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A GEOMETRIC INTERPRETATION OF HAMILTON’S
HARNACK INEQUALITY FOR THE RICCI FLOW

Bennett Chow and Sun-Chin Chu

1. Introduction

In the paper of Li and Yau [LY], a differential Harnack inequality was
proved for the heat equation on a Riemannian manifold. Their technique
was based upon the maximum principal which made possible the extension
to geometric evolution equations. In particular, Richard Hamilton proved
differential Harnack inequalities for the mean curvature flow [H1] and the
Ricci flow [H2]. He also extended the result of Li-Yau and proved a matrix
Harnack inequality for the heat equation [H3]. Recently, Ben Andrews
[A] has proved differential Harnack inequalities for very general curvature
flows of hypersurfaces, including anisotropic flows.

The purpose of this paper is to give a geometric interpretation of Hamil-
ton’s Harnack inequality for the Ricci flow. We shall show that the Harnack
quantity is in fact the curvature of a torsion-free connection compatible
with a degenerate metric on space-time. More precisely, let ( M, g( t )) be
a solution to the Ricci flow

∂

∂ t
gij = −2Rij .(1)

Define the 3-tensor P by

Pijk = ∇iRjk −∇jRik.

Since P is antisymmetric in i and j, we may consider P as a section of the
bundle ∧2

⊕∧1 of 2-forms Whitney sum 1-forms.
Define the symmetric 2-tensor1 M by

Mij = ∆Rij − 1
2
∇i∇jR + 2RkijlRkl − RikRkj .

Here Rijkl = glmRm
ijk, and Mij differs from Hamilton’s definition by the

omission of the term 1
2 tRij . Hamilton’s Harnack inequality says that if

Received July 13, 1995.
1Here and throughout the paper we use the Einstein summation convention. We

also do not always bother to raise indices; repeated lower indices is short hand for
contraction with respect to the metric.
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( M, g( t )) is a solution to the Ricci flow with semi-positive curvature oper-
ator and either (M, g( t )) is compact or complete with bounded curvature,
then for any 1-form Wi and 2-form Uij we have (Theorem 1.1 of [H3])

Z
def
= MijWiWj − 2PijkUijWk + RijklUijUlk

≥ − 1
2 t

RijWiWj ,
(2)

where our definition differs from Hamilton’s by the change of sign of the
cross term which may be obtained by replacing W by −W . Tracing yields
the inequality (Corollary 1.2 of [H3])

∂ R

∂ t
+

R

t
+ 2∇iRVi + 2RijViVj ≥ 0(3)

for any 1-form Vi. Taking V = 0 one obtains

∂ R

∂ t
+

R

t
≥ 0.

The proof of the Harnack quantity involved applying the heat operator
∂
∂ t − ∆ to Z and suitably specifying the covariant derivatives in space of
W and U at a point and extending W and U in time in a way to simplify
the computation and allow for an application of the maximum principle.
Inequality (3) has been exploited by Hamilton [H4] to obtain instantaneous
higher derivative estimates and also to prove the “Little Loop Lemma”.

In section 14 of [H4], following a remark of Nolan Wallach, Hamilton
observed an interesting coincidence. The curvature operator Rm : ∧2M →
∧2M satisfies the equation2

∂

∂ t
Rm = ∆Rm + Rm2 + Rm#,(4)

where

(Rm#)αβ = cγ δ
α cµ ν

β RmγµRmδν

is the square of the curvature operator using the Lie algebra structure
constants cγ δ

α of so(n) which is isomorphic to the fibers of ∧2M (see also
section 2 of [H5]). On the other hand, the Harnack quantity Z may be
considered as a symmetric element of

(∧2M ⊕ ∧1M ) ⊗ (∧2M ⊕ ∧1M ).

2This equation holds when the computation is made with respect to a time-
dependent orthonormal frame, or equivalently, when the tensor Rm is considered as
a system of functions on the orthonormal frame bundle (see section 2 of [H2]).
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Define a Lie bracket on the fibers of ∧2M ⊕ ∧1M by

[U ⊕ W, V ⊕ X ] = [U, V ] ⊕ (U�X − V �W ),(5)

and a degenerate inner product on ∧2M ⊕ ∧1M by

〈U ⊕ W, V ⊕ X 〉 = 〈U, V 〉.(6)

Hamilton observed that if one formally writes the equation (compare with
(17))

∂

∂ t
Z = ∆Z + Z2 + Z#(7)

using the Lie bracket and inner product defined above, one obtains the
equation for Z under the Ricci flow, provided the first derivatives of U and
W are prescribed suitably (see formula (26)–(29)). Here Z is considered as
a self-adjoint endomorphism of ∧2M ⊕ ∧1M . This led Hamilton to write

“ The geometry would seem to suggest that the Har-
nack inequality is some sort of jet extension of positive
curvature operator on some bundle including translation
as well as rotation, and this is somehow all related to soli-
tons where the solution moves by translation.”

