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HOPF-TYPE RIGIDITY FOR NEWTON EQUATIONS

Misha Bialy and Leonid Polterovich

1. Introduction and main results

Let T
n be a Euclidean torus. The motion of the classical particle on T

n

in the presence of a time-dependent potential U : Tn × R → R is described
by the Newton equation

(1.A) ∇q̇ q̇ = −∇U(q, t) ,

which is the Euler-Lagrange equation for the variational problem

∫
1
2 |q̇|

2 − U(q, t)dt → extr .

In what follows we assume the potential U to be T -periodic in time. In the
present note we prove the following Hopf-type rigidity result:

Theorem 1.B. The Newton equation (1.A) has no conjugate points if and
only if the potential U does not depend on q, that is, ∇U(q, t) ≡ 0.

We refer the reader to [ATF] for the standard definition of conjugate
points. The proof of 1.B is given in §2.

In the case when the potential U is time-independent a stronger state-
ment was proved by A. Knauf [K]. Namely, if a potential system has no con-
jugate points in a sufficiently high energy level then U is constant. Knauf
uses a Hopf’s method (see [H], [G]), which relies heavily on the integration
of certain curvature-type quantities over the compact energy level. In the
time-dependent situation the energy is no longer conserved, and hence the
phase space is essentially non-compact. This forms the main difficulty of
our problem, and some new tools are needed.
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Remark 1.C. Our result remains true in a more general Riemannian con-
text. Namely, the Newton equation (1.A) associated with an arbitrary
Riemannian metric on the torus has no conjugate points if and only if the
metric is flat and the potential does not depend on q. Indeed, the trans-
formation q(t) �→ q(εt) maps the solutions of the Newton equation with
potential U(q, t) to the solutions of the Newton equation with potential
ε2U(q, εt). In particular, if the former system has no conjugate points then
neither does the latter. In view of this, the Newton equation can be consid-
ered as a small perturbation of the equation of geodesics. This immediately
implies that the Riemannian metric has no conjugate points, and must then
be flat due to the Burago-Ivanov solution of the Hopf conjecture ([B-I]; see
[Ba], [C-K] for the history and related discussions). The desired assertion
follows now from 1.B.

The Hamiltonian counterpart of the Newton equation (1.A) is a flow ϕt

on T ∗
T

n generated by a Hamiltonian function H(p, q, t) = 1
2 |p|2 + U(q, t).

Let ϕ = ϕT be the time-T -map of the flow. As a consequence of 1.B we
get the following:

Theorem 1.D. Suppose that the phase space T ∗
T

n is C1-foliated by ϕ-
invariant Lagrangian tori homologous to the zero section. Then the poten-
tial U does not depend on q.

Proof. It is well known that every leaf L of the invariant foliation carries
a ϕ-invariant absolutely continuous measure. (Warning: such a measure
does not necessarily exist if an invariant torus is not a leaf of an invariant
foliation!) Then the natural projection to T

n of every trajectory lying on
L is a minimal extremal of the action functional (see [B-P], 1.4), and hence
the system has no conjugate points. The needed assertion follows from
1.B. �

2. Hopf’s method and Gibbs measure

In this section we prove 1.B. Suppose that (1.A) has no conjugate points.
Consider the corresponding extended Hamiltonian flow in the phase space
M = T ∗

T
n × S1 where S1 = R/TZ. Let L be the Lie derivative operator

along this flow. As in the classical Hopf method (see [H], [G]) one can
construct a measurable family A(p, q, t) of symmetric n × n matrices on
M which is smooth along trajectories of the flow and satisfies the Riccati
equation LA + A2 + Hessq U = 0 . Moreover, A and LA are uniformly
bounded.
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Set a(p, q, t) = trA(p, q, t). Then the inequality trA2 ≥ 1
n (trA)2 implies

that

(2.A) La +
1
n

a2 + ∆qU ≤ 0 .

It would be easy to complete the proof to the theorem if, following Hopf,
we could integrate (2.A) over M . In order to handle non-compactness, we
introduce a fastly decaying Gibbs measure

dµ
U

= exp
{
−|p|2

2
− U(q, t)

}
dp1dq1 · . . . · dpndqndt .

