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THERMODYNAMIC BETHE ANSATZ AND
DILOGARITHM IDENTITIES I.

Edward Frenkel and András Szenes

Abstract. We prove an infinite series of multi-parameter dilogarithm
identities generalizing the well known Euler and Abel (pentagon) iden-
tities. These identities have been recently conjectured by physicists in
connection with Thermodynamic Bethe Ansatz.

1. Introduction

A decade has passed since the seminal work [1] by A. A. Belavin, A.
P. Polyakov, and A. B. Zamolodchikov. Since then, much progress has
been made in understanding Conformal Field Theories (CFTs) in two di-
mensions. The success in the study of CFTs is due to their invariance
with respect to the Virasoro algebra, or, more generally, extended con-
formal algebras. This property allows one to describe CFTs in terms of
representation theory of infinite dimensional Lie algebras, or vertex oper-
ator algebras, and algebraic geometry of complex curves.

In [2] A. B. Zamolodchikov introduced an interesting class of 2D quan-
tum field theories—perturbations of CFTs by relevant operators. These
theories lack conformal invariance, but possess some other remarkable al-
gebraic structures, which are yet to be fully understood from the mathe-
matical point of view. One of the properties is the existence of infinitely
many local integrals of motion in involution. This was conjectured in [2]
(see also [3]) and proved in [4]. Thus, a perturbation of a CFT is an in-
tegrable 2D quantum field theory, and as such, it is governed by a purely
elastic S-matrix, which satisfies various algebraic constraints [5]. These
constraints are so strong that knowing the spins of local integrals of mo-
tion one can often conjecture the S-matrix and hence determine the theory
completely, see [2, 6] and references therein.

The Thermodynamic Bethe Ansatz (TBA) is a method of verifying these
conjectures, which was first applied in this context by Al. B. Zamolod-
chikov [7]. One starts with an integrable field theory conjectured to be
the perturbation of a CFT T , and studies its ultraviolet (UV) behavior.
A theory on an infinitely long cylinder of circumference R is described
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by a system of integral equations called the TBA equations. To write
down this system explicitly, let us assume that the theory has N species
of particles with masses ma, a = 1, . . . , N . One is interested in the func-
tions εa(θ), which are called the spectral densities of particles of species
a, see, e.g., [6]. These are functions of the rapidity θ (recall that ra-
pidity is related to the energy E and the momentum p by the formulas
E = m cosh θ, p = m sinh θ). The TBA equations on the functions εa(θ)
read

maR cosh θ = εa(θ) +
1
2π

N∑
b=1

∫ ∞

−∞
dθ′ φab(θ − θ′) log (1 + Ya(θ′)) ,

(1.1)

where Ya(θ) = e−εa(θ), φab(θ) = −i
∂ log Sab

∂θ
, and Sab(θ) is the S-matrix.

The TBA equations are usually hard to solve, but one can extract a
lot of information from them even without solving them explicitly. The
ground state energy of the theory is given by

E(R) = − 1
2π

N∑
a=0

∫ ∞

−∞
dθ maR cosh θ log (1 + Ya(θ)) .(1.2)

In the UV limit R → 0, in which one is supposed to recover the initial
CFT T , we should have E(R) � −πc̃(R)/6R, where c̃(R) ∼ c̃ + O(R).
From (1.2) one finds using the TBA equations, see, e.g., [6],

π2

6
c̃ =

N∑
a=1

L

(
1

1 + ya

)
,(1.3)

where L(z) is the Rogers dilogarithm function [8]

L(z) =
1
2

∫ z

0

(log w d log(1 − w) − log(1 − w) dw) , 0 ≤ z ≤ 1,(1.4)

and ya = limR→0 Ya(θ). The numbers ya satisfy the system of algebraic
equations

ya =
N∏

b=1

(
1 +

1
yb

)Nab

,(1.5)

where Nab is the number of poles of Sab(θ) in the upper half plane; in
particular, they do not depend on θ.

