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EXTENDING CR FUNCTIONS FROM

MANIFOLDS WITH BOUNDARIES

A. Tumanov

Introduction

The extendibility of CR functions on smooth real manifolds in CN has
been extensively studied by many specialists (see, e.g., [Bo] for references).
In this paper we generalize the results of [T1] and [T2] on the extendibility
of CR functions to manifolds with boundaries and edges.

Recall that a generic manifold M ⊂ CN is said to be minimal at p ∈ M

if there is no proper CR submanifold S ⊂ M passing through p with the
same CR dimension as M . According to [T1], if M is minimal at p, then
all CR functions on M extend to the same full dimensional wedge with
edge M near p. Conversely, Baouendi and Rothschild [BR] show that if
M is not minimal at p, then there are CR functions in a neighborhood
of p on M that do not extend to any full dimensional wedge with edge
M . Nevertheless, all CR functions on M generally still extend to a larger
manifold [BP] [T2]. This manifold has the form of a wedge of dimension
lower than the dimension of the ambient space. We call it a manifold with
edge M , reserving the term wedge for full dimensional sets in CN . Since
the natural domains of extended CR functions are manifolds with edges, it
is appropriate to consider CR functions initially defined on such sets.

The simplest case of a manifold with edge is a manifold with boundary.
Let M ⊂ CN be a manifold with generic boundary M0. Suppose M is
minimal at all interior points. Then by [T1] all CR functions on M extend
over a wedge W with edge M . A natural question is the boundary behavior
of this wedge at M0. We show that W approaches M0 as a wedge with edge
M0 (Corollary 1.3).

In the general case, we introduce the defect of a manifold M with edge
M0 at a point p ∈ M0 and show that unless the defect is maximal, all CR
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functions on M extend to a larger manifold W with the same edge M0.
The dimension of W is related to the defect of M at p. In particular, we
introduce the notion of a minimal point on the edge of the manifold. If M

is minimal at p ∈ M0, we show that all CR functions on M extend over a
full dimensional wedge with edge M0 near p (Corollary 1.2).

The paper is organized as follows. In Section 1 we formulate the main
result and some consequences. Section 2 includes some preliminaries. In
Sections 3 and 4 we prove the main result. The exposition in this paper
is self-contained except that we refer to [T1] for the proof of technical
Lemma 2.3.

1. Main results

Let M be a smooth real manifold in CN . Let T c
p (M) = Tp(M)∩JTp(M)

be the maximal complex subspace of the tangent space Tp(M) at a point
p ∈ M , where J is the operator of multiplication by the imaginary unit in
CN . Recall that the manifold M is called a CR manifold if all the spaces
T c

p (M), p ∈ M , have the same dimension. This dimension is called the CR
dimension of M and denoted by CRdim(M) here. Recall that a manifold
M is called generic if Tp(M) + JTp(M) = Tp(CN ) � CN , p ∈ M . A
generic manifold M ⊂ CN is always a CR manifold. We denote the real
codimension of M in CN by codim(M) = 2N − dim(M) . For a generic
manifold M ⊂ CN , we have CRdim(M) + codim(M) = N .

Recall that a smooth, complex valued function on M is called a CR
function if its differential is C-linear on T c(M). A continuous function is
called a CR function if the last condition holds in the sense of distribution
theory. We denote by CR(M) the set of all continuous CR functions on M .

Let M and M0 be manifolds in Rn, and M0 ⊂ M̄ . We call M a manifold
with edge M0, if for any point p ∈ M0, there exist open sets Ω ⊂ Rn,
U ⊂ M0 × Rl (where l = dim(M) − dim(M0)), an open convex cone
Γ ⊂ Rl, and a smooth embedding F : U → Rn such that p ∈ Ω, (p, 0) ∈ U ,
Ω ∩ M = F (U ∩ (M0 × Γ)). Since we are interested in local questions, we
assume that Γ does not depend on p.

For l = 1, M is a manifold with boundary M0. For l = n − dim(M0),
M is a full-dimensional wedge with edge M0.

Let Ck,α denote the space of functions with derivatives up to order k

satisfying a Lipschitz condition with exponent α. We say that the manifold
M with edge M0 is Ck,α smooth (where k ≥ 1 and 0 < α < 1) if the defining
mapping F belongs to Ck,α.
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As we mentioned in the introduction, we consider CR functions defined
on manifolds with edges. We say that f is a CR function on a CR manifold
M with edge M0 and write f ∈ CR(M ∪M0) if f ∈ C(M ∪M0)∩CR(M).