Let E
U

be the space of all measurable uniformly bounded functions a: M →
R which are smooth along the trajectories of the flow and whose Lie de-
rivative La is uniformly bounded. The following result is crucial for our
purposes:

Lemma 2.B. Assume that the potential U satisfies

(2.C)
∫
M

[(∂U

∂t

)2

− 4
n
|∇U |2

]
dµ

U
< 0 .

Then ∫
M

(
La +

1
n

a2 + ∆qU

)
dµ

U
> 0

holds for every function a ∈ E
U
.

Proof. Integrating by parts and using the fact that the Liouville measure
is invariant under the flow we get that

∫
M

La dµ
U

=
∫
M

a
∂U

∂t
dµ

U
.

Hence, the Cauchy-Schwartz inequality in L2(M, dµ
U
) implies that

∫
M

La dµ
U
≥ −


∫

M

a2dµ
U




1
2


∫

M

(∂U

∂t

)2

dµ
U




1
2

.
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Also, ∫
M

∆qUdµ
U

=
∫
M

|∇U |2dµ
U

.

Set x =
(∫

M

a2dµ
U

) 1
2
. Then we get that

∫
M

(
La+

1
n

a2 +∆qU
)
dµ

U
≥ 1

n
x2−


∫

M

(∂U

∂t

)2

dµ
U




1
2

·x+
∫
M

|∇U |2dµ
U

.

Notice now that the left-hand side of (2.C) is just the discriminant of this
quadratic function. The needed assertion follows immediately. �

The next step is to apply the renormalization procedure of 1.C to our
potential system. This procedure does not change the essential behavior
of the system and, in a sense, allows one to work in a neighbourhood of
the Euclidean geodesic flow. For ε > 0 define a renormalized potential
Uε(q, t) = ε2U(q, εt). Notice that Uε is periodic with the period Tε = T/ε.
Set Mε = T ∗

T
n × (R/TεZ).

Lemma 2.D. Assume that the potential U depends non-trivially on q.
Then the renormalized potential Uε satisfies the inequality (2.C), that is

∫
Mε

[(∂Uε

∂t

)2

− 4
n
|∇Uε|2

]
dµ

U ε
< 0 ,

provided ε is small enough.

Proof. A straightforward computation shows that
∫

Mε

(∂Uε

∂t

)2

dµ
U ε

≤ c1ε
5 ,

while ∫
Mε

|∇Uε|2dµ
U ε

≥ c2ε
3 ,

where c1 and c2 are positive constants. The required assertion follows
immediately. �
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Now we are ready to finish off the proof of 1.B. Let |p|2
2 + U(q, t) be a

potential system without conjugate points. Suppose that the potential U

depends non-trivially on q. Then after the renormalization (see 2.D) we
can assume that the potential U satisfies the inequality (2.C). Hence the
function a violates the inequality (2.A) in view of Lemma 2.B which is a
contradiction. This completes the proof. �

3. Discussion

3.A. Compactly supported potentials. Our method can be applied
for other boundary conditions. Consider for instance the Newton equation
for a potential U : Rn × R → R with compact support and a Riemannian
metric on R

n which is flat outside a compact subset of R
n. Using similar

arguments as for the proof of 1.B,C one can show that the Newton equation
in this case has no conjugate points if and only if g is flat and U vanishes
identically. Note that the flatness of the metric here, follows from a result by
C. Croke who proved the E. Hopf theorem for the “compactly supported”
case (see [C]).

3.B. Which classes of variational problems enjoy the Hopf-type
rigidity? This problem is still far from being understood. Besides Rie-
mannian metrics and time-periodic potential systems, the Hopf-type rigid-
ity holds for convex plane billiards. Namely, the first author proved (see
[B]) that the only billiard without conjugate points is a circle. In [D] the
Hopf-type rigidity is discussed in a two-dimensional Finsler framework. No
other results in this direction are known to us.

3.C. Optical systems without conjugate points. Recall that a Hamil-
tonian system on T ∗

T
n is optical if it is generated by a fiber-wise strictly

convex Hamiltonian function. Given an optical system without conjugate
points, does it admit a smooth invariant foliation by Lagrangian tori?

This question was posed in [C-K] for the Finsler case. However, it makes
sense in the general setting as well. Interestingly enough, in all known
examples the positive answer has been confirmed in a quite indirect manner,
namely via the Hopf-type rigidity.
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