If the conjectural description of the perturbation of the CFT T is cor-
rect, the number c̃ in the left-hand side of the formula (1.3) should coincide
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with the effective central charge of T . But in that case formula (1.3) can
be considered as a dilogarithm identity, which relates a rational number c̃
to the algebraic numbers ya’s.

Many dilogarithm identities have been discovered this way in recent
years. While the TBA method has not yet been made rigorous, the iden-
tities have been proved rigorously by other methods, see [8, 9, 10]. Math-
ematically, the dilogarithm identities manifest a connection between 2D
quantum field theory on the one hand and algebraic K-theory and num-
ber theory on the other, see [10]. We hope that better understanding of
the TBA will enable us to gain new insights into this connection.

Recently, F. Gliozzi and R. Tateo [11] made an important step in this
direction. They found functional analogues of the identities (1.3) for a large
class of theories, which are labeled by pairs (G, H) of Dynkin diagrams of
types ADE and T (the latter is the diagram of type A with a loop attached
to one of the end vertices). In such a theory, the species of particles are
labeled by pairs of indices a = 1, . . . , rG, and b = 1, . . . , rH , where rG and
rH are the numbers of vertices in the diagrams G and H, respectively.

The main fact, which is due to Al. B. Zamolodchikov [12] and, in the
general case, to F. Ravanini, A. Valleriani and R. Tateo [13] is that any
solution {Y b

a (θ)} of the TBA equations (1.1) corresponding to the (G, H)
theory satisfies the following system of algebraic equations:

Y b
a

(
θ +

πI

h∨
G

)
Y b

a

(
θ − πI

h∨
G

)
=

rG∏
c=1

(
1 + Y b

c (θ)
)Gac

rH∏
d=1

(
1 +

1
Y d

a (θ)

)−Hbd

,

(1.6)

where I =
√
−1, (Gac) and (Hbd) are the adjacency matrices of the dia-

grams G and H, respectively, and h∨
G is the dual Coxeter number of G.

The Y -system (1.6) and the closely related T -system play an impor-
tant role in quantum field theory and statistical mechanics [13, 14, 15, 16].
In [17] it was conjectured that a certain class of solutions of this system
parametrizes the spectra of commuting integrals of motion acting on min-
imal representations of conformal algebras.

Al. B. Zamolodchikov [12] has conjectured an important periodicity
property of solutions of the system (1.6):

Y b
a

(
θ + πI

h∨
G + h∨

H

h∨
G

)
= Y b̄

ā (θ),(1.7)

where h∨
H is the dual Coxeter number of H, and ā, b̄ are the vertices conju-

gate to a, b, respectively. This periodicity property allows one to find the
conformal dimension of the field responsible for the perturbation of the
corresponding CFT, see [12].
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Now we can write down the dilogarithm identities conjectured in [11].
Let {Y b

a (θ)} be a solution of the Y -system (1.6). Fix θ and set

Xb
a(m) =

Y b
a (θ + πIm/h∨

G)
1 + Y b

a (θ + πIm/h∨
G)

.

Suppose that all Xb
a(m) are real numbers between 0 and 1. Then

rG∑
a=1

rH∑
b=1

h∨
G+h∨

H∑
m=1

L
(
Xb

a(m)
)

=
π2

6
rGrHh∨

G.(1.8)

Let yb
a = limθ→+∞ Y b

a (θ). In the limit θ → +∞ the system (1.6) be-
comes a system of type (1.5), and the identity (1.8) becomes equivalent to
the identity (1.3) corresponding to the UV limit of the (G, H) theory (in or-
der to relate them, one has to use the Euler identity L(z)+L(1−z) = π2/6).
Therefore, the identities (1.8) can be viewed as functional analogues of the
known dilogarithm identities (1.3). It is interesting that the identity cor-
responding to the (A1, A1) theory is the Euler identity above, and the
identity corresponding to the (A2, A1) theory is the pentagon identity of
the dilogarithm function, see [11].

There are many indications that analogues of the Y -system can be de-
fined for other integrable field theories and that there are dilogarithm
identities associated to them, see [18].

