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POLARIZED 4-MANIFOLDS, EXTREMAL KÄHLER
METRICS, AND SEIBERG-WITTEN THEORY

Claude LeBrun

Abstract. Using Seiberg-Witten theory, it is shown that any Kähler met-
ric of constant negative scalar curvature on a compact 4-manifold M min-
imizes the L2-norm of scalar curvature among Riemannian metrics com-
patible with a fixed decomposition H2(M) = H+ ⊕H−. This implies, for
example, that any such metric on a minimal ruled surface must be locally
symmetric.

1. Introduction

In the late 1950’s, Calabi first posed the problem of representing each
Kähler class on a compact complex manifold by a Kähler metric of constant
scalar curvature. This eventually led him [2] to define extremal Kähler
metrics, which minimize the functional

∫
s2 dµ over a fixed Kähler class;

here s denotes the scalar curvature, and dµ denotes the metric volume
measure. Any Kähler metric of constant scalar curvature is extremal in
this sense, but Calabi showed by example that the converse is generally
false.

In real dimension 4, new insights into this problem can be gained by
temporarily venturing outside the Kählerian arena, and instead working
in a broader Riemannian context. Instead of fixing a Kähler class, we
will fix a closely related direct sum decomposition H2(M, R) = H+ ⊕H−.
Seiberg-Witten theory will then allow us to see that any Kähler metric
of constant negative scalar curvature is an absolute minimum of

∫
s2dµ

among metrics compatible with such a decomposition. As an application,
we will then classify Kähler metrics of constant negative scalar curvature
on minimal ruled surfaces.

2. Polarizations

Definition 1. Let M be a smooth compact oriented 4-manifold. A polar-
ization of M is a maximal linear subspace H+ ⊂ H2(M, R) for which the
restriction of the intersection form is positive definite.
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Because the intersection form is non-degenerate, every polarization de-
termines an orthogonal complement H− with respect to the intersection
form, and the intersection form is negative definite on this orthogonal com-
plement; this puts polarizations of M and of the reverse-oriented manifold
M in natural one-to-one correspondence. The dimensions b± := dimH±

are important homeomorphism invariants of M , and their difference τ =
b+ − b− is called the signature. Given a polarization, we will routinely
invoke the decomposition

H2(M) = H+ ⊕ H−

to uniquely express elements α ∈ H2 as α = α+ + α−, where α± ∈ H±.
While the imposition of a polarization may seem frivolous, such choices

arise quite naturally in Riemannian geometry. Indeed, if g is a smooth
Riemannian metric on M , then the space

H+(g) := {[ϕ] ∈ H2(M) | ϕ ∈ C∞(∧2)}
of self-dual g-harmonic 2-forms is a polarization on M . We will say that
a Riemannian metric g is adapted to the polarization H+ if H+(g) = H+.
A polarization will be called a metric polarization if there is at least one
metric adapted to it.

Example. Let (M, J, g) be a compact Kähler manifold of complex dimen-
sion 2, and let ω denote the associated Kähler form. Let 	eH2,0 ⊂
H2(M, R) denote the de Rham classes which are represented by real parts
of holomorphic 2-forms. Then H+(g) = R[ω] ⊕	eH2,0.

Algebraic geometers sometimes use the term “polarization” to denote
a choice of Kähler class [ω] on a compact complex manifold (M, J). In
light of the above example, our terminology may thus be justified by the
fact that the polarization H+(g) of a Kähler metric determines the Kähler
class [ω] if the complex structure J and total volume [ω]2/2 are already
known.

Because the Hodge star operator is conformally invariant on middle
dimensional forms, the present notion of polarization is conformally in-
variant; that is, H+(g) = H+(fg) for any smooth positive function f .
Thus all our conclusions about metrics adapted to a fixed polarization will
also imply results about global conformal invariants.

3. Seiberg-Witten Theory

Let M be a smooth connected compact oriented 4-manifold, and as-
sume that M admits an orientation-compatible almost-complex structure
J : TM → TM , J2 = −1. Such an almost-complex structure determines
a spinc structure on M , meaning a cohomology class c ∈ H2(F, Z) on the
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oriented frame bundle F → M whose restriction of c to a typical fiber
Fx

∼= SL(4, R)×R is the nonzero element of H2(Fx, Z) ∼= Z2. Indeed, if g
is any J-invariant Riemannian metric on M , let FSO ⊂ F be the bundle
of oriented g-orthogonal frames, and let FU ⊂ FSO denote the bundle of
unitary frames with respect to g and J . Then the Poincaré dual of the sub-
manifold FU ⊂ FSO, thought of as an element of H2(F, Z) = H2(FSO, Z),
is fiberwise nonzero and is independent of g; this is the promised spinc

structure c. If a spinc structure arises in this way, we will say that it is
of almost-complex type, and we will say that the almost-complex struc-
ture J and the spinc structure c are compatible. One may choose to think
of a spinc structure of almost-complex type as an equivalence class of
almost-complex structures J ; two such structures are then equivalent iff
their graphs are homologous as submanifolds of the bundle F/GL(2, C) of
orientation-compatible almost-complex structures.

