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LIOUVILLE PROPERTIES OF HARMONIC MAPS

Luen-fai Tam

Introduction

In this paper, we will prove the following Liouville-type results for har-
monic maps:

Let M be a manifold which is quasi-isometric to a complete noncompact

manifold with nonnegative Ricci curvature. Let N be a Cartan-Hadamard

manifold (a CH manifold for simplicity). That is to say, N is a complete

simply connected manifold with nonpositive curvature.

(1) Let o ∈ M be a fixed point. There exist constants 0 < γ ≤ 1 and

C > 0 depending only on M and the dimension of N , such that for

all 0 < r < R

s(r) ≤ C
( r

R

)γ

· s(R),

where s(r) = supx∈Bo(r) dN (u(x), u(o)). In particular, if u is a

harmonic map from M into N such that

dN (u(x), u(o)) = o ((dM (x, o))γ) ,

then u must be constant. Here dM and dN are the distance functions

of M and N respectively, and Bo(r) is the geodesic ball with center

at o and radius r.

(2) Suppose in addition that the sectional curvature of N is bounded

above by −a2 for some a > 0, then any harmonic map from M into

N with image lying inside a horoball of N must be constant.

The study of Liouville properties of harmonic maps has a long history.
It is well-known that there is no nonconstant positive harmonic function on
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Rn. It was proved by Yau in [Y], that there is no nonconstant positive har-
monic function on a complete noncompact manifold with nonnegative Ricci
curvature. In particular, there is no nonconstant bounded harmonic func-
tions on such a manifold. In [C], Cheng generalized the result to bounded
harmonic maps. He proved that there is no nonconstant harmonic map
with bounded image from a complete noncompact manifold with nonnega-
tive Ricci curvature into a CH manifold. Cheng’s result can be extended to
a very large class of manifolds. In many cases, if a property is satisfied for
harmonic functions on a manifold M , then a similar property will also be
satisfied for harmonic maps from M into a CH manifold. In fact, Kendall
[Ke] proved that if a complete manifold supports no nonconstant bounded
harmonic function, then it will also support no nonconstant harmonic map
into a CH manifold with bounded image. See [S-T-W] and [C-T-W] for
more results in this direction. Kendall’s result implies the result of Cheng.
However, the proof of [Ke] is by contradiction, and does not give any useful
estimate for the maps. In contrast, sharp gradient estimates for harmonic
functions on manifolds with Ricci curvature bounded from below have been
obtained by Cheng and Yau [C-Y]. In [C], Cheng also obtained an estimate
for the energy density of a harmonic map into a CH manifold. An im-
mediate consequence of those estimates is that on a complete noncompact
manifold with nonnegative Ricci curvature, there is no nonconstant har-
monic function, or harmonic map into a CH manifold, which is of sublinear
growth. Cheng’s result on harmonic maps was generalized in [Ch] by al-
lowing the image to lie strictly inside a regular geodesic ball of a complete
manifold.

Liouville’s theorem on harmonic functions on Rn has also been general-
ized in another direction. In [M], Moser proved that there is no nonconstant
positive solution of a uniformly elliptic equation on Rn. He also showed
that a nonconstant solution to a uniformly elliptic equation must grow by
at least some power of r, where r is the distance to the origin. In the
last few years, there are many results on uniformly elliptic equations on
a manifold. For example, it was proved in [SC1, Gr] that on a complete
noncompact manifold M which is quasi-isometric to a complete manifold
with nonnegative Ricci curvature, the Liouville theorem for positive har-
monic functions in [Y, C-Y] is still true. More importantly, estimates and
results for harmonic functions similar to those in [M] are still true on such
a manifold. Note that the Laplacian equation on M can be considered as a
uniformly elliptic equation on a complete manifold with nonnegative Ricci



LIOUVILLE PROPERTIES OF HARMONIC MAPS 721

curvature. Motivated by the works [SC1, Gr], it is natural to conjecture
that similar results should be true for harmonic maps. In fact it was asked
by Cheng whether one can estimate the oscillation of a harmonic map on
a geodesic ball in M into a CH manifold N , and whether a nonconstant
harmonic map from M into N should grow fast enough. The main result
(1) mentioned above gives a positive answer to Cheng’s question.