In this paper, we give a proof of the periodicity conjecture (1.7) and
the identities (1.8) and their generalizations for the (An, A1) theories. We
also prove analogous identities for the Bloch-Wigner function, which is
the imaginary counterpart of the Rogers dilogarithm. Our proof of these
identities relies on a universal property of the dilogarithm functions, which
for the Bloch-Wigner function was first proved by S. Bloch [19].

Our approach can be generalized to the identities corresponding to more
general diagrams. We have already obtained a complete proof of period-
icity and dilogarithm identities of (An, A2)-type and partial results in the
general case. We will report on those results in the second part of this
paper.

Upon completing this work, we learned about the paper [20], in which
another approach to the dilogarithm identities (1.8) was proposed and a
proof, different from ours, of the periodicity (1.7) and the identities (1.8)
for the (An, A1) theories was outlined.

The paper is organized as follows. In Section 2 we prove the periodic-
ity property of the Y -system. In Section 3 we give a general form of the
dilogarithm identities for the Rogers and the Bloch-Wigner dilogarithms.
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In Section 4 we prove the identities (1.8) of (An, A1)-type and their gen-
eralizations.

2. Periodicity

In the case of (An, A1) theory the Y -system (1.6) takes the form

Ya

(
θ +

πI

n + 1

)
Ya

(
θ − πI

n + 1

)
= (1 + Ya−1(θ))(1 + Ya+1(θ)),(2.1)

where we put Ya(θ) = Y 1
a (θ).

In this section we prove the periodicity property of this system.
Let us fix θ and denote

Y (i, j) = Yj

(
θ + πI

i

n + 1

)
, i ∈ Z, j = 1, . . . , n.

In this notation the system (2.1) reads

Y (i − 1, j)Y (i + 1, j) = (1 + Y (i, j − 1))(1 + Y (i, j + 1)),(2.2)

i ∈ Z, j = 1, . . . , n, where we put Y (i, 0) = Y (i, n + 1) = 0 for all i.
Remark. In this paper we treat the system (2.2) as a system of algebraic
equations on the variables Y (i, j). We do not restrict ourselves to the
special case when Y (i, j) are values of functions Yj(θ) satisfying the Y -
system (2.1) and therefore we do not use any global properties of functional
solutions Yj(θ) of (2.1).

Theorem 1. Suppose that the variables Y (i, j), i ∈ Z, j = 1, . . . , n, satisfy
the system of equations (2.2). Then Y (i, j) = Y (i + n + 3, n + 1 − j).

Proof. It will be helpful to pass to the new variables X(i, j) = Y (i, j)/(1+
Y (i, j)). In these, (2.2) takes the form

(2.3)
(

1 − 1
X(i − 1, j)

) (
1 − 1

X(i + 1, j)

)
= (1 − X(i, j − 1))(1 − X(i, j + 1)).

Also introduce the transformation S : (i, j) → (i + n + 3, n + 1 − j). Thus
our goal is to show that Y (i, j) = Y (S(i, j)).

The method of proof is setting up some initial conditions and then
solving the system of equations explicitly. Note that the variables Y (i, j)
and X(i, j) with i + j even are independent from those with i + j odd.
Therefore, without loss of generality, we can restrict ourselves to those
X(i, j) for which i + j is even.

Introduce a set of variables a1, a2, . . . , an, and set X(i, i) = ai for i =
1, . . . n. The condition Y (i, 0) = Y (i, n+1) = 0 translates into a0 = an+1 =
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0. It is clear that these initial conditions together with (2.3) determine all
the X(i, j)’s. Moreover, the relations of (2.3) impose no relations on the
ai’s. Therefore, a1, . . . , an can be considered as parameters of the solutions
of the system (2.3).