2. Main result

Instead of considering a new bundle on the manifold M , we consider
the tangent bundle of the space-time manifold M × [0, T ), where [0, T )
is the time interval of existence of the solution to the Ricci flow. Given
τ ∈ [0, T ), let M̃τ = M × [0, T − τ ). Define a degenerate metric g̃τ on the
cotangent space T ∗M̃τ by

g̃τ (x, t ) = g−1( x, t + τ )

for (x, t ) ∈ M̃τ . Here g−1 is the inverse of the metric g. In local coordi-
nates {xi }n

i=1 on M and x0 = t on [0, T ), we have g̃ij = gij , if 1 ≤ i, j ≤ n,
and g̃ij = 0 if i = 0 or j = 0. Observe that g̃τ is degenerate in the time
direction. This implies that one cannot define the Levi-Civita connection
in the usual way. That is, the connections compatible with the metric and
torsion free are not unique. However, we shall show that one can define
a connection ∇̃τ compatible with the metric g̃τ such that ( g̃τ , ∇̃τ ) is a
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solution to Ricci flow. We say that the pair ( g̃τ , ∇̃τ ) is a solution to the
Ricci flow for degenerate metrics if it satisfies the system3

∂

∂ t
g̃ij = 2g̃ikg̃jlR̃kl

∂

∂ t
Γ̃k

ij = −g̃kl( ∇̃iR̃jl + ∇̃jR̃il − ∇̃lR̃ij ),
(8)

where Γ̃k
ij are the Christoffel symbols of the connection ∇̃τ . The curvature

tensor is defined in the same way as the Riemann curvature tensor

R̃l
ijk = ∂iΓ̃l

jk − ∂jΓ̃l
ik + Γ̃m

jkΓ̃l
im − Γ̃m

ikΓ̃l
jm

and the Ricci tensor by R̃jk = Σn
p=0R̃

p
pjk. The reader may be concerned

that the curvature tensor does not satisfy all of the usual symmetries of
the Riemann curvature tensor, however, this will be true for our choices
of the connection.

Define the connection ∇̃τ on TM̃τ by

Γ̃k
ij( x, t ) = Γk

ij(x, t + τ ) if 1 ≤ i, j, k ≤ n,(A1)

Γ̃0
ij( x, t ) = 0 if 1 ≤ i, j ≤ n,(A2)

Γ̃k
i 0( x, t ) = Γ̃k

0i(x, t ) = −Rk
i ( x, t + τ ) if 1 ≤ i, k ≤ n,(A3)

Γ̃k
00( x, t ) = −1

2
∇kR(x, t + τ ) if 1 ≤ k ≤ n(A4)

for (x, t ) ∈ M̃τ .
The motivation for the definitions above is as follows. For each t ∈

[0, T − τ ), M ×{ t } is a hypersurface in M̃τ with induced metric g( t+ τ ).
Equation (A1) says that the induced connection from ∇̃τ on M×{ t } is the
Levi-Civita connection of g( t+τ ). (A2) says that the second fundamental
form is identically zero, i.e., M×{ t } is totally geodesic. (A3) then implies
that ∇̃τ g̃τ = 0, i.e., the connection is compatible with metric. Finally,
(A4) implies that the pair ( g̃τ , ∇̃τ ) satisfies the Ricci flow. The way we
originally obtained the formula (A4) was by guessing which choice would
yield R̃m = Z and then checking that the Ricci flow was indeed satisfied.
We would like to have a better understanding of why this choice works.

Theorem 2.1. The pair ( g̃τ , ∇̃τ ) is a solution to the Ricci flow for de-
generate metrics.

3The general notion of the Ricci flow for degenerate metrics is due to Hamilton.
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Theorem 2.2. The Riemann curvature tensor R̃mτ of ∇̃τ is given by

R̃l
ijk = Rl

ijk if 1 ≤ i, j, k, l ≤ n,(B1)

R̃0
ijk = 0 if 1 ≤ i, j, k ≤ n,(B2)

R̃l
ij0 = −∇iR

l
j + ∇jR

l
i if 1 ≤ i, j, l ≤ n,(B3)

R̃l
i0k = −∇lRik + ∇kRl

i if 1 ≤ i, k, l ≤ n,(B4)

R̃l
i00 = ∆Rl

i −
1
2
∇i∇lR + 2glmRq

pimRp
q − Rl

mRm
i(B5)

=
∂

∂ t
Rl

i −
1
2
∇i∇lR − Rm

i Rl
m if 1 ≤ i, l ≤ n,

where the quantities on the left-hand side are evaluated at ( x, t ) and the
quantities on the right are evaluated at ( x, t + τ ).