So far, we have been focusing on Liouville’s theorem for harmonic maps
which are either bounded or grow at most at a certain rate. One would
like to consider harmonic maps which are analogues to positive harmonic
functions without any assumption on the growth rate. A natural setup is
to consider harmonic maps into a horoball of a CH manifold. Recall that
γ : (−∞,∞) → N is said to be a line if γ is parametrized by arc length
and for all a < b, γ|[a,b] is a minimizing geodesic from γ(a) to γ(b). A ray
is just a half line, that is, γ is defined on [0,∞) with the same properties.
It is well-known that on a CH manifold, a ray can always be extended to
a line. Let γ be a ray in N , then the Busemann function with center at
γ(∞) is defined to be Bγ(z) = limt→∞(t − dN (z, γ(t)), z ∈ N . On a CH
manifold, Bγ is a C2 function, see [H-H]. A horoball is a set of the form
{Bγ > 0}, for some γ. Under this setting, Shen [Sh] proved that a harmonic
map from a complete manifold M with nonnegative Ricci curvature into a
CH manifold N will be constant, provided its image lies inside a horoball
and that the sectional curvature of N is bounded from above by a negative
constant −a2. The assumption on the sectional curvature of N cannot be
relaxed by allowing a = 0. Counterexamples have been constructed in [Sh].
The result in [Sh] can be considered as a generalization to harmonic maps
of Yau’s theorem for positive harmonic functions. The main result (2),
mentioned above, that we are going to prove is a further generalization of
the result in [Sh].

In fact, (1) and (2) above are still true for a more general class of man-
ifolds. More precisely, they are true for manifolds which satisfy volume
doubling and certain Poincaré inequalities. See section 2 for details. Such
a class of manifolds have been studied extensively by [Gr, SC2].

1. Harmonic maps into CH manifolds

Let (Mm, g) and (Nn, h) be two Riemannian manifolds. Let u be a map
from M into N . The energy density e(u) of u is defined to be the trace
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with respect to g of the tensor u∗h. In local coordinates

e(u)(x) =
m∑

i,j=1

n∑
α,β=1

gij(x)hαβ(u(x))
∂uα

∂xi

∂uβ

∂xj
.

where xi, 1 ≤ i ≤ m, and uα, 1 ≤ α ≤ n are local coordinates in M and
N respectively. g =

∑m
i,j=1 gijdxidxj , h =

∑n
α,β=1 hα,βduαduβ , and (gij)

is the inverse of the matrix (gij). u is said to be a harmonic map if u is a
critical point of the functional

∫
M

e(u).
Now let (Mm, g) be a complete noncompact manifold, such that g is

quasi-isometric to a complete metric g̃ on M , whose Ricci curvature is
bounded from below by −K for some K ≥ 0. Hence, there is α > 1 such
that

(1.1) α−1g ≤ g̃ ≤ αg.

We want to study the behavior of harmonic maps from M into a CH mani-
fold. One ingredient in the proofs of the results in this paper is to make use
of Green’s functions to solve some boundary value problem. The method
has been used in [Ga-H] in the study of regularity of harmonic maps, see
[S1]. We will also need Poincaré inequalities in [K-S], see also [Gr], for
maps from manifolds with Ricci curvature bounded from below. We begin
with the following estimates on Green’s functions on geodesic balls.

Lemma 1.1. Let (Mm, g) be a complete manifold, so that g is quasi-
isometric to a complete metric g̃, whose Ricci curvature is bounded from
below by −K for some constant K ≥ 0. Let α > 1 be the constant in
(1.1). Let o ∈ M and let GR be the positive Green’s function on Bo(R)
with Dirichlet boundary data. Then for all x ∈ Bo(R

5 )

GR(o, x) ≥ C

∫ R

r(x)

t

Vo(t)
dt

for some positive constant C > 0 depending only on m,
√

KR, and α,
where r(x) is the distance from x to o, and Vo(t) is the volume of Bo(t).

Proof. By [L-T1, Corollary 2.4], and volume comparison [B-C]:

∫ R

r

t

Vo(t)
dt ≤ C1 sup

∂Bo(r)

GR(o, ·),
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for some constant C1 > 0 depending only on m,
√

KR and α. Note that
∂Bo(r) may not be connected. However, using the method of proof of
Lemma 3.2 in [L-T2], one can apply the Harnack inequality for the positive
harmonic function in [SC1, Theorem 5.3] to show that for 0 < r ≤ R

5 , and
for all x, y ∈ ∂Bo(r),

GR(o, x) ≤ C2GR(o, y),

for some constant C2 depending only on m,
√

KR and α. The lemma
follows. �

Remark 1.1. The lemma is still true if we only assume that M has vol-
ume doubling and that the Harnack inequality holds for positive harmonic
functions. To be precise, suppose that Vx(2r) ≤ AVx(r) for some con-
stant A and for all x, r > 0, and that there is a constant A′ such that
supBx(r) u ≤ A′ infBx(r) u for all positive harmonic function u on Bx(2r),
for all x and r. Then Lemma 1.1 is still true, with the constant C > 0
depending only on A and A′. We will use this fact in the next section.