By successively applying (2.3), we can express the variables X(i + 2, i),
i = 1, . . . , n in terms of the ai’s. The result is surprisingly simple:

X(i + 2, i) =
1 − a1a2 · · · ai

1 − a1a2 · · · ai+1
.(2.4)

To prove this formula, it is enough to check that relations (2.3) hold iden-
tically if we substitute (2.4) into them. To this end, consider (2.3) for
i = j+1. Substitute the above expression for X(j+1, j−1) and X(j+2, j),
and also aj and aj+1 for X(j, j) and X(j + 1, j + 1), respectively. After
simple manipulations we obtain

1 − aj

aj
· a1a2 · · · aj(1 − aj+1)

1 − a1a2 · · · aj
= (aj+1 − 1)

a1a2 · · · aj−1(aj − 1)
1 − a1a2 · · · aj

,

which is an obvious identity. This proves formula (2.4).
An important corollary of (2.4) is that

X(n + 2, n) = 1 − a1a2 · · · an,(2.5)

since an+1 = 0 by definition.
Now observe that we can apply the same recursion “starting at the

other end”, i.e., do the calculations symmetrically with respect to the point
((n+1)/2, (n+1)/2). Then we obtain an expression for X(n−i−1, n−i+1),
which is equal to the expression for X(i+2, i) with ai replaced by an+1−i:

X(n − i − 1, n − i + 1) =
1 − anan−1 · · · an+1−i

1 − anan−1 · · · an−i
.

In particular, when i = n we have

X(−1, 1) = 1 − anan−1 · · · a1,(2.6)

and thus X(n + 2, n) = X(−1, 1) or X(S(−1, 1)) = X(−1, 1) (see the
picture below in the case n = 4).
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◦

◦

◦

◦

◦

×
X(−1, 1)

•

•

•

•

a1

a2

a3

a4

◦

◦

◦

×
X(6, 4)

◦

◦

Note that the key fact is that formula (2.5) for X(n + 2, n) is invariant
with respect to the involution ai → an+1−i.

Since the system (2.3) is invariant with respect to simultaneous shifts of
the coordinate i, we conclude that X(i, 1) = X(S(i, 1)) for all i ∈ Z, i.e.,
the periodicity holds for X(i, 1), i ∈ Z. Clearly, these variables determine
all the others via (2.3). Now note that (2.3) is invariant under S, thus the
periodicity holds for all of the X(i, j)’s and hence for all the Y (i, j)’s.

3. Properties of the dilogarithm functions

We consider two different types of dilogarithm functions: the Rogers
dilogarithm and the Bloch-Wigner dilogarithm. In this section, we discuss
a universal property of these functions, which will allow us to prove the
dilogarithm identities (1.8) and their generalizations. In the case of the
Bloch-Wigner function, this property was first proved by S. Bloch [19].

First let us introduce some notation.
For an abelian group A, consider the additive abelian group A⊗Z A. It

consists of finite sums∑
i

ni · gi ⊗ hi, gi, hi ∈ A, ni ∈ Z,

with the obvious addition, and subject to the relations

(fg) ⊗ h = f ⊗ h + g ⊗ h, h ⊗ (fg) = h ⊗ f + h ⊗ g,

1 ⊗ h = h ⊗ 1 = 0,

f−1 ⊗ g = −f ⊗ g, g ⊗ f−1 = −g ⊗ f.

Denote by S2A the subgroup of A ⊗Z A generated by elements of the
form a ⊗ b + b ⊗ a for all a, b ∈ A.
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3.1. The first identity for the Rogers dilogarithm. Let C be the
multiplicative group of nowhere vanishing continuous differentiable func-
tions from [0, 1] to R+ = (0,+∞). Denote by L(z) the Rogers dilogarithm
function defined on the interval [0, 1] by formula (1.4).

Proposition 1. Let f1, . . . , fN be continuous differentiable functions from
[0, 1] to (0, 1), such that

N∑
i=1

fi ⊗ (1 − fi) ∈ S2C.

Then
N∑

i=1

L (fi(x)) = const

as a function of x ∈ [0, 1].