The substance of this paper is the following theorem.

Theorem 1.1. Let M ⊂ CN be a Ck,α smooth generic manifold with
generic edge M0, where k ≥ 2 and 0 < α < 1. Then for every point p ∈ M0,
there exists an integer d = def(p) = def(p, M0, M), 0 ≤ d ≤ codim(M),
called the defect of M at p such that the following two statements (A) and
(B) hold:

(A) ∃ a manifold W with edge M0 such that dim(W ) = 2N − d and all
CR functions on M∪M0 extend to be CR on W∪M0. The manifold
W has almost the same Lipschitz smoothness as M . Precisely, for
every 0 < β < α, there exists a neighborhood U ⊂ CN of p such
that W ∩ U is of class Ck,β.

(B) ∃ a neighborhood U ⊂ CN of p and a closed CR submanifold S ⊂
M∩U with edge S0 = M0∩S̄ such that p ∈ S0, dim(S) = dim(M)−d

and CRdim(S) = CRdim(M). The manifold S is Ck,β-smooth for
all 0 < β < α.

Note.

(1) The assumption that M is generic can be dropped here. Indeed,
since M0 is generic, M is automatically generic near M0.

(2) M0 is of class Ck,α (by our definition of the manifold with edge of
class Ck,α).

(3) The manifold M0 in Theorem 1.1 may be totally real, in which case
CRdim(M0) = 0. On the contrary, CRdim(M) ≥ 1 because M0 is
generic.

(4) The conditions (CRdim(S) = CRdim(M) and M0 is generic) imply
that S̄ is transversal to M0 in M̄ . Therefore, S0 = M0 ∩ S̄ is
automatically a smooth manifold, dim(M0)−dim(S0) = dim(M)−
dim(S) and CRdim(S0) = CRdim(M0). In particular, if M is a
manifold with boundary M0, then S is a manifold with boundary
S0.

Our Theorem 1.1 is a direct generalization of the results of [T1] and
[T2] on the extendibility of CR functions from manifolds without edges.
Recall that a CR manifold M ⊂ CN is minimal at a point p ∈ M if there
is no CR submanifold S ⊂ M such that p ∈ S, CRdim(S) = CRdim(M),
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but dim(S) < dim(M) [T1]. Likewise, we say that a manifold M with
edge M0 is minimal at p ∈ M0 if there is no closed submanifold S ⊂ M

in a neighborhood of p such that p ∈ S̄, CRdim(S) = CRdim(M), but
dim(S) < dim(M).

Corollary 1.2. Let M be a manifold with the generic edge M0. Assume
that M is minimal at p ∈ S0. Then all CR functions on M ∪M0 extend to
be holomorphic in the same full-dimensional wedge with edge M0 near p.

By (A), d = def(p) > 0 if CR functions on M ∪ M0 do not extend into
any full-dimensional wedge of edge M0 near p ∈ M0. Then (B) contradicts
the assumption that M is minimal at p. We note that Corollary 1.2 gives
new information only if the edge M0 itself is not minimal at p. For instance,
this is the case when M0 is totally real.

If the manifold M with edge M0 is minimal at all interior points, it is
certainly minimal as a manifold with edge whence the following:

Corollary 1.3. Let M be a manifold with the generic edge M0. Assume
that M is minimal at all interior points. Then all CR functions on M ∪M0

extend to be holomorphic in the same full-dimensional wedge with edge M0.

We give another consequence of the main theorem that relates the exis-
tence of submanifolds S0 ⊂ M0 such that CRdim(S0) = CRdim(M0), and
the extendibility of CR functions defined on the manifold (without edge)
M0.

Corollary 1.4. Let M0 be a generic manifold in CN and p ∈ M0. Assume
there is no CR submanifold S0 ⊂ M0 such that p ∈ M0,

CRdim(S0) = CRdim(M0) and

dim(M0) − d′ < dim(S0) < dim(M0) − d′′,

where 0 ≤ d′′ < d′ ≤ codim(M0). Then if a CR function f on M0 extends
to be CR on a manifold M ′ with edge M0 such that p ∈ M̄ ′ and dim(M ′) >

2N − d′, then f automatically extends to be CR on another manifold M ′′

with edge M0 such that p ∈ M̄ ′′ and dim(M ′′) = 2N − d′′.