Any spinc structure on M determines, up to isomorphism, a com-
plex line bundle L → M such that c1(L) ≡ w2(TM) mod 2, by set-
ting c1(L) = 2c ∈ H2(M, Z) ⊂ H2(F, Z); conversely any such choice
of c1(L) ∈ H2(M, Z) determines a spinc structure up to 2-torsion in
H2(M, Z). If we choose a Riemannian metric g on M , a spinc structure
determines rank 2 Hermitian vector bundles V± → M with ∧2V± = L and
T ∗M ⊗C ∼= Hom(V+, V−); and on any contractible open set in M we have
canonical (sign-ambiguous) isomorphisms

V± = S± ⊗ L1/2,

where S± are the left- and right-handed spinor bundles of g, and L1/2 is a
complex line bundle whose square is L. Each unitary connection A on L
therefore induces a unitary connection ∇A : C∞(V+) → C∞(T ∗M ⊕ V+)
on V+, and following this with the isomorphism T ∗M ⊗C ∼= Hom(V+, V−)
gives us a Dirac operator DA : C∞(V+) → C∞(V−).

This can all be made much more concrete for spinc structures of almost-
complex type. Given a Riemannian metric g on M , we can represent
such a spinc structure by an almost-complex structure J : TM → TM ,
J2 = −1 such that J∗g = g. The tangent bundle TM of M is thereby
given the structure of a rank 2 complex vector bundle T 1,0 by defining
scalar multiplication by i to be J . Setting ∧0,p := ∧pT 1,0

∗ ∼= ∧pT 1,0, the
bundles V± of twisted spinors are given by

V+ = ∧0,0 ⊕ ∧0,2(1)
V− = ∧0,1,(2)

and their Hermitian structures are the obvious ones induced by g. In
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particular, L is the anti-canonical bundle of (M, J), and we therefore have

c1(L)2 = (2χ + 3τ)(M).

Spinc structures of almost-complex type are characterized by this last prop-
erty.

If (M, g, J) is a Kähler manifold, so that J is parallel with respect to the
metric connection, and if A is the so-called Chern connection on the anti-
canonical bundle L, then the connection ∇A on V+ has parallel sections
corresponding to the constant sections of ∧0,0 ⊂ V+. Conversely, a metric
is Kähler for some c-compatible complex structure J if there is a choice of
A for which V+ has a nontrivial parallel section, since this implies that the
holonomy of S+ is contained in U(1) ⊂ SU(2), the Riemannian holonomy
is then contained in (U(1) × SU(2))/Z2 = U(2). For g a Kähler metric
and A the Chern connection, the Dirac operator can correspondingly be
expressed as DA =

√
2(∂ ⊕ ∂

∗
), where ∂ : C∞(∧0,0) → C∞(∧0,1) is the

J-antilinear part of the exterior differential d, acting on complex valued
functions, and where ∂

∗
: C∞(∧0,2) → C∞(∧0,1) is the formal adjoint of

the map induced by the exterior differential d acting on 1-forms; more
generally, DA will differ from

√
2(∂ ⊕ ∂

∗
) by only 0th order terms.

Let us now fix a spinc structure c of almost-complex type on on M . For
each Riemannian metric g, the Seiberg-Witten equations [10]

DAΦ = 0(3)
F+

A = iσ(Φ)(4)

are then equations for an unknown smooth connection A on L and an
unknown smooth section Φ of V+. Here the purely imaginary 2-form F+

A

is the self-dual part of the curvature of A, and the natural real quadratic
map σ : V+ → ∧2

+ satisfies |σ(Φ)|2 = |Φ|4/8. For our purposes, it is crucial
that equations (3) and (4) imply the Weitzenböck formula

∇∗
A∇AΦ +

s + |Φ|2
4

Φ = 0.(5)

Given a solution (A,Φ) of (3) and (4) and a smooth map f : M → S1 ⊂ C,
the pair (Â, Φ̂) = (A − 2f−1df, fΦ) is also a solution; solutions which
are related in this way are called gauge equivalent. A solution is called
reducible if Φ ≡ 0; otherwise, it is called irreducible.