Theorem 2.1 and 2.2 are special cases of Theorem 3.5 and 3.1 respec-
tively, whose proofs will be given in section 3.

Corollary 2.3. The Riemann curvature tensor R̃m at ( x, t ) is the same
as the Harnack quantity Z at (x, t + τ ).

Proof. The fiber of the bundle of 2-forms ∧2M̃τ
∼= ∧2( T ∗M

⊕
R) at (x, t )

is isomorphic to the fiber of the bundle ∧2M
⊕∧1M at x. This may be

seen by taking as a basis {ωi } for the cotangent space T ∗M and noting
that {ωi ∧ ωj , ωk ∧ dt } is a basis for ∧2M̃τ . We shall raise an index and
consider the following bundle isomorphic to ∧2M̃τ :

∧1,1M̃τ = {α = Σn
i,j=1α

j
i dxi ⊗ ∂

∂ xj
+ Σn

k=1α
0
kdxk ⊗ ∂

∂ t
|

Σn
k=1g

ikαj
k = −Σn

k=1g
jkαi

k}
⊂ T ∗M̃τ ⊗ TM̃τ .

Raising an index of the Riemann curvature tensor so that it is of type
(2,2), we have

R̃m : ∧1,1M̃τ → ∧1,1M̃τ

is given by

R̃m(T )i
j = Σn

k,l=0R̃
il
jkT k

l

where R̃il
jk = g̃ipR̃l

pjk and T = Σn
p,q=0T

q
p dxp ⊗ ∂

∂ xq ∈ ∧1,1M̃τ . By the
isomorphism ∧1,1M̃τ

∼= ∧1,1M ⊕ ∧1M , we may write T = U ⊕ W , where
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U ∈ ∧1,1M and W ∈ ∧1M . Using Theorem 2.1, we compute

R̃m(T, T ) = R̃il
jkU j

i Uk
l + R̃il

j0U
j
i Wl + R̃il

0kWiU
k
l + R̃il

00WiWl

= Ril
jkU j

i Uk
l + (−∇iRl

j + ∇jR
il)U j

i Wl

+ (−∇lRi
k + ∇kRil)WiU

k
l

+ ( ∆Ril − 1
2
∇i∇lR + 2girglmRq

prmRp
q − RimRl

m)WiWl.

(9)

Hence by definition (2),

R̃m( U ⊕ W, U ⊕ W ) = Z.

Corollary 2.4. The Ricci tensor R̃icτ of ∇̃τ is given by

R̃ij = Rij if 1 ≤ i, j ≤ n,(C1)

R̃0j = 1
2∇jR if 1 ≤ j ≤ n,(C2)

R̃00 = 1
2

∂ R
∂ t = 1

2∆R + |Ric |2(C3)

where as before the left are at ( x, t ) and the right at ( x, t+ τ ). The scalar
curvature R̃τ of ∇̃τ is given by R̃τ (x, t ) = R( x, t + τ ).

If V ∈ TM , then

R̃ic(V ⊕ ∂

∂ t
, V ⊕ ∂

∂ t
) =

1
2

∂ R

∂ t
+ ∇jRV j + RijV

iV j .

The Harnack inequality (3), then says that

R̃ic( V ⊕ ∂

∂ t
, V ⊕ ∂

∂ t
) ≥ −R

t
.

Note that one can derive the evolution equation for R under the Ricci flow
from the second contracted Bianchi identity on M̃τ

1
2

∂ R

∂ t
=

1
2
∇̃0R̃ = g̃ij∇̃iR̃j0

= gij∇i(
1
2
∇jR ) − gijΓ̃m

i0R̃jm =
1
2
∆R + |Ric |2.

Similarly, the second Bianchi identity on M̃τ implies the evolution equation
(4) for Rm by computing

∇̃0R̃
l
ijk = −∇̃iR̃

l
j0k − ∇̃jR̃

l
0ik.
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Observe that the degenerate metric g̃τ defines a metric and a bracket
on ∧2M̃τ by

〈α, β 〉 = g̃ikg̃jlαijβkl(10)

and

[α, β]ij = αikg̃klβlj − βikg̃klαlj .(11)

Using the decomposition ∧2M̃τ
∼= ∧2M⊕∧1M , we find that the definitions

(10) and (11) above agree with (6) and (5). Alternately, one may define a
metric and a bracket on ∧1,1M̃τ by

〈α, β 〉 = −αj
i β

i
j(12)

and

[α, β]ji = αk
i βj

k − βk
i αj

k.(13)

This yields equivalent definitions via the isomorphism ∧1,1M̃τ
∼= ∧2M̃τ .