Proof. By the definition of the Rogers dilogarithm function (1.4), we have,
for 0 < z < 1,

d L(z) =
1
2

(log z · d log(1 − z) − log(1 − z) · d log z) ,(3.1)

which implies that

(3.2) d

N∑
i=1

L (fi(x))

=
1
2

N∑
i=1

(log fi(x) · d log(1 − fi(x)) − log(1 − fi(x)) · d log fi(x)) .

If the fi’s satisfy the condition of the proposition, then there exist
gj , hj ∈ C, j = 1, . . . , m, such that

N∑
i=1

fi ⊗ (1 − fi) =
m∑

j=1

(gj ⊗ hj + hj ⊗ gj) .(3.3)

For x, y ∈ [0, 1] we can define a homomorphism Logx,y : C ⊗ C → R,
where R is considered as an additive group, by the formula Logx,y(f⊗g) =
log f(x) · log g(y). By applying the homomorphism Logx,y to both sides of
formula (3.3), we obtain

N∑
i=1

log fi(x) log(1 − fi(y)) =
m∑

j=1

log gj(x) log hj(y) + log hj(x) log gj(y).
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Hence

(3.4)
N∑

i=1

d log fi(x) · log(1 − fi(y))

=
m∑

j=1

d log gj(x) · log hj(y) + d log hj(x) · log gj(y),

and

(3.5)
N∑

i=1

log fi(x) · d log(1 − fi(y))

=
m∑

j=1

log gj(x) · d log hj(y) + log hj(x) · d log gj(y).

Subtracting (3.4) from (3.5) and setting y = x, we obtain

N∑
i=1

(log fi(x) · d log(1 − fi(x)) − log(1 − fi(x)) · d log fi(x)) = 0,

which implies by (3.2) that

d

N∑
i=1

L (fi(x)) = 0.

Corollary 1. Let f1, . . . , fN be as in Proposition 1. Then

N∑
i=1

L(fi(0)) =
N∑

i=1

L(fi(1)).

3.2. The second identity for the Rogers function. The Rogers dilog-
arithm function can be extended to the whole real axis as follows. Set

L(z) =
π2

3
− L

(
1
z

)
, z > 1,(3.6)

and

L(z) = −L

(
z

z − 1

)
, z < 0.(3.7)

This is a continuous function on R, which is differentiable for all z except
0 and 1. It follows from this definition that

lim
z→+∞

L(z) =
π2

3
, lim

z→−∞
= −π2

6
.
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These limits differ by π2/2, and hence L(z) can be extended to ∞ as a
function with values in R/(π2/2)Z. This way we obtain a function from
RP

1 = R ∪ {∞} to R/(π2/2)Z, which we denote by L(z). The function
L(z) is continuous and differentiable for all z except 0 and 1.

Now let C be the multiplicative group of nonzero rational functions
[0, 1] → R.

Proposition 2. Suppose that f1, . . . , fN ∈ C are non-constant functions,
such that

N∑
i=1

fi ⊗ (1 − fi) ∈ S2C.

Then
N∑

i=1

L(fi(x)) = const

as a function of x ∈ [0, 1].

Proof. The proof goes along the lines of the proof of Proposition 1. We
consider each fi(x) as a continuous function [0, 1] → RP

1. For generic
x ∈ [0, 1], the value fi(x) lies in one of the intervals (0, 1), (1,+∞), or
(−∞, 0). Therefore, the function

∑N
i=1 L(fi(x)) is differentiable for generic

x. We want to show that its differential vanishes.
Let us show that if fi(y) belongs to one of the intervals, then

2d L(fi(y)) = log |fi(y)| · d log |1 − fi(y)| − log |1 − fi(y)| · d log |fi(y)|.

We consider the three cases separately. If fi(y) ∈ (0, 1) then this follows
from formula (3.1).

