΩM = {z : �z > M, |�z| < �z} for sufficiently large M . We can
then define the function φµ(z) = F−1

µ (z) − z which is analytic and has
nonpositive imaginary part in ΩM . The function φµ — which we will call
the Voiculescu transform of µ — linearizes free convolution in the sense
that, for µ, ν ∈ M, φµ�ν = φµ + φν in the common domain of the three
functions involved.

The �-stable measures µ ∈ M can be classified using a parameter α ∈
(0, 2], and their Voiculescu transforms are as follows.

(i) If α ∈ (0, 1), φµ(z) = a + bz−α+1 with a ∈ R, b �= 0, and arg b ∈
[π, (1 + α)π].

(ii) If α = 1, φµ(z) = a + b log z or φµ(z) = a + b(iπ − log z), where
�a ≤ 0 and b ∈ (−∞, 0].

(iii) If α ∈ (1, 2], φµ(z) = a + bz−α+1 with a ∈ R, b �= 0, and arg b ∈
[(α − 2)π, 0].

Observe that for α = 2, b must be real and we get only one class of
stable distributions, namely the class of all semicircle laws. If α = 1 and
b = 0 one obtains the Cauchy laws which are also stable of index one in
the classical case. We do not know whether there are any other measures
which are both ∗-stable and �-stable.

The preceding description of the �-stable laws was given in Theorem 7.5
of [2]. (the statement of that theorem is somewhat incomplete since it does
not include the measures with φµ(z) = a+b(iπ−log z); these are reflections
in the origin of the measures with Voiculescu transforms a + b log z.)

We will give now a brief sketch for the proof of Theorem 3. The more
difficult direction is the proof that a probability measure which belongs to a
�-domain of atraction satisfies conditions (1) and (2) in the statement. Fix
therefore µ, ν ∈ M such that ν is �-stable, and assume that µ ∈ D�(ν).
The scaling properties of the Voiculescu transform imply the existence of
cconstants An, Bn ∈ R, Bn > 0, such that

n

Bn
φµ(Bnz) + An → φν(z) as n → ∞

uniformly on the compact subsets of ΩM . This convergence relation can be
converted into a statement about the asymptotic behavior of the function
Gµ in ΩM . The real and imaginary parts of Gµ, i.e. the integrals

∫ ∞

−∞

x − t

(x − t)2 + y2
dµ(t),

∫ ∞

−∞

−y

(x − t)2 + y2
dµ(t),

can then be analyzed using the Tauberian theory of Karamata in order to
yield the desired conclusion about the measure µ. The technical details of
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the proof are rather delicate, and will be described in a separate paper. We
will only point out here that the behavior of the imaginary part of Gµ is
closely related with the regular variation condition (1) of Theorem 3, while
the behavior of the real part yields the tail-balancing condition (2).
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