Since the pair ( g̃τ , ∇̃τ ) satisfies the Ricci flow, the Riemann curvature
tensor satisfies the equation4

∂

∂ t
R̃m = ∆̃R̃m + R̃m2 + R̃m#,(14)

where R̃m# is the square of R̃m using the structure constants of the Lie
algebra defined by (13). This explains why equation (7) holds.

Finally, we compute the evolution equation for Z = R̃m(U⊕W, U⊕W ).
Let T = U ⊕ W ; from (4),

∂

∂ t
Z = ∆̃Z + R̃m2(T, T ) + R̃m#(T, T )

+ 2R̃m(
∂

∂ t
T − ∆̃T, T ) − 2g̃ijR̃m(∇̃iT, ∇̃jT )

− 4g̃ij∇̃iR̃m(∇̃jT, T ).

Hence, at a point where

∂

∂ t
T = ∆̃T(15)

and

∇̃iT = 0 for 1 ≤ i ≤ n,(16)

4We leave it to reader to check that the computations of the equation for the Rie-
mann curvature tensor in [H5] and [H6] hold for solutions to the degenerate Ricci flow.
Again, the equation (14) holds with respect to an orthonormal frame in space together
with ∂

∂ x0 (since g̃τ is degenerate, this extended frame is not orthonormal).
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we have

∂

∂ t
Z = ∆Z + R̃m2(T, T ) + R̃m#(T, T ).(17)

Note that since Z is a scalar, ∆̃Z = ∆Z.
In terms of U and W , equation (15) and (16) may be rewritten as

∂

∂ t
Uij = ∆Uij(18)

∂

∂ t
Wi = ∆Wi +

1
2
∇pR Uip(19)

and

∇iUjk = 0(20)
∇iWj + Rp

i Ujp = 0.(21)

Given equation (18) and (20), we can relate equations (19) and (21) to the
Ricci solitons. Recall that the Ricci gradient soliton equation is given by
(see section 3 of [H2])

Rij = ∇iVj(22)

where ∇iVj = ∇jVi, i.e., dV = 0. When H1(M ;R ) = 0, we have V = df
for some function f . Tracing (22) we obtain

R = div V,

whereas taking the divergence of (22), we have

1
2
∇jR + RjkVk = 0.(23)

Taking the time derivative of (22) and using the equations

∂

∂ t
Γk

ij = −gkl(∇iRjl + ∇jRil −∇lRij)

and

∂

∂ t
Rij = ∆Rij + 2RkijlRkl − 2R2

ij

we obtain

∇i(
∂

∂ t
Vj + RjlVl) = ∇i(∆Vj).



HAMILTON’S HARNACK INEQUALITY FOR THE RICCI FLOW 709

Assuming there are no parallel 1-forms on M , e.g., if H1(M ;R) = 0, we
have

∂

∂ t
Vj = ∆Vj − RjlVl,(24)

or equivalently,

∂

∂ t
Vj = ∆dVj

def
= −(dδ + δd)Vj .(25)

Given a 2-form Uij on M , define the 1-form

W = (U�V )i = −Uijg
jkVk.

Assuming (18), (20), (22) and (24), we compute

∇kWi = −∇kUijVj − Uij∇kVj = −UijRkj

which is the same as (21), and

∂

∂ t
Wi = − ∂

∂ t
UijVj − Uij

∂

∂ t
Vj − Uij

∂

∂ t
gjkVk

= ∆Wi − UijRjkVk,

which is equivalent to (19) using (23).
The computations above are related to section 3 and Theorem 4.1 of

Hamilton as follows. Hamilton considers W as the basic quantity and
defines U = V ∧ W . From the equations5

∂

∂ t
Wi = ∆Wi(26)

and

∇iWj = 0(27)

and the Ricci soliton equations, he derives the equations

∂

∂ t
Uij = ∆Uij(28)

and

∇iUjk =
1
2
(RijWk − RikWj).(29)

On the other hand, we consider U as the basic quantity and define
W = U�V . From (18), (20) and the Ricci soliton equations, we derive (19)
and (21). The interesting coincidence to note is that equations (18)–(21)

5This equation differs from Hamilton’s by Wi
t

since we consider steady solitons

instead of expanding solitons as our motivation.
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are equivalent to (15) and (16). This explains why assuming (18)–(21) sim-
plifies the computation for ∂Z/∂ t. Since (26)–(29) are related to solitons
in an analogous way as (18)–(21), this gives an additional explanation why
assuming (26)–(29) simplifies the computation in Theorem 4.1 of Hamil-
ton’s paper.