This corollary gives new information only if there is a submanifold S0 ⊂
M0 such that p ∈ S0, CRdim(S0) = CRdim(M0), dim(S0) < dim(M0)−d′′

(or dim(S0) ≤ dim(M0) − d′, which is the same). Otherwise, the conclu-
sion of the corollary follows immediately from the result of [T2] on the
extendibility of CR functions on manifolds without edges. In the special
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case in which d′ = codim(M0) and d′′ = 0, any manifold S0 ⊂ M0 with
CRdim(S0) = CRdim(M0) must be complex. The corollary then asserts
that if a CR function f on M0 extends to be CR on a manifold M with
boundary M0, then f extends to be holomorphic in a full-dimensional wedge
W of edge M0. It is of interest to find out if the tangent cone to W depends
on the direction of M in the normal space of M0, i.e., Tp(M)/Tp(M0).

We note that Corollary 1.4 is related to a result of [T3] (Theorem 6.1).
In that theorem, instead of nonexistence of S0 with the indicated prop-
erties, it is assumed that the connection that governs the propagation of
extendibility of CR functions has sufficiently rich holonomy.

Proof of Corollary 1.4. By statement (A), it suffices to show that d =
def(p, M0, M

′) ≤ d′′. By statement (B), there is a submanifold S ⊂ M ′

with edge S0 ⊂ M0 such that p ∈ S0, CRdim(S) = CRdim(M ′), dim(S) =
dim(M ′)− d. Then dim(S) ≥ 2CRdim(S) = 2CRdim(M ′) = 2(dim(M ′)−
N). Hence d ≤ 2N − dim(M ′). Using dim(M ′) > 2N − d′, we get d < d′.
The edge S0 has dimension dim(S0) = dim(M0) − d > dim(M0) − d′.
Therefore, by the assumptions of the corollary, dim(S0) ≥ dim(M0) − d′′,
whence d ≤ d′′. �

2. Analytic discs and their deformations

Let M ⊂ CN be a generic manifold with generic edge M0. Assume that
M and M0 are Ck,α-smooth, where k ≥ 1, 0 < α < 1.

An analytic disc in CN is a continuous mapping A : ∆̄ → CN holo-
morphic in the unit disc ∆. We say that A is attached to M ∪ M0 if
A(b∆) ⊂ M ∪ M0.

Let p ∈ M0. Let Ap be the set of all small Ck,α-smooth discs attached
to M ∪ M0 passing through p, that is
(2.1)
Ap = {A ∈ O(∆) ∩ Ck,α(∆̄) : ||A||Ck,α ≤ r0, A(1) = p, A(b∆) ⊂ M ∪ M0},

where O(∆) denotes all holomorphic functions in ∆, and r0 > 0 is small.
For a disc (ζ �→ A(ζ)) ∈ Ap, the vector −∂A(1)/∂ζ determines the direc-

tion of the disc A at p. Let V ′
p be the vector subspace of Tp(CN )/Tp(M0)

spanned by the above direction vectors, that is

(2.2) V ′
p = Span{−∂A(1)/∂ζ mod Tp(M0) : A ∈ Ap}.
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Proposition 2.1. Let dim(V ′
p) = r. Then there is a manifold W with

edge M0 of dimension dim(M0) + r such that all continuous CR functions
on M ∪ M0 extend to be CR on W . For every 0 < β < α, there exists a
neighborhood U ⊂ CN of p such that W ∩ U is of class Ck,β.

Proof. The proof is a combination of the approximation theorem by Baou-
endi and Treves [BT], the edge-of-the-wedge theorem by Ayrapetian and
Henkin [A], and a simple fact on the deformation of discs [T3]. Indeed,
let A1, . . . , Ar ∈ Ap be the discs such that vj = −∂Aj(1)/∂ζ(1 ≤ j ≤ r)
span V ′

p . By deforming these discs, one obtains manifolds M1, . . . , Mr with
the same boundary M0 such that each Tp(Mj) is spanned by Tp(M0) and
vj . (See [T3, Proposition 1.3] for details.) Therefore dim(

∑
j Tp(Mj)) =

dim(M0) + r. Since each Mj is a union of discs attached to M ∪ M0, by
the Baouendi-Treves approximation theorem, all CR functions on M ∪M0

extend to be CR on Mj . The proposition now follows by the edge-of-the-
wedge theorem. �

Remark. In our statement regarding the smoothness of W , the neighbor-
hood U depends on β. This has happened because of the repeated use of
Bishop’s equation. We use it for the first time to construct Mj-s. By the
result of [T4] on the regularity of Bishop’s equation, the manifolds Mj-s
are of class Ck,β for all 0 < β < α. However, the Ck,β norms of defining
functions of Mj-s blow up as β → α. We use Bishop’s equations one more
time to construct W to be a union of discs attached to

⋃
Mj (see [A]).