Lemma 1.2. Let M be a complete manifold, and let o ∈ M . Let p ≥ 1,
and suppose for some k ≥ 1 the Poincaré inequality holds for functions on
Bo(kR) for p. That is to say, there is a constant A such that for all smooth
functions on Bo(kR),

inf
a∈R

∫
Bo(R)

|f − a|p ≤ ARp

∫
Bo(kR)

|∇f |p.

Then for any smooth map u from Bo(kR) into a CH manifold Nn, we have

∫
Bo(R)

dp
N (u(x), u0) ≤ CARp

∫
Bo(kR)

e
p
2 (u),

for some point u0 ∈ N , for some constant C depending only on n and p,
where e(u) is the energy density of u and dN is the distance function of N .

Remark 1.2. If M satisfies the Poincaré inequality for functions in the
lemma, then it is easy to see that

∫
Bo(R)

|f − f |p ≤ CARp

∫
Bo(kR)

|∇f |p
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for some constant C depending only on A and p, where f is the average of
f over Bo(R).

Proof of the lemma. Let u be a smooth map from Bo(kR) into N and let
f be the function on N defined by

f(w) =
∫

Bo(R)

d2
N (u(x), w)dVM (x).

Since f(w) → ∞ as w → ∞, f(w) attains a minimum at some point
u0 ∈ N . Let y = (y1, . . . , yn) be the normal coordinates with origin at u0.
At u0, ∇Nf = 0, and so

(1.2)
∫

Bo(R)

∇′
Nd2

N (u(x), u0)dVM (x) = 0.

where ∇′
Nd2

N (u(x), u0) is the gradient on N of the function d2
N (u(x), ·)

with u(x) fixed. Suppose u(x) = u0, then ∇′
Nd2

N (u(x), u0) = 0. Suppose
u(x) = u0, then ∇′

Nd(u(x), u0) is the tangent vector at u0 of the minimal
geodesic parametrized by arc-length from u(x) to u0. Since (y ◦ u)(x) is
the normal coordinates of u(x) with origin at u0, it is not hard to see from
the definition of normal coordinates, that

∇′
Nd(u(x), u0) = − 1

|(y ◦ u)(x)|

n∑
i=1

(yi ◦ u)(x)
∂

∂yi

∣∣∣∣
u0

.

However, |y ◦ u(x)| = dN (u(x), u0), hence

∇′
Nd2

N (u(x), u0) = −2
n∑

i=1

(yi ◦ u)(x)
∂

∂yi

∣∣∣∣
u0

.

By (1.2), we have

(1.3)
∫

Bo(R)

(yi ◦ u)(x)dVM (x) = 0,

for 1 ≤ i ≤ n. Since N has nonpositive curvature, by the triangle com-
parison theorem, for any point w1, w2 on N , we have |y(w1) − y(w2)| ≤
dN (w1, w2), where y(wj) are the normal coordinates of wj . From this, it
is not hard to see that |∇(y ◦ u)| ≤

√
e(u), where ∇(y ◦ u) is the gradient
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of the vector-valued function y ◦u. From (1.3) and the Poincaré inequality
for functions, we have

∫
Bo(R)

|y ◦ u|p ≤ C3ARp

∫
Bo(kR)

|∇(y ◦ u)|p

≤ C3ARp

∫
Bo(kR)

(e(u))
p
2

(1.4)

for some constant C3 depending only on n. Since y are the normal coor-
dinates with center at u0, |(y ◦ u)(x)| = dN (u(x), u0). The lemma follows
from (1.4). �

Note that if M satisfies a Poincaré inequality for some p ≥ 1 for functions
as stated in the previous lemma, then any complete manifold which is quasi-
isometric to M also satisfies the Poincaré inequality for p ≥ 1, with possibly
different A and k. Poincaré inequalities for manifolds with Ricci curvature
bounded from below have been obtained by [L-Y1, B]. From their results,
we have the following, which is a special case of [K-S], see also [Gr].