3. An extension and proofs

In this section6 we extend the results of the previous section to the Ricci
flow modified by diffeomorphisms generated by gradient vector fields. In
particular, given a function f : M × [0, T ) → R, we consider the modified
Ricci flow

∂

∂ t
gij = −2Rij + 2∇i∇j f .(30)

Here the Hessian of f is the same as the Lie derivative of the metric with
respect to the vector field ∇ f , i.e., 2∇i∇j f = (L∇ f g )ij .

Analogous to section 1, we consider the degenerate Riemannian man-
ifold ( M̃τ , g̃τ ). We then look for a connection ∇̃τ compatible with g̃τ

such that the pair ( g̃τ , ∇̃τ ) is a solution to the modified Ricci flow for
degenerate metrics

∂

∂ t
g̃ij = 2g̃ikg̃jl( R̃kl − ∇̃k∇̃l f )

∂

∂ t
Γ̃k

ij(31)

= −g̃kl[∇̃i( R̃jl − ∇̃j∇̃l f ) + ∇̃j( R̃il − ∇̃i∇̃l f )(32)

− ∇̃l( R̃ij − ∇̃i∇̃j f )].

Note that the modified Ricci flow differs from the Ricci flow by the Lie
derivative of g with respect to ∇ f whereas the modified degenerate Ricci
flow differs from the degenerate Ricci flow by the Lie derivative of g̃τ with
respect to ∇̃ f = (∇ f , ∂ f

∂ t ).
The appropriate choice of the connection ∇̃τ is given by

Γ̃k
ij = Γk

ij if 1 ≤ i, j, k ≤ n,(D1)

Γ̃0
ij = 0 if 0 ≤ i, j ≤ n,(D2)

Γ̃k
i0 = Γ̃k

0i = −Rk
i + ∇i∇k f if 1 ≤ i, k ≤ n,(D3)

Γ̃k
00 = ∇k(− 1

2R + ∂
∂ tf − 1

2 |∇ f |2 ).(D4)

Observe that when f ≡ 0 , definitions (D1)–(D4) agree with (A1)–(A4).

6We expect that the results of this section hold when ∇i f is replaced by a closed
1-form Vi whose cohomology class is independent of time and ∇̃ f is replaced by Ṽ =
( V, h ) where ∂

∂ t
V = dh. In this case one should define Γ̃k

i0 = Γ̃k
0i = −Rk

i + ∇iV
k and

Γ̃k
00 = ∇k(− 1

2
R + h − 1

2
|V |2).
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Theorem 3.1. The Riemann curvature tensor R̃mτ is given by

R̃l
ijk = Rl

ijk if 1 ≤ i, j, k, l ≤ n,
(E1)

R̃0
ijk = 0 if 1 ≤ i, j, k ≤ n,

(E2)

R̃l
ij0 = −∇iR

l
j + ∇jR

l
i + Rl

ijp∇pf if 1 ≤ i, j, l ≤ n,
(E3)

R̃l
i0k = −∇lRik + ∇kRl

i + Rl
ipk∇pf if 1 ≤ i, k, l ≤ n,

(E3′)

R̃l
i00 =

∂

∂ t
Rl

i −∇pf ∇pR
l
i −

1
2
∇i∇lR − Rp

i R
l
p

(E4)

− {∇iR
l
p −∇pR

l
i}∇pf − {∇lRip −∇pR

l
i}∇pf

+ Rp
i ∇p∇l f − Rl

p∇i∇pf + Rl
ipq∇pf ∇qf

= ∆Rl
i −

1
2
∇i∇lR + 2glmRq

pimRp
q − Rm

i Rl
m

− gqlPipq∇pf − gqlPqpi∇pf + Rl
ipq∇pf ∇qf

if 1 ≤ i, l ≤ n.

Proof. Formulas (E1) and (E2) follow from the definition of R̃mτ and
(D1)–(D2). For part (E3), we compute

R̃l
ij0 = ∂iΓ̃l

j0 − ∂jΓ̃l
i0 + Γ̃p

j0Γ̃
l
ip − Γ̃p

i0Γ̃
l
jp

= ∇i(−Rl
j + ∇j∇l f ) −∇j(−Rl

i + ∇i∇l f ),

and (E3) follows from the commutation formula

∇i∇j ∇lf −∇j∇i∇lf = Rl
ijp∇p f .