Applying the result of [T4] in this situation yields shrinking U as β → α.
The author does not know whether it is possible to choose U independent
of β.

We will use the Bishop equation [B] to describe the set Ap. In a suitable
holomorphic local system of coordinates (z = x + iy ∈ Cm, w ∈ Cn) in
Ω ⊂ CN with origin at p = 0, the manifolds M and M0 can be defined as

(2.3)
M0 ∩ Ω = {(x + iy, w) : x = h(y, w, 0)},
M ∩ Ω = {(x + iy, w) : x = h(y, w, t), t ∈ Γ}.

where h is a smooth real Rm-valued function in a neighborhood of zero in
Rm ×Cn ×Rl such that h and the partial derivatives hy and hw vanish at
zero while ht has the maximum rank l at zero, that is

(2.4) h(0) = 0, hy(0) = 0, hw(0) = 0, rankht(0) = l
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and Γ ⊂ Rl is an open convex cone. In this notation, CRdim(M0) = n,
codim(M0) = m and dim(M) = dim(M0) + l.

Along with M , we consider M̃ , the continuation of M across the edge
M0, obtained by dropping the condition that t ∈ Γ in (2.1), that is

M̃ = {(x + iy, w) ∈ Ω : x = h(y, w, t), t ∈ Rl}.

Let q = (x + iy, w) ∈ M̃ . Then there is a unique t ∈ Rl such that x =
h(y, w, t). We call such t the t-component of q.

We denote by Ãp the set of all small analytic discs A attached to M̃

with A(1) = 0.

Proposition 2.2. There exists a unique disc A ∈ Ãp with given suffi-
ciently small w- and t-components respectively (ζ �→ w(ζ)) ∈ Ck,α(∆̄) ∩
O(∆) and (ζ �→ τ(ζ)) ∈ Ck,α(b∆) such that w(1) = 0, τ(1) = 0. Further-
more, A ∈ Ap (2.1) if and only if τ(ζ) ∈ Γ ∪ 0 for ζ ∈ b∆.

Proof. Let T1 denote the harmonic conjugation operator on b∆ normalized
by the condition (T1φ)(1) = 0. That is T1φ = Tφ− (Tφ)(1) where T is the
standard Hilbert transform.

Let A(ζ) = (x(ζ) + iy(ζ), w(ζ)) and let ζ �→ τ(ζ) be the t-component
of A|b∆, that is x(ζ) = h(y(ζ), w(ζ), τ(ζ)) for ζ ∈ b∆. Since the x- and
y-components of A are harmonic conjugates, and y(1) = 0, the function
ζ �→ y(ζ) satisfies the Bishop equation

(2.5) y = T1h(y, w, τ).

For given ζ �→ w(ζ) and ζ �→ τ(ζ) small in the Ck,α norm, this equation
has a unique solution ζ �→ y(ζ) in Ck,α (see [T4]). Once (2.5) is solved,
ζ �→ x(ζ) + iy(ζ) is obtained by harmonically extending to ∆. The charac-
terization of Ap by the condition τ(ζ) ∈ Γ ∪ 0 is obvious. �

Proposition 2.2 identifies Ãp with a neighborhood of zero in the Banach
space

(2.6) B̃ = {(w, τ) :

w ∈ Ck,α(∆̄,Cn) ∩ O(∆), τ ∈ Ck,α(b∆,Rl), w(1) = 0, τ(1) = 0},

and Ap is represented by elements of

(2.7) B = {(w, τ) ∈ B̃ : τ(ζ) ∈ Γ ∪ 0 for ζ ∈ b∆}.
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We write A ↔ (w, τ) if w and τ are the w- and t-components of A.
A (infinitesimal tangential to M̃) deformation of a disc A ∈ Ãp is a

continuous mapping Ȧ : ∆̄ → CN holomorphic in ∆ such that Ȧ(ζ) =
(ẋ(ζ) + iẏ(ζ), ẇ(ζ)) ∈ TA(ζ)(M̃) for ζ ∈ b∆ and Ȧ(1) = 0.