Now, in addition to such a spinc structure c, let us fix a metric polariza-
tion H+ on M . Assume that c+

1 := [c1(L)]+ ∈ H+ is nonzero, which guar-
antees that every solution of the Seiberg-Witten equations is irreducible
whenever g is an H+-adapted metric. For each such metric, one can then
define the Seiberg-Witten invariant nc(M, g) ∈ Z by counting the solutions
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modulo gauge equivalence with appropriate multiplicities for a generic
small perturbation of (3) and (4); in particular, nc(M, g) �= 0 implies
there is a solution of (3) and (4). We now define nc(M, H+) = nc(M, g)
for any H+-adapted metric g. This is metric independent because the
moduli spaces corresponding to different H+-adapted metrics are cobor-
dant as oriented 0-manifolds. Indeed, when b+ > 1, nc(M, H+) is even
independent of the polarization. By contrast, when b+ = 1, the invariant
generally jumps [3, 4] as H+ passes though polarizations for which c+

1 = 0.
The following result [3, 6, 9, 10] shows that the invariant is nontrivial

for many interesting polarized manifolds:

Theorem 1. Let (M, J, g) be a compact Kähler surface for which the
Kähler class [ω] satisfies c1 · [ω] < 0. Let H+ = H+(g) be the metric
polarization, and let c be the canonical spinc structure of (M, J). Then
nc(M, H+) = 1.

The assumption that c1 · [ω] < 0 amounts to the requirement that
the scalar curvature s of (M, g) be negative “on average,” by virtue of
the Gauss-Bonnet type formula

∫
M

s dµ = 4πc1 · [ω]. In fact, the proof
of Theorem 1 becomes particularly simple [5] if the scalar curvature is
assumed to be a negative constant.

The following scalar-curvature inequality is the crux of the the present
note:

Theorem 2. Let (M, H+) be a smooth compact oriented 4-manifold which
is polarized. Suppose that there is a spinc structure c of almost-complex
type on M for which the Seiberg-Witten invariant is nonzero; let c1(L) ∈
H2(M, R) denote the anti-canonical class of this structure, and let c+

1 �= 0
be its orthogonal projection to H+ with respect to the intersection form.
Then every H+-adapted Riemannian metric g satisfies

∫
M

s2 dµ ≥ 32π2(c+
1 )2,

with equality iff g is Kähler with respect to a c-compatible complex structure
and has constant negative scalar curvature.

Proof. For any given metric g adapted to H+, there must exist an irre-
ducible solution of (3) and (4), since otherwise we would have nc(M, H+) =
0. Now the Weitzenböck formula 5 tells us that

0 =
∫

M

(
4|∇Φ|2 + s|Φ|2 + |Φ|4) dµ,
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so that
∫

(−s)|Φ|2 dµ ≥ ∫ |Φ|4 dµ, with equality iff Φ is parallel. The
Schwartz inequality therefore tells us that

∫
M

s2 dµ ≥
(∫

M
(−s)|Φ|2 dµ

)2

∫
M

|Φ|4 dµ
≥

∫
M

|Φ|4 dµ

with equality iff ∇Φ = 0 and s is constant. On the other hand, |F+
A |2 =

|σ(Φ)|2 = |Φ|4/8, so this may be rewritten as∫
M

s2 dµ ≥ 8
∫

M

|F+
A |2 dµ.

But now letting ϕ denote the harmonic representative of the de Rham
class [FA] = 2πc1, we have∫

M

|F+
A |2dµ =

1
2

∫
M

(|F+
A |2 − |F−

A |2)dµ +
1
2

∫
M

(|F+
A |2 + |F−

A |2)dµ

= 2π2c1(L)2 +
1
2

∫
M

|FA|2dµ

≥ 2π2c1(L)2 +
1
2

∫
M

|ϕ|2dµ

=
1
2

∫
M

(|ϕ+|2 − |ϕ−|2)dµ +
1
2

∫
M

(|ϕ+|2 + |ϕ−|2)dµ

=
∫

M

|ϕ+|2dµ

= 4π2(c+
1 )2

because a harmonic form minimizes the L2 norm among closed forms in
its deRham class. Hence ∫

M

s2 dµ ≥ 32π2(c+
1 )2

as claimed. Moreover, equality is achieved only if s is constant and ∇Φ = 0,
which implies that g is Kähler with respect to a c-compatible complex
structure.

Conversely, any Kähler metric with constant scalar curvature will sat-
urate this bound, since ϕ+ = sω/4 and dµ = |ω2/2| for such a metric.