If fi(y) ∈ (1,+∞), we have, by formulas (3.6) and (3.1),

2dL(fi(y)) = −2dL

(
1

fi(y)

)

= log
(

1
fi(y)

)
· d log

(
1 − 1

fi(y)

)
− log

(
1 − 1

fi(y)

)
· d log

(
1

fi(y)

)

= log |fi(y)| · d log |1 − fi(y)| − log |1 − fi(y)| · d log |fi(y)|.
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If fi(y) ∈ (−∞, 0), we have, by formulas (3.7) and (3.1),

2dL(fi(y)) = −2dL

(
fi(y)

fi(y) − 1

)
= log

(
fi(y)

fi(y) − 1

)
· d log

(
1 − fi(y)

fi(y) − 1

)
− log

(
1 − fi(y)

fi(y) − 1

)
· d log

(
fi(y)

fi(y) − 1

)
= log |fi(y)| · d log |1 − fi(y)| − log |1 − fi(y)| · d log |fi(y)|.

Now for x ∈ [0, 1] let Cx be the subgroup of C which consists of those
functions which have neither a zero or pole at x. Define for x, y ∈ [0, 1]
a homomorphism Logx,y : Cx ⊗ Cy → R by the formula Logx,y(f ⊗ g) =
log |f(x)| · log |g(y)|. Using this homomorphism and the formulas above in
the same way as in the proof of Proposition 1, we obtain that

d

N∑
i=1

L(fi(x)) = 0 for generic x ∈ [0, 1].

Therefore, by continuity,
∑N

i=1 L(fi(x)) = const for all x ∈ [0, 1].

Corollary 2. Let f1, . . . , fN be as in Proposition 2. Then

N∑
i=1

L(fi(0)) =
N∑

i=1

L(fi(1)) mod
π2

2
.

3.3. Identity for the Bloch-Wigner function. D : C → R, the func-
tion given by the formula

D(z) = − Im
∫ z

0

log(1 − w) d log w + log |z|Arg(1 − z)(3.8)

is the Bloch-Wigner function. This function is single-valued and real ana-
lytic everywhere except for z = 0, 1, where it is only continuous [19].

Let C be the multiplicative group of non-vanishing holomorphic func-
tions DR → C, where DR is the disc of radius R > 1.

Proposition 3 ([19]). Suppose that f1, . . . , fN are holomorphic functions
such that fi, 1 − fi ∈ C for all i = 1, . . . , N , and that

N∑
i=1

fi ⊗ (1 − fi) ∈ S2C.
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Then
N∑

i=1

D(fi(x)) = const

as a function of x ∈ DR.

The proof is similar to the proofs of the previous identities. Let us
observe that

dD(z) = log |z| d Arg(1 − z) − log |1 − z| d Arg z.

To prove the proposition we should consider the homomorphism

Logx,y : C ⊗ C → R ⊗ (R/2π)

given by Logx,y(f ⊗ g) = log |f(x)| ⊗ Arg g(y) and proceed in the same
way as above (see also [19]).

Corollary 3. Let f1, . . . , fN be as in Proposition 3. Then

N∑
i=1

D(fi(0)) =
N∑

i=1

D(fi(1)).

4. The dilogarithm identities

In this section we prove the following result.

Theorem 2.

(1) Suppose that the real numbers X(i, j), i ∈ Z, j = 1, . . . , n, satisfy
the system of equations (2.3). If all X(i, j) ∈ (0, 1), then

n+3∑
i=1

n∑
j=1

L(X(i, j)) =
π2

6
n(n + 1),(4.1)

and, in general,

n+3∑
i=1

n∑
j=1

L(X(i, j)) =
π2

6
n(n + 1) mod

π2

2
.(4.2)

(2) Suppose that the complex numbers X(i, j), j ∈ Z, i = 1, . . . , n,
satisfy the system of equations (2.3). Then

n+3∑
i=1

n∑
j=1

D(X(i, j)) = 0.(4.3)
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First we prove a generalization of (2.5). For ε = 0, 1 let

Sε = {(i, j)| i ∈ Z, 1 ≤ j ≤ n, i + j = ε mod 2}.