Let v = (ẋ + iẏ, ẇ) ∈ Tq(M̃) at q = (x + iy, w) ∈ M̃ . Then ẋ =
hy ẏ + hwẇ + hw̄

¯̇w + htṫ, where the partial derivatives hy, . . . are evaluated
at (y, w, t) such that x = h(y, w, t). We call ṫ the t-component of v.

Thus, the y-component of Ȧ must satisfy the linearized Bishop’s equation

(2.8) ẏ = T1(hy ẏ + hwẇ + hw̄
¯̇w + htτ̇),

where τ̇ is the t-component of Ȧ|b∆. The partial derivatives hy, . . . are
evaluated at (y(ζ), w(ζ), τ(ζ)), where τ is the t-component of A|b∆.

We restrict to deformations Ȧ with the w- and t-components ζ �→ ẇ(ζ)
and ζ �→ τ̇(ζ) in Ck,α. In this case the equation (2.8) has a unique solution
ζ �→ ẏ(ζ) in Ck−1,α. Thus, the set of deformations of A ∈ Ãp is identified
with B̃. We write Ȧ ↔ (ẇ, τ̇) ∈ B̃.

Following [T1], we associate to a disc A ∈ Ãp, a Ck−1,α real m × m

matrix function ζ �→ G(ζ) on b∆ as the unique solution to the equation

(2.9) G = 1 − T1(Ghy),

where hy is evaluated at (y(ζ), w(ζ), τ(ζ)) as in (2.8) and 1 denotes the
identity matrix. Since A is small, G is nondegenerate.

We introduce the following notation. For a C1,α function φ on the unit
circle with φ(1) = 0, we write

(2.10) J (φ) =
1
π

∫ 2π

0

φ(eiθ) dθ

|eiθ − 1|2 =
i

π

∫
b∆

φ(ζ) dζ

(ζ − 1)2
,

where the integral is understood in the sense of principal value. Note that
for any function φ ∈ C1,α(∆̄) holomorphic in ∆ with φ(1) = 0, we have

(2.11) J (φ) = −∂φ(1)
∂ζ

.

Lemma 2.3. The solution of (2.8) has the form

(2.12) ẏ = (1 + h2
y)−1(G−1T1(Gφ) − hyφ),

where φ = hwẇ + hw̄
¯̇w + htτ̇ . Moreover

(2.13) J (ẋ) = J (Gφ),

where ẋ is the x-component of Ȧ.

The proof of this lemma is given in [T1].
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3. Defect of discs and proof of (A)

Let M and M0 be the same as in Section 2. In addition, assume k ≥ 2.
We define the defect of a disc A ∈ Ãp.

Let Rm∗ be the dual space to Rm. To apply the matrix notation, we
regard it as the space of row m-vectors. Let A ∈ Ãp. We set
(3.1)

V ∗(A) = {c ∈ Rm∗ : cGhw extends holomorphically to ∆, cGht = 0},
def(A) = dim(V ∗(A)),

where hw and ht are evaluated at (y(ζ), w(ζ), τ(ζ)) as in (2.8). Note that
rank(Ght) = rank(ht) = l. Therefore, def(A) ≤ m − l = codim(M). One
can see that def(A) is the same as the defect of A as a disc attached to M̃

(see [T1] and [BRT]). We set

(3.2) V ′(A) = Span{−∂Ȧ(1)/∂ζ mod Tp(M0) : τ̇(ζ) ∈ Γ ∪ 0 for ζ ∈ b∆},

where Ȧ denotes a deformation of A and τ̇ is the t-component of Ȧ.

Lemma 3.1. For A ∈ Ap, dim(V ′(A)) = m − def(A).

Proof. The proof is very similar to that of a related result of [T1]. Since
Tp(M0) is given by the equation x = 0, the normal space Tp(CN )/Tp(M0)
is identified with the x-space Rm. We show that V ∗(A) = V ′(A)⊥.

Let c ∈ V ′(A)⊥. Let Ȧ = (ẋ + iẏ, ẇ) be a deformation of A with
the t-component τ̇ taking values in Γ ∪ 0. By (2.11), the x-component of
−∂Ȧ(1)/∂ζ is J (ẋ). Thus, cJ (ẋ) = 0. By (2.13),

0 = cJ (ẋ) = J (cGhwẇ) + J (cGhw̄
¯̇w) + J (cGhtτ̇).