Corollary 1.3. Let Mm be as in Lemma 1.1 and Nn be a CH manifold.
For all p ≥ 1, there is a constant k ≥ 1 depending only on α, and a constant
C, depending only on m, n, α, p and

√
KR, such that for all x ∈ M , for

all R > 0, and for all smooth maps from Bo(kR) into N , there is u0 ∈ N

such that ∫
Bo(R)

dp
N (u(x), u0) ≤ CRp

∫
Bo(kR)

e
p
2 (u),

where dN is the distance function on N .

In the proof of [K-S], one needs the comparison theorem for the volume
elements in a manifold with Ricci curvature bounded from below. However,
in section 2, we will need Lemma 1.2 to study situations which do not make
assumtions on the curvature of M . We should emphasis that in [K-S], N

can be any complete metric space. In this respect, their result is more
general.

Lemma 1.4. Let Mm and Nn be as in Corollary 1.3. Let o ∈ M . There
exists a constant 0 < δ < 1 depending only on m, n, α and

√
KR, such

that for any smooth harmonic map u from Bo(R) of M into N , we have

s(δR) ≤ 1
2
s(R),
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where s(r) = supx∈Bo(r) d (u(x), u(o)).

Proof. Let e(u) be the energy density of u. Let f(x) = d2
N ((u(x), u(o)). By

the Hessian comparison theorem [G-W], the fact that N is a CH manifold,
and that u is harmonic, we have (see for example [C]):

(1.5) ∆f ≥ 2e(u).

Let h be the function such that

∆h = −∆f

in Bo(R), and h = 0 on ∂Bo(R). Then h + f is harmonic with boundary
value f . By the maximum principle, h + f ≤ sup∂Bo(R) f ≤ (s(R))2. In
the following, Ci will always denote positive constants depending only on
m, n, α, and

√
KR. Let GR be the positive Green function on Bo(R) with

Dirichlet boundary data. By the estimate of GR in Lemma 1.1, we have

(s(R))2 ≥ h(o)

=
∫

Bo(R)

GR(o, y)∆f(y)dy

≥ 2
∫

Bo(R)

GR(o, y)e(u)(y)dy

≥ 2
∫

Bo( R
5 )

GR(o, y)e(u)(y)dy

= 2
∫ R

5

0

(∫
∂Bo(r)

GRe(u)

)
dr

≥ C4

∫ R
5

0

((∫ R

r

t

Vo(t)
dt

)∫
∂Bo(r)

e(u)

)
dr

= C4




(∫ R

r

t

Vo(t)
dt

) (∫
Bo(r)

e(u)

)∣∣∣∣∣
R
5

0

+
∫ R

5

0

(
r

Vo(r)

∫
Bo(r)

e(u)

)
dr

}
,

for some constant C4 > 0. Since

lim
r→0

(∫ R

r

t

Vo(t)
dt

) (∫
Bo(r)

e(u)

)
= 0,
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we have

(s(R))2 ≥ C4

∫ R
5

0

(
r

Vo(r)

∫
Bo(r)

e(u)

)
dr.

Let 0 < ε < 1
5 ,

C−1
4 (s(R))2 ≥

∫ R
5

εR

(
r

Vo(r)

∫
Bo(r)

e(u)

)
dr

=
∫ R

5

εR

1
r

(
r2

Vo(r)

∫
Bo(r)

e(u)

)
dr

≥ log
(

1
5ε

)
inf

εR≤r≤R
5

(
r2

Vo(r)

∫
Bo(r)

e(u)

)
.

From this and the Poincaré inequality Corollary 1.3, there is a εR ≤ r0 ≤ R
5 ,

and a point u0 ∈ N , such that

1
Vo(r0)

∫
Bo( 1

k r0)

d2
N (u, u0) ≤

C5r
2
0

Vo(r0)

∫
Bo(r0)

e(u)

≤ C4C
−1
3 (s(R))2

(
log

(
1
5ε

))−1

,

(1.6)

for some constants k ≥ 1 and C5, which depend only on m, n, α, and√
KR. Let r1 = r0/k. By (1.6) and volume comparison, for x ∈ Bo( r1

2 ),
we have

1
Vx( r1

2 )

∫
Bx(

r1
2 )

d2
N (u, u0) ≤

C6

Vo(r0)

∫
Bo(r1)

d2
N (u, u0)

≤ C7

(
log

(
1
5ε

))−1

(s(R))2 ,

where C6 and C7 are constants depending only on m, n, and α, and
√

KR.
By the mean value inequality in [SC1], see also [L-S], and the fact that
d2

N (u(x), u0) is subharmonic in Bo(R), we have

(1.7) d2
N (u(x), u0) ≤ C8

(
log

(
1
5ε

))−1

(s(R))2
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for all x ∈ Bo( r1
2 ), for some constant C8 depending only on m, n, and α.