Let Fε be the coset Sε/{S(i, j) ∼ (i, j)}, where S is the transforma-
tion introduced in §2, and pε : Sε → Fε be the corresponding projection.
According to Theorem 1, if the X(i, j)’s satisfy the system (2.3), then
X(i, j) = X(S(i, j)). Therefore, the X(i, j)’s can be considered a function
on F0 ∪ F1.

For (i, j) ∈ Sε, introduce the cone Cε(i, j) ⊂ Fε as the image of the set

{(i′, j′) ∈ Sε | |i′ − i| ≥ |j′ − j|}

under the map pε. We note that the restriction of pε to Cε(i, j) is injective.
Finally, denote by Bε(i, j) = Fε\Cε(i, j) the cone’s complement.

Proposition 4. For any (i, j) ∈ Fε,

1 − X(i, j) =
∏

(i′,j′)∈Bε(i,j)

X(i′, j′)(4.4)

Proof. We prove the proposition by induction on j. For j = 1, the set
Bε(i, 1) is the image of the set {(i + l + 1, l) ∈ Sε} under the map pε, and
(4.4) is equivalent to (2.6).

Assume now that the proposition is true for all j < k. For a fixed i
the relation (2.3) between X(i − 1, k − 1), X(i + 1, k − 1), X(i, k − 2) and
X(i, k) gives

1 − X(i, k) =
1

1 − X(i, k − 2)
· X(i − 1, k − 1)
1 − X(i − 1, k − 1)

· X(i + 1, k − 1)
1 − X(i + 1, k − 1)

.

(4.5)

By our inductive assumption, we can make the substitution (4.4) for the
factors of the form 1 − X in the right hand side. Then we see that the
validity of formula (4.4) for X(i, k) is equivalent to the statement

B(i − 1, k − 1) + B(i + 1, k − 1)
= B(i, k − 2) + B(i, k) + {(i − 1, k − 1), (i + 1, k − 1)},

where by addition of sets we mean the union of their elements counted with
multiplicities. This last statement is a simple fact of elementary geometry.

Note that at the two ends, when k = 1 or n + 1, one of the factors in
(4.5) is missing. This corresponds to the fact that C(i, 0) = C(i, n+1) = Fn

and hence Bε(i, 0) = Bε(i, n + 1) = ∅.
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Proof of Theorem 2. We show that any solution of (2.3) can be connected
to a particular solution X(i, j)0 for which the sum of values of the diloga-
rithm functions is known.

The solution X(i, j)0 corresponds to the UV limit, i.e., X(i, j)0 is i-
independent. Therefore, the system (2.3) becomes

X(i, j)2 =
n∏

l=1

(1 − X(i, j))Ajl ,

where (Aij) is the Cartan matrix of type An. The following formula gives
a particular solution of this system:

X(i, j)0 = 1 −
sin2 π

n+3

sin2 π(i+1)
n+3

, i ∈ Z; j = 1, . . . , n(4.6)

(see, e.g., [10]).
Solutions of the system (2.3) are in one-to-one correspondence with the

numbers X(0, j) and X(1, j), where j = 1, . . . , n. We can choose them
arbitrarily, and if none of them is equal to 0 or 1, then all other numbers
X(i, j) can be uniquely determined recursively using the system (2.3).

From now on we restrict our attention to the identity (4.1). The iden-
tities (4.2) and (4.3) can be treated in the same fashion.

We have X(i, j)0 ∈ (0, 1). Let {X(i, j)1} be another solution of (2.3)
such that all X(i, j)1 ∈ (0, 1). Consider the functions

X(i, j)(z) = zX(i, j)1 + (1 − z)X(i, j)0, i = 0, 1; j = 1, . . . , n.

Using these functions, we can determine all other functions X(i, j)(z)
uniquely by using recursion from the system (2.3). The functions X(i, j)(z)
constructed this way satisfy the system (2.3) for all z ∈ [0, 1] and

X(i, j)(0) = X(i, j)0, X(i, j)(1) = X(i, j)1 for all i, j.