This holds for every pair (ẇ, τ̇) ∈ B (2.7), in particular (ẇ, 0), (iẇ, 0) and
(0, τ̇). Therefore,

J (cGhwẇ) = 0, J (cGhtτ̇) = 0.

Using the holomorphic form of J in (2.10), we see that cGhw must extend
holomorphically to ∆. Since τ̇ is any function with τ̇(ζ) ∈ Γ ∪ 0 and
τ̇(1) = 0, we conclude that cGht = 0 identically. Hence c ∈ V ∗(A). The
converse is obvious. �



638 A. TUMANOV

Lemma 3.2. For A ∈ Ap, V ′(A) ⊂ V ′
p.

Proof. The proof is a simple check of the definitions (2.2) and (3.2). Indeed,
let Ȧ be a deformation of A with the t-component τ̇ with τ̇(ζ) ∈ Γ∪ 0. We
need to show that −∂Ȧ(1)/∂ζ mod Tp(M0) ∈ V ′

p .
Let w and τ be the w- and t-components of A, and let ẇ and τ̇ be the

w- and t-components of Ȧ. Using Proposition 2.2, we construct the family
of discs ζ �→ A(ζ, s) (where s > 0), having the w- and t-components w+sẇ

and τ +sτ̇ . Since Γ is convex, τ(ζ), τ̇(ζ) ∈ Γ∪0 and s > 0, the discs belong
to Ap. Then Ȧ(ζ) = d

ds

∣∣
s=0

A(ζ, s). Therefore,

−∂Ȧ(1)/∂ζ mod Tp(M0) =
d

ds

∣∣∣
s=0

(−∂A(1, s)/∂ζ mod Tp(M0)).

Since the expression in parentheses is in V ′
p , the derivative is also in V ′

p ,
which is what we need. (We use the fact that M is Ck,α with k ≥ 2.) �

We now define the defect of M at p.

(3.3) def(p, M0, M) = lim inf def(A) as A ∈ Ap, ||A||Ck,α → 0.

End of the proof of (A). Let d = def(p, M0, M). Then there exists A ∈ Ap

with def(A) = d. By Lemmas 3.1 and 3.2, dim(V ′
p) ≥ m−d. The statement

(A) now follows by Proposition 2.1. �

4. Proof of (B)

Let M , M0 and p be the same as in the previous section. We construct
the submanifold S as a union of boundaries of analytic discs attached to
M ∪ M0. We consider the evaluation map

(4.1) F : Ãp → M̃, F : A �→ A(−1).

Since we identify Ãp with a neighborhood of zero in B̃ (2.6), we also re-
gard F as a mapping on this neighborhood. According to results on the
regularity of Bishop’s equations [T2] [T4], F is Ck,β for every 0 < β < α.

Let A ∈ Ãp, q = F(A) = A(−1). Let L(A) = F ′(A)B̃ ⊂ Tq(M̃), the
image of the derivative of F at A.

Proposition 4.1.

(i) dimL(A) = dim(M) − def(A);
(ii) T c

q (M̃) ⊂ L(A).
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Proof. To prove (i), we construct an isomorphism between V ∗(A) (3.1) and
L(A)⊥ ⊂ T ∗

q (M̃). To prove (ii), we show that L(A)⊥ annihilates T c
q (M̃).

Let ω = P dy +Q dw + Q̄ dw̄ +R dt ∈ L(A)⊥. This means precisely that
for every deformation Ȧ ↔ (ẇ, τ̇) ∈ B̃,

(P ẏ + Qẇ + Q̄ ¯̇w + Rτ̇)(−1) = 0,

where ẏ is the y-component of Ȧ. Using (2.12), we get

(P (1 + h2
y)−1(G−1T1(Gφ) − hyφ) + Qẇ + Q̄ ¯̇w + Rτ̇)(−1) = 0,

where φ = hwẇ + hw̄
¯̇w + htτ̇ . This holds for every pair (ẇ, τ̇) ∈ B̃, in

particular, (ẇ, 0), (iẇ, 0) and (0, τ̇). Therefore,

(4.2)
(P (1 + h2

y)−1(G−1T1(Ghwẇ) − hyhwẇ) + Qẇ)(−1) = 0,

(P (1 + h2
y)−1(G−1T1(Ghtτ̇) − hyhtτ̇) + Rτ̇)(−1) = 0.