Since εR/k ≤ r0/k = r1, by (1.7) and the triangle inequality,(
s

(
εR

2k

))2

≤ C9

(
log

(
1
5ε

))−1

(s(R))2

for some constant C9 depending only on m, n, α and
√

KR. Fix ε such
that log(1/5ε) ≥ 4C9 and let δ = ε/2k. The lemma follows. �

By Lemma 1.4, and a standard iteration argument, we have

Theorem 1.5. Let Mm and Nn be as in Lemma 1.4. Let o ∈ M . There
exists a constant 0 < γ ≤ 1, and a constant C, depending only on m, n, α

and
√

KR, such that if u is a harmonic map from Bo(R) into N then

s(r) ≤ C
( r

R

)γ

· s(R)

for all r ≤ R, where s(r) = supBo(r) dN (u(x), u(o)). In particular, if M is
quasi-isometric to a complete manifold with nonnegative Ricci curvature,
that is, K = 0, and if u is a harmonic map from M into N such that
dN (u(x), u(o)) = o ((r(x)γ)), then u must be a constant. Here r(x) is the
distance from x to o.

Using similar methods, we want to generalize a result of Shen [Sh]. Let
Mm be a complete noncompact manifold with nonnegative Ricci curvature
and Nn be a CH manifold with sectional curvature bounded from above
by −a2 for some a > 0. It was proved in [Sh] that if u is a harmonic
map from M into N such that the image of u lies a horoball of N , then
u must be a constant. This is an analogue of the Liouville theorem for
positive harmonic functions by Yau [Y]. Since Yau’s theorem has been
generalized to manifolds which are quasi-isometric to complete manifolds
with nonnegative Ricci curvature by [SC1, Gr], it is reasonable to expect
that Shen’s result is still true under a quasi-isometric transformation on
M . We will prove that in fact this is true.

Theorem 1.6. Let Mm be a complete noncompact manifold which is quasi-
isometric to a manifold with nonnegative Ricci curvature. Let Nn be a CH
manifold with sectional curvature bounded from above by −a2 for some
a > 0. Let u be a harmonic map from M into N such that u(M) is
contained in a horoball. Then u must be constant.

Proof. By assumption, the image of u lies inside a horoball with center at
γ(∞) for some ray γ in N . Let Bγ(z) = limt→∞ (t − dN (z, γ (t))) be the
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Busemann function for the ray γ. Let β(x) = (Bγ ◦ u)(x). Without loss of
generality, we may assume that β ≥ 1. Let e(u) be the energy density of
u. By the computation in [Sh], β is superharmonic, and

(1.8) −∆β + |∇β|2 ≥ C10e(u)

for some positive constant C10 depending only on a. Let 0 < λ < 1 be a
constant, such that 2 − λ < 1 + 2

m , where m is the dimension of M . From
(1.8), the facts that β ≥ 1, −∆β ≥ 0, and that 0 < λ < 1, we obtain

−∆βλ = −λβλ−1∆β − λ(λ − 1)βλ−2|∇β|2

= λβλ−2
(
−β∆β + (1 − λ)|∇β|2

)
≥ λ(1 − λ)βλ−2

(
−∆β + |∇β|2

)
≥ C10λ(1 − λ)βλ−2e(u).