Notice that the above inequality will hold, more generally, for any metric
and spinc structure for which there is an irreducible solution of the Seiberg-
Witten equations. Thus, while it is also possible in principal to define
Seiberg-Witten invariants for spinc structures which are not of almost-
complex type, these can often be shown to vanish by producing metrics
for which

∫
s2dµ is sufficiently small.
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The above result has a curious ramification for conformal geometry. Let
g be a Kähler metric of constant negative scalar curvature on a compact
complex surface M . Let [g] be the conformal class of g, and let [g]− ⊂ [g]
be the open subset of metrics of negative scalar curvature. Then g simul-
taneously minimizes

∫
s2dµ and maximizes (

∫
sdµ)2/

∫
dµ, considered as

functionals on [g]−!

4. Ruled Surfaces

While the best-understood obstructions to the existence of Kähler met-
rics of constant scalar curvature entail the existence of nontrivial holomor-
phic vector fields, a more subtle obstruction, related to Mumford stability,
was discovered by Burns and de Bartolomeis [1]. While their result deals
only with s ≡ 0 metrics on minimal ruled surfaces, its formulation is so el-
egant as to make it desirable to put this isolated result in a wider context.
We shall now take a small step in this direction by showing that analogous
conclusions hold for Kähler metrics of constant negative scalar curvature
on minimal ruled surfaces.

Theorem 3. Let M be the total space of an oriented 2-sphere bundle M →
Σ over a compact oriented surface. For some complex structure J , suppose
that there is a Kähler metric g of constant negative scalar curvature on M .
Then the universal cover of (M, g) is isometric to the product S2 × H2,
where the 2-sphere and hyperbolic 2-space are endowed with appropriate
constant multiples of their standard metrics.

Proof. First observe that the structure group Diff+(S2) of M → Σ can
be reduced to SO(3), since the induced metric on each fiber S2 can be
conformally rescaled to yield a metric of curvature +1, and the freedom in
doing so is paramaterized by the contractible space SL(2, C)/SU(2). As a
consequence, M admits a fiberwise antipodal map ψ : M → M . Since this
is orientation reversing, we may define a spinc structure c̄ on the reverse-
oriented manifold M by setting c̄ = ψ∗c, where c is the spinc structure on
M induced by J .

Because ψ reverses orientation, ψ∗ : H2(M) → H2(M) reverses the sign
of the intersection form:

ψ∗(α) · ψ∗(β) = −α · β ∀α, β ∈ H2(M, R).

Since (ψ∗)2 = (ψ2)∗ = 1, it follows that α · ψ∗(α) = 0. But H2(M, R)
is 2-dimensional, and ψ∗ therefore takes any 1-dimensional subspace to
its intersection-form orthogonal subspace. This shows that ψ∗(H+(g)) =
H−(g).
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Since we therefore know that (M, H+(g), c) and (M, H−(g), c̄) are iso-
morphic as polarized oriented 4-manifolds with spinc structure, they have
the same Seiberg-Witten invariant, and

(c+
1 )2(M, H+(g), c) = (c+

1 )2(M, H−(g), c̄).

But g is a Kähler metric with constant negative scalar curvature, implying
that nc(M, H+(g)) = 1 and

∫
M

s2 dµ = 32π2(c+
1 )2(M, H+(g), c). Hence

nc(M, H−(g)) = 1 and
∫

M
s2 dµ = 32π2(c+

1 )2(M, H−(g), c̄), too. By
Theorem 2, the latter implies that g is Kähler with respect to a complex
structure J̃ compatible with c̄, and hence compatible with the orientation
of M .

Now the g-preserving linear maps J and J̃ lie in opposite factors of
SO(4) = (SU(2) × SU(2))/Z2, and so commute. The endomorphism
JJ̃ = J̃J is therefore diagonalizable, with eigenvalues ±1, and we have
an eigenspace decomposition TM = L1 ⊕ L2 of the tangent bundle into
rank 2 real vector bundles. Since both complex structures are invariant
under parallel transport with respect to g, this decomposition is paral-
lel, and the universal cover of (M, g) is therefore the Riemannian product
(X1, g1) × (X2, g2) of a pair of complete simply connected surfaces. Since
the scalar curvature s of g is constant, and since s is the sum s1 +s2 of the
scalar curvatures of (X1, g1) and (X2, g2), it follows that s1 and s2 must
both be constant. Now π3(Σ) is finite, so the exact homotopy sequence

· · · → π3(Σ) → π2(S2) → π2(M) → π2(Σ) → · · ·
predicts that π2(M) �= 0; passing to the universal cover, we thus have
π2(X1) × π2(X2) = π2(X1 × X2) = π2(M) �= 0, and at least one of the
simply connected surfaces Xj must therefore be a 2-sphere. On the other
hand, s = s1 + s2 < 0, so the other factor must be hyperbolic.