Part (E3′) is proved similarly. For part (E4), we compute

R̃l
i00 = ∂iΓ̃l

00 − ∂0Γ̃l
i0 + Γ̃p

00Γ̃
l
ip − Γ̃p

i0Γ̃
l
0p

= ∇i∇l(−1
2
R +

∂ f

∂ t
− 1

2
|∇ f |2) +

∂

∂ t
(Rl

i −∇i∇lf )

− (Rp
i −∇i∇p f )(Rl

p −∇p∇l f ),

and (E4) follows from expanding and cancelling off terms.
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Corollary 3.2. The Ricci tensor R̃icτ is given by

R̃ij = Rij if 1 ≤ i, j ≤ n,(F1)

R̃0j = 1
2∇jR + Rjp∇pf if 1 ≤ j ≤ n,(F2)

R̃00 = 1
2

∂ R
∂ t + Rpq∇pf ∇qf + ∇pR∇pf

= 1
2∆R + |Ric|2 + ∇pR∇pf + Rpq∇pf ∇qf .

(F3)

Proof. Apply Theorem 3.1 to the definition R̃ij = R̃p
pij while using the

contracted second Bianchi identity ∇pR
p
i = 1

2∇iR.

An interesting set of identities are the following:

Lemma 3.3. 1) R̃k
i0j = ∇̃jR̃

k
i − ∇̃kR̃ij + R̃k

ipj∇pf ,

2) R̃k
i00 = ∇̃0R̃

k
i − ∇̃kR̃0i + R̃k

ip0∇pf ,

3) R̃k
00j = ∇̃jR̃

k
0 − ∇̃kR̃0j + R̃k

0pj∇pf = 0,

4) R̃k
000 = ∇̃0R̃

k
0 − ∇̃kR̃00 + R̃k

0p0∇pf = 0.

Proof. Use the definitions (D1)–(D4) to compare ∇̃i to ∇i and ∇̃0 to ∂
∂ t .

Part 1) follows directly from (E3′) using (E1) and (F1). Part 2) may be
derived from (E4) using (F1),(F2) and (E3). Part 3) follows from (F3)
and (E3′). Part 4) follows from (F2), (F3) and (F4).

Remark 3.4. Formally, parts 2)–4) follows from 1) by setting the appro-
priate indices to be zero.

For some of our later computations, it will be convenient to reformulate
Lemma 3.3 as follows.

Corollary 3.5.

1) ∇̃j(R̃ki − ∇̃k∇̃i f ) = ∇̃k(R̃ji − ∇̃j∇̃i f ) + gpiR̃
p

kj0,

2) ∇̃0(R̃ki − ∇̃k∇̃i f ) = ∇̃k(R̃0i − ∇̃0∇̃i f ) + gpkR̃ p
i00,

3) ∇̃j(R̃0k − ∇̃0∇̃kf ) = ∇̃k(R̃0j − ∇̃0∇̃j f ),

4) ∇̃0(R̃0k − ∇̃0∇̃k f ) = ∇̃k(R̃00 − ∇̃0∇̃0 f ),

where 1 ≤ i, j, k ≤ n.
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Proof. The corollary follows from Lemma 3.3 and the formula for com-
muting derivatives

∇̃i∇̃j∇̃k f − ∇̃j∇̃i∇̃k f = −R̃p
ijk∇p f

where 0 ≤ i, j, k ≤ n.

Remark 3.6. Parts 1)–4) are formally equivalent to

∇̃j(R̃ki − ∇̃k∇̃i f ) = ∇̃k(R̃ji − ∇̃j∇̃if ) + R̃kj0i

where 0 ≤ i, j, k ≤ n and

R̃kj0i =

{
gpiR̃

p
kj0 if 1 ≤ i ≤ n

0 if i = 0.

Theorem 3.7. If g is a solution to the modified Ricci flow, then the pair
( g̃τ , ∇̃τ ) is a solution to the modified Ricci flow for degenerate metrics.

Proof. Since g̃0j = 0 for all 0 ≤ j ≤ n, to obtain (31), we only need to
show that

R̃kl − ∇̃k∇̃l f = Rkl −∇k∇l f(33)

for 1 ≤ k, l ≤ n. This follows from Γ̃k
ij = Γk

ij , R̃ij = Rij (equations
(D1) and (F1), respectively). Equation (F1) also implies (32) holds for
1 ≤ i, j, k ≤ n. Hence we only need to show (32) holds in two cases

Case 1: j = 0 and 1 ≤ i, k ≤ n.

The left side of equation (32) is

∂

∂ t
Γ̃k

i0 = − ∂

∂ t
(Rk

i −∇i∇k f ).