(1.9)

Let o ∈ M . For R > 0, let

h(x) = −
∫

Bo(R)

GR(x, y)∆βλ(y)dy

for x ∈ Bo(R), where GR is the Green’s function with Dirichlet boundary
value on Bo(R). Then ∆h = ∆βλ and h = 0 on ∂Bo(R). Hence h − βλ is
harmonic. Since h− βλ ≤ 0 on ∂Bo(R), h− βλ ≤ 0 in Bo(R). We proceed
as in the proof of Lemma 1.4; given 0 < ε < 1

5 , we use Lemma 1.1 and (1.9)
to get

βλ(o) ≥ h(o)

= −
∫

Bo(R)

GR(o, y)∆βλ(y)dy

≥ C10λ(1 − λ)
∫

Bo(R)

GR(o, y)βλ−2e(u)(y)dy

≥ C11 log
(

1
5ε

)
inf

εR≤t≤R
5

(
t2

Vo(t)

∫
Bo(t)

βλ−2e(u)

)

for some positive constant C11 > 0 independent of R, u and ε. Hence there
is a εR ≤ r0 ≤ R

5 , such that

(1.10)
r2
0

Vo(r0)

∫
Bo(r0)

βλ−2e(u) ≤ C12

(
log

(
1
5ε

))−1

βλ(o)
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for some constant C12 independent of R, u and ε. Since β is a positive
superharmonic function, by the mean value inequality in [SC1] and the
fact that 0 < 2 − λ < 1 + 2

m , we have

1
Vo(r0)

∫
Bo(r0)

β2−λ ≤ C13β
2−λ(o),

for some constant C13 independent of R, u and ε. Combining this with
(1.10), we have

(
r0

Vo(r0)

∫
Bo(r0)

√
e(u)

)2

≤
(

r0

Vo(r0)

)2
(∫

Bo(r0)

βλ−2e(u)

) (∫
Bo(r0)

β2−λ

)

≤ C13β
2−λ(o)

(
r2
0

Vo(r0)

∫
Bo(r0)

βλ−2e(u)

)

≤ C14β
2(o)

(
log

(
1
5ε

))−1

for some constant C14 independent of R, u and ε. Arguing as in the proof
of Lemma 1.4, we can use the Poincaré inequality in Corollary 1.3 with
p = 1 and prove that

(1.11) oscBo( ε
2k R)u ≤ C15

(
log

(
1
5ε

))− 1
2

β(o)

for some constants k ≥ 1 and C15 which are independent on R, u and ε.
Here oscBo(r)u is defined to be

oscBo(r)u = sup
x,y∈Bo(r)

dN (u(x), u(y)).

For any fixed r > 0, and for R > 0, let ε = 2kr/R in (1.11), and let R → ∞,
we conclude that oscBo(r)u = 0. Hence u must be a constant map. �

Similar to Theorem 1.5, we can also obtain another form of the Liouville
theorem. In (1.11), the constant C15 is independent of R, ε, u and β.
Also, (1.11) holds as long as β ≥ 1 on Bo(R). Note that, since N is a CH
manifold, every ray can be extended to be a line. If Bγ is the Busemann
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function for some ray γ beginning at γ(0), and if β = Bγ ◦ u, then Bγ −
infBo(R) β+1 is the Busemann function for the ray γ∗(t) = γ(t+infBo(R) β−
1). Using (1.11), we have

oscBo( εR
2k )β ≤ C15

(
log

(
1
5ε

))− 1
2

(β(o) − inf
Bo(R)

β + 1)

≤ C15

(
log

(
1
5ε

))− 1
2

(oscBo(R)β + 1)

where we have used the fact that |∇NBγ | ≤ 1. Hence if oscBo(R)β ≥ 1,
then

(1.15) oscBo( εR
2k )β ≤ 1

2
oscBo(R)β

where ε > 0 is chosen such that C15

(
log

(
1
5ε

))− 1
2 = 1/4. Note that ε > 0

depending only on m, n and α in (1.1). From this, and Theorem 1.6, we
have:

Theorem 1.7. Let Mm and Nn as in Theorem 1.6. There is a 0 < δ ≤ 1
depending only on m, n, a and α, such that if u is a harmonic map from M

into N , and if there is a ray γ in N , such that |(Bγ ◦ u)(x)| = o
(
(r (x))δ

)
where Bγ is the Busemann function for γ, then u must be constant.

2. Some generalizations

Consider the following conditions on a complete noncompact manifold
M :

(a) (Volume doubling) There exists a constant A > 0 such that for all
x ∈ M and for all R > 0

Vx(2R) ≤ AVx(R),

where Vx(r) is the volume of the geodesic ball Bx(r) of radius r

with center at x.
(b1) (Poincaré inequality, p = 1) There exist constants Γ ≥ 1 and a > 0,

such that for any function f which is C∞ in Bx(ΓR),

a

R

∫
Bx(R)

|f − fx,R| ≤
∫

Bx(ΓR)

|∇f |,
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where fx,R is the average of f on Bx(R).
(b2) (Poincaré inequality, p = 2) There exist constants Γ ≥ 1 and a > 0,

such that for any function f which is C∞ in Bx(ΓR)
a

R2

∫
Bx(R)

(f − fx,R)2 ≤
∫

Bx(ΓR)

|∇f |2.