With this result in hand, we can now solve the existence and unique-
ness problems for Kähler metrics of constant negative scalar curvature on
minimal ruled surfaces.

Theorem 4. Let E → Σ be a rank 2 holomorphic vector bundle over a
compact complex curve, and let (M, J) = P(E) be the total space of the
associated CP1-bundle. Let [ω] be a Kähler class on M with c1 · [ω] < 0.
Then [ω] contains a Kähler metric of constant scalar curvature iff E is a
polystable vector bundle. Moreover, when such a metric exists, it is unique
modulo biholomorphisms of (M, J).

Proof. Let us begin by reminding the reader that
∫

s dµ = 4πc1 · [ω] for
any Kähler metric in [ω], so the c1 · [ω] < 0 hypothesis exactly limits our
discussion to Kähler metrics of constant negative scalar curvature. Note
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that Kähler classes with c1 · [ω] < 0 will exist on the ruled surface M → Σ
iff Σ has genus ≥ 2.

Now recall that a vector bundle E is said to be polystable (or sometimes
quasi-stable) if it is a semi-stable bundle of the form E =

⊕n
j=1 Ej , where

the Ej are stable vector bundles. A landmark result of Narasimhan and
Seshadri [8] asserts that, for bundles over a Riemann surface, polystability
is equivalent to the existence of a flat projective unitary connection on
P(E). If E is polystable, we thus have (M, J) = Σ ×ρ CP1 for a represen-
tation ρ : π1(Σ) → PSU(2) = SO(3) of the fundamental group which is
unique up to conjugation in SO(3). When this happens, local products of
constant curvature Käler metrics on Σ and CP1 provide us with a constant
scalar curvature Kähler metric in each Kähler class. Our task is therefore
to show that any Kähler metric on P(E) with s = const < 0 is necessarily
of this form.

To this end, assume that g is a Kähler metric of constant negative
scalar curvature on (M, J), and recall that Theorem 3 tells us that the
universal cover of (M, g) must be a product S2 ×H2 of spaces of constant
curvature. Once the factors are correctly oriented, moreover, the product
complex structure will necessarily agree with the lift of J because the
holonomy of S2×H2 is U(1)×U(1). Now π1(M) = π1(Σ) acts on S2×H2

by holomorphic isometries, and thus sends any holomorphic curve S2 ×
{pt} to another curve of this form—after all, these are the only compact
complex curves in CP1 × H2! The induced action on H2 is, moreover,
free and proper, since S2 is compact and every rotation of S2 has a fixed
point. Thus P(E) = (S2 × H2)/π1(Σ) is biholomorphic to Σ̃ ×ρ CP1 for
some compact Riemann surface Σ̃ and some representation ρ : π1(Σ̃) →
PSU(2) = SO(3). But since the fibers of Σ̃ ×ρ CP1 → Σ̃ are the only
rational curves in (M, J), there is a biholomorphism Σ → Σ̃ such that the
diagram

P(E) → Σ̃ ×ρ CP1

↓ ↓
Σ → Σ̃

commutes. This gives E a flat unitary projective connection, and so shows
that E is polystable.

The same reasoning can easily be applied to other complex surfaces
with orientation-reversing diffeomorphisms. For example, on the product
Σ1×Σ2 of two Riemann surfaces of positive genus, any product of constant
curvature metrics is the unique constant scalar curvature metric in its
Kähler class. Related results have been proved by Leung [7].
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Corollary 1. Let E → Σ be a rank 2 holomorphic vector bundle over a
compact complex curve, and let (M, J) = P(E). Let [ω] be a Kähler class
on M with c1 · [ω] < 0. If [ω] contains an extremal Kähler metric, then E
is either stable, or else is the direct sum L1 ⊕ L2 of a pair of holomorphic
line bundles.

Proof. By Theorem 4, we may assume the scalar curvature s of our ex-
tremal metric g is nonconstant. Then the isometry group of g is nontrivial,
since Jgradgs is a Killing field. Hence there is a Killing field on M which
generates a nontrivial U(1)-action by biholomorphisms. Since Σ has genus
≥ 2, and so admits no nontrivial holomorphic vector field, this action pre-
serves the fibers of M → Σ, and has 2 distinct fixed points in each fiber.
The corresponding linear subspaces of E then give the desired direct sum
decomposition.
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