The right side is given by

−g̃kl{∇̃0(R̃il − ∇̃i∇̃l f ) + ∇̃i(R̃0l − ∇̃l∇̃0 f ) − ∇̃l(R̃0i − ∇̃i∇̃0 f )}

= − ∂

∂ t
(Rk

l −∇i∇k f ) + Γ̃m
0i(R̃

k
m −∇m∇k f ) − Γ̃k

0m(Rm
i −∇i∇m f )

− gkl{∇i(
1
2
∇lR + Rp

l ∇p f ) −∇l(
1
2
∇lR + Rp

i ∇p f )

− Γ̃p
i0Rpl + Γ̃p

l0Rpi + R̃p
il0∇p f )}

= − ∂

∂ t
(Rk

i −∇i∇k f ) − gkl(∇iR
p
l −∇lR

p
i + R̃p

il0)∇p f .

Formula (E3) and the fact that Rp
ilq∇qf ∇p f = 0 imply equation (32).

Case 2: i = j = 0 and 1 ≤ k ≤ n.
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The left side of (32) is given by

∂

∂ t
Γ̃k

00 =
∂

∂ t
[∇k(−1

2
R +

∂ f

∂ t
− 1

2
|∇f |2)].

The right side is

g̃kl{−2∇̃0(R̃0l − ∇̃0∇̃l f ) + ∇̃l(R̃00 − ∇̃0∇̃0 f )}
= −g̃kl∇̃0(R̃0l − ∇̃0∇̃l f )

= − ∂

∂ t
[∇k(

1
2
R − ∂ f

∂ t
+

1
2
|∇f |2)]

+ Γ̃p
00(R̃

k
p − ∇̃p∇̃k f ) − Γ̃k

0p(R̃
p
0 − ∇̃0∇̃pf )

=
∂

∂ t
[∇k(−1

2
R +

∂ f

∂ t
− 1

2
|∇f |2)],

where we used Corollary 3.4 to obtain the first equality and used the
identities

Γ̃k
0p = −(R̃k

p − ∇̃p∇̃k f ) = −(Rk
p −∇p∇k f )

and

Γ̃p
00 = −(R̃ p

0 − ∇̃0∇̃p f ) = ∇p(−1
2
R +

∂ f

∂ t
− 1

2
|∇f |2)

to obtain the last equality. This completes the proof of the theorem.

Similar to the previous section, if ( g̃τ , ∇̃τ ) satisfies the modified Ricci
flow for degenerate metrics, then the evolution of the Riemann curvature
operator is given by

∂

∂ t
R̃m = ∆̃R̃m + L∇̃ f R̃m + R̃m2 + R̃m#.

4. An approximation approach

In this section we consider a two-parameter family of Riemannian (non-
degenerate) metrics g̃ε,δ on M̃0 = M × [0, t ) and obtain the connection ∇̃τ

defined by (A1)–(A4) as the limit of the Levi-Civita connections of g̃ε,δ as
ε and δ tend to infinity7. On the other hand, the Harnack quantity Z is
the limit of the Riemann curvature tensors of g̃ε,δ as ε tends to infinity and
δ tends to zero. We define the metrics by

g̃ε (x, t) = g(x, t) + (R +
ε

2( t + δ )
) dt2.

7If we just let ε tend to infinity, the connection ∇̃τ is the limit except for the
component Γ̃0

00 (see formula 6 of Lemma 4.1) which tends to −( 2t + 2δ )−1 as ε → ∞,

whereas by (A2), Γ̃0
00 = 0. Of course, this discrepancy disappears if we let δ → ∞.
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This metric is positive-definite at points where R + ε (2t + 2δ )−1 > 0. In
particular, for any δ > 0, g̃ε,δ is positive-definite on compact subsets of
M̃0, provided ε is large enough.

Remark 4.1. The metric g̃ε,δ induces a metric on ∧2T ∗M̃ . A two-form on
M̃0 is a section in ∧2T ∗M̃ , and we have

∧2T ∗
(x,t)M̃ ≡ ∧2(T ∗

x M ⊕ Rt) ∼= ∧2T ∗
x M ⊕ ∧1T ∗

x M as vector bundles.

The second identification is given by

dxα ∧ dxβ → dxα ∧ dxβ

dxγ ∧ dt → 1√
R+ ε

2(t+δ )
dxγ .

As ε tends to infinity, we get the semi-direct Lie algebra structure on
∧2T ∗M̃ given by (5) and the degenerate metric on ∧2T ∗M̃ given by (6).

Remark 4.2. g̃ij = gij , g̃ij = gij and g̃0i = g̃0i = 0 for 1 ≤ i, j ≤ n.
g̃00 = R + ε( 2t + 2δ )−1.

We now study the asymptotic behavior of the connection and curvature
operator of (M̃n+1,gε,δ ) as ε → ∞.