Suppose M satisfies (a) and (b1) [or (b2)] for some Γ > 1 and a > 0,
then it will satisfy (b1) [or (b2)] for Γ = 1 for some a > 0, by a covering
arguments of Jerison [J]. Hence it is easy to see that (a) and (b1) implies
(b2). By [Gr, SC2], if M satisfies conditions (a) and (b2), then we have a
Harnack inequality for positive solutions to the heat equation. Using the
method in [L-Y2], we have the following estimate for the heat kernel on M ,
see [Gr]:

C1

Vx(
√

t)
exp

(
−C2

r2(x, y)
t

)
≤ H(x, y, t) ≤ 1

C1Vx(
√

t)
exp

(
−C3

r2(x, y)
t

)
,

for all x, y ∈ M , where C3 > 0 is any number less than 1
4 , C2 > 0 is a

constant depending only on A, a, and Γ, C1 > 0 is a constant depending
only on A, a, Γ and C3. It was also proved in [Gr] that (a) and (b2) implies
the λ1(Bx(R)) ≥ C/R2, for some positive constant C > 0 depending only
on A, a and Γ. Here λ1(Bx(R)) is the first eigenvalue of Bx(R) with
Dirichlet boundary value. Using these and the method by [V], as in [SC1]
and [L2], one can prove that there exist constants - > 2 and S depending
only on A, a and Γ, such that

(2.1)
(∫

M

|f | 2	
	−2

) 	−2
	

≤ SR2 (Vx(R))−
2
	

∫
M

|∇f |2,

for all smooth functions f on M with compact support in Bx(R). Using
(a), (2.1) and the argument by Moser’s method of iteration, one can show
that if u is a positive subharmonic function on Bx(R), then for all p > 0,

(2.2) up(x) ≤ C

Vx(R)

∫
Bx(R)

up

for some constant C depending only on A, a, Γ and p. Using (a), (b2) and
(2.1), if u is positive superharmonic on Bx(R), then for all 0 < p < 1 + 2

�

(2.3) up(x) ≥ C

Vx(R)

∫
Bx(R)

up

for some positive constant C depending only on A, a, Γ and p. See [S2],
[L1] and [Gi-T] for details. From the proofs of the results in section 1, it is
easy to see that the following are still true:
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Theorem 2.1. Let M be a complete noncompact manifold satisfying con-
ditions (a) and (b2). There exists a constant 0 < δ ≤ 1 and a constant
C both depending only on A, a, Γ and n, such that if u is a harmonic
map from some geodesic ball Bo(R) into a CH manifold Nn, then for all
0 < r < R

s(r) ≤ C
( r

R

)δ

s(R)

where s(r) = supBo(r) dN (u(x), u(o)). In particular, if u is a harmonic

map from M into N such that d(u(x), u(o)) = o
(
(r(x))δ

)
, where r(x) =

dM (x, o), then u must be constant.

Theorem 2.2. Let M be a complete noncompact manifold satisfying con-
ditions (a) and (b1). Let Nn be a CH manifold with sectional curvature
bounded from above by −k2 for some k > 0.

(1) If u is a harmonic map from M into N so that the image u(M) of
u lies in a horoball of N , then u must be a constant map.

(2) There is a 0 < δ ≤ 1 depending only on A, a, Γ, k and n, such that
if u is a harmonic map from M into N , and if there is a ray γ in
N , such that |(Bγ ◦ u)(x)| = o

(
(r (x))δ

)
where Bγ is the Busemann

function for γ, then u must be constant.

Proof of Theorem 2.1 and 2.2. Note that if f is a positive harmonic function
on Bx(2r) ⊂ M , then by (2.2) and (2.3),

sup
Bx(r)

f ≤ C inf
Bx(r)

f,

where C is a constant depending only on A, a, and Γ. In fact, this was
proved in [Gr, SC2]. Hence Lemma 1.1 is still true on M , with the constant
C depending only on A, a, and Γ. See Remark 1.1. Since M satisfies (a),
(b1) [or (b2)], the corresponding Poincaré inequality for maps also holds,
by Lemma 1.2. The rest of the proofs are similar to those of Theorems
1.5–1.7. �
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