Lemma 1. Let X(i, j) = X(i, j)(z), i ∈ Z, j = 1, . . . , n, be functions
[0, 1] → R, which satisfy the system (2.3) for all z ∈ [0, 1]. Suppose that

(1) 0 < X(i, j)(0) < 1 for all i, j;
(2) X(i, j)(z), i = 0, 1, are continuous differentiable functions;
(3) 0 < X(i, j)(z) < 1 for i = 0, 1 and all z ∈ [0, 1].

Then X(i, j)(z) are continuous differentiable functions such that 0 <
X(i, j)(z) < 1 for all i, j and z ∈ [0, 1].

Proof. We prove the lemma by induction on i. We already know that it
holds for i = 0, 1. Suppose that it holds for 0 ≤ i < l. Using the system
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(2.3) we can express X(l, j) via X(l−2, j), X(l−1, j+1) and X(l−1, j−1)
as follows:

1 − X(l, j)−1 =
(1 − X(l − 1, j + 1))(1 − X(l − 1, j − 1))X(l − 2, j)

X(l − 2, j) − 1
.

(4.7)

We know that X(l, j)(0) = X(i, j)0 ∈ (0, 1), and it is clear from (4.7)
that X(l, j) can not be equal to 0 or 1 if all X(l − 2, j), X(l − 1, j + 1)
and X(l − 1, j − 1) lie in the interval (0, 1). Therefore, by our inductive
assumption, X(l, j)(z) ∈ (0, 1) for all z ∈ [0, 1] and X(l, j)(z) is continuous
and differentiable. Hence the lemma holds for all i ≥ 0. The case i < 0 is
treated similarly.

According to this lemma, the functions X(i, j) = X(i, j)(z) that we
have constructed, belong to the group C. We also know that the values of
X(i, j)(z) at 0 and 1 are equal to X(i, j)0 and X(i, j)1, respectively.

Note that there is a one-to-one correspondence between the coset Fε

and the set {(i, j) ∈ Sε| 1 ≤ i ≤ n + 3, 1 ≤ j ≤ n}. Hence

(4.8)
n+3∑
i=1

n∑
j=1

X(i, j) ⊗ (1 − X(i, j))

=
∑

(i,j)∈F0

X(i, j) ⊗ (1 − X(i, j)) +
∑

(i,j)∈F1

X(i, j) ⊗ (1 − X(i, j)).

The functions X(i, j) = X(i, j)(z) satisfy the system (2.3) for all z ∈ [0, 1].
By expressing 1−X(i, j) in terms of the X(i′, j′)’s using formula (4.4), we
obtain

∑
(i,j)∈Fε

X(i, j) ⊗ (1 − X(i, j)) =
∑

(i,j)∈Fε

∑
(i′,j′)∈Bε(i,j)

X(i, j) ⊗ X(i′j′).

(4.9)

Since the relation

{((i, j), (i′, j′))| (i′, j′) ∈ Bε(i, j)} ⊂ Fε × Fε

is symmetric, we conclude from formulas (4.8) and (4.9) that

n+3∑
i=1

n∑
j=1

X(i, j) ⊗ (1 − X(i, j)) ∈ S2C.

Therefore, these functions satisfy the conditions of Corollary 1. Hence
the sum of the values of the Rogers dilogarithm function at X(i, j)0 is
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equal to that at X(i, j)1. But we can derive from the known dilogarithm
identity [8, 9, 10]

n∑
j=1

L

(
sin2 π

n+3

sin2 (j+1)π
n+3

)
=

π2

6
2n

n + 3

and the Euler identity L(z) + L(1 − z) = π2/6 that
n+3∑
i=1

n∑
j=1

L(X(i, j)0) =
π2

6
n(n + 1).

The identity (4.1) now follows from Corollary 1.
By using the same argument and Corollary 2 we obtain a proof of (4.2).
Finally, observe that D(z) = 0 for all real z, and hence

n+3∑
i=1

n∑
j=1

D(X(i, j)0) = 0.

The identity (4.3) now follows from Corollary 3.
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