Lemma 4.3. For all ε, δ > 0, the Levi-Civita connections of g̃ε,δ are given
by

Γ̃k
ij = Γk

ij for 1 ≤ i, j, k ≤ n,1)

Γ̃0
ij =

Rij

R + ε ( 2t + 2δ )−1
for 1 ≤ i, j ≤ n,2)

Γ̃k
i0 = −Rk

i for 1 ≤ i, k ≤ n,3)

Γ̃k
00 = −1

2
∇kR for 1 ≤ k ≤ n,4)

Γ̃0
i0 =

∇i R

2(R + ε ( 2t + 2δ )−1)
for 1 ≤ i ≤ n,5)

Γ̃0
00 =

∂t R

2(R + ε ( 2t + 2δ )−1)
+

−ε

4t2(R + ε ( 2t + 2δ )−1)
.6)

at points where g̃ε,δ is positive-definite.

Proof. Recall the Christoffel symbols are given by

Γ̃k
ij =

1
2
g̃kl(∂ig̃jl + ∂j g̃il − ∂lg̃ij) for 0 ≤ i, j, k, l ≤ n.

The lemma follows from this and a straightforward computation using
Remark 4.2.
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The Riemann curvature tensors of the metrics g̃ε,δ are given by

Lemma 4.4.

1) For 1 ≤ i, j, k, l ≤ n,

R̃l
ijk = Rl

ijk − (Rl
iRjk − Rl

jRik)(R + ε ( 2t + 2δ )−1)−1.

2) For 1 ≤ j, k, l ≤ n,

R̃l
0jk = −∇kRl

j + ∇lRjk

− 1
2
(Rjk∇l R − Rl

j ∇k R)(R + ε ( 2t + 2δ )−1)−1.

3) For 1 ≤ i, l ≤ n,

R̃l
i00 = ∂tR

l
i −

1
2
∇i∇lR − Rm

i Rl
m

− [(
∂t R

2
+

−ε

4t2
)Rl

i −
∇i R∇l R

4
](R + ε ( 2t + 2δ )−1)−1.

Proof. (1) For 1 ≤ i, j, k, l ≤ n, we have

R̃l
ijk = ∂iΓ̃l

jk − ∂jΓ̃l
ik + Γ̃m

jkΓ̃l
im − Γ̃m

ikΓ̃l
jm

= ∂iΓl
jk − ∂jΓl

ik +
∑

1≤m≤n

( Γm
jkΓl

im − Γm
ikΓl

jm)

+ Γ̃0
jkΓ̃l

i0 − Γ̃0
ikΓ̃l

j0

= Rl
ijk − (Rl

iRjk − Rl
jRik)(R + ε ( 2t + 2δ )−1)−1.

(2) For 1 ≤ l, j, k ≤ n, we have

R̃l
0jk = ∂0Γ̃l

jk − ∂jΓ̃l
0k + Γ̃m

jkΓ̃l
0m − Γ̃m

0kΓ̃l
jm

= ∂0Γl
jk − ∂jΓl

k0 +
∑

1≤m≤n

(−Γm
jkRl

m + Γl
jmRm

k )

+ Γ̃0
jkΓ̃l

00 − Γ̃0
0kΓ̃l

j0

= −(∇jR
l
k + ∇kRl

j −∇lRjk) + ∇jR
l
k

− 1
2
(Rjk∇l R − Rl

j ∇k R)(R + ε ( 2t + 2δ )−1)−1.
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(3) For 1 ≤ i, l ≤ n, we have

R̃l
i00 = ∂iΓ̃l

00 − ∂0Γ̃l
i0 + Γ̃m

00Γ̃
l
im − Γ̃m

i0Γ̃
l
0m

= ∂i(−1
2
∇lR) − ∂0(−Rl

i)

+
∑

1≤m≤n

(−1
2
Γl

im∇mR − Rm
i Rl

m)

+ Γ̃0
00Γ̃

l
i0 − Γ̃0

i0Γ̃
l
00

= ∂0R
l
i −

1
2
∇i∇lR − Rm

i Rl
m + Γ̃0

00Γ̃
l
i0 − Γ̃0

i0Γ̃
l
00

= ∂tR
l
i −

1
2
∇i∇lR − Rm

i Rl
m

− [(
∂t R

2
+

−ε

4t2
)Rl

i −
∇i R∇l R

4
](R + ε ( 2t + 2δ )−1)−1

.

Taking the appropriate limits, we obtain the connection between ∇̃τ and
the Harnack quantity.

Theorem 4.5.

(1) The connection ∇̃τ is the limit of ∇̃ε,δ as ε, δ → ∞.
(2) Hamilton’s Harnack quantity Z + 1

2tRijWiWj is the limit of

R̃mε,δ(U ⊕ W, U ⊕ W ) as ε → ∞ and δ → 0.
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