Note that for every ψ ∈ C0,α(b∆),

(T1ψ)(−1) =
2
π

∫
b∆

ψ(ζ) dζ

ζ2 − 1
.

Let ẇ(−1) = 0 and τ̇(−1) = 0. Then (4.2) yields

(4.3)
∫

b∆

cGhw
ẇ(ζ)
ζ2 − 1

dζ = 0,

∫
b∆

cGht
τ̇(ζ)

ζ2 − 1
dζ = 0,

where

(4.4) c = (P (1 + h2
y)−1G−1)(−1).

Since (4.3) holds for every (ẇ, τ̇) ∈ B̃ vanishing at −1, cGhw must extend
holomorphically to ∆, and cGht must vanish identically. Hence c ∈ V ∗(A).

Since cGhwẇ is holomorphic and ẇ(1) = 0, we have T1(cGhwẇ) =
−icGhwẇ. Plugging this and cGht = 0 in (4.2), we get

(4.5)
(P ((hy − i1)−1hw − Q)ẇ(−1) = 0,

(P ((1 + h2
y)−1hyht − R)τ̇(−1) = 0.

Since ẇ(−1) ∈ Cn and τ̇(−1) ∈ Rl are arbitrary,

(4.6) Q = P (hy − i1)−1hw, R = P (1 + h2
y)−1hyht,
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where hy . . . are evaluated at q. A simple check shows that (4.6) means
precisely that ω ∈ T c

q (M̃)⊥, which proves (ii).
We claim that the mapping ω �→ c given by (4.4) is an isomorphism.

Indeed, it is linear by (4.4). It is injective because Q and R are uniquely
defined by P . It is also surjective, because, given c ∈ V ∗(A), we can use
(4.4) and (4.6) to get ω ∈ L(A)⊥, which completes the proof of (i). The
proposition is now proved. �

We fix a smooth scalar function ψ on b∆ such that ψ(ζ) > 0 for every
ζ ∈ b∆ except that ψ(1) = 0. We take ψ with ψ(−1) = 1. For ε > 0 we
introduce the subspace
(4.7)
Bε = {(w, τ) ∈ B̃ : τ = λψ+φ, λ ∈ Rl, φ(ζ) = 0 if |ζ+1| < ε or |ζ−1| < ε}.

We set Lε(A) = F ′(A)(Bε).

Lemma 4.2. For every A ∈ Ap there exists ε > 0 such that Lε(A) = L(A).

Proof. Since Lε(A) and L(A) are finite dimensional, it suffices to show that⋃
ε>0 Lε(A) = L(A). By passage to orthogonal complements in T ∗

q (M), it
reduces to

⋂
ε>0 Lε(A)⊥ = L(A)⊥.

Using the same notation as in the proof of Proposition 4.1, let ω ∈⋂
ε>0 Lε(A)⊥. We then find that (4.3) holds for all τ̇ vanishing near ±1.

This suffices to conclude that c given by (4.4) is in V ∗(A). We further get
that since τ̇(−1) = λψ(−1) ∈ Rl is arbitrary, (4.5) still implies (4.6). Thus
ω ∈ L(A)⊥. �

We now turn to the proof of (B). Let d = def(p, M0, M) defined by
(3.3). Let A0 ∈ Ap be a disc with def(A0) = d. Let A0 ↔ (w0, τ0). We
can assume that A0(−1) = p = 0, otherwise we replace A0 by the disc
ζ �→ A0(ζ2), which has the same defect and is still small in Ck,α. We can
further assume that ζ = ±1 are the only points on b∆ where A0(ζ) ∈ M0

because small perturbations can only reduce the defect of A0, which is
already of minimum defect among sufficiently small discs in Ap.

We fix ε > 0 such that Lε(A0) = L(A0). We choose Ȧj ↔ (ẇj , τ̇j) ∈ Bε,
1 ≤ j ≤ r = dim(M) − d, such that F ′(A0)Ȧj form a basis in Lε(A0)
whence in L(A0). Specifically, we can take ẇj = 0, τ̇j = ejψ for 1 ≤ j ≤ l,
where ej is the unit vector of the j-th coordinate in Rr. Indeed, these Ȧj ,
1 ≤ j ≤ l, have linearly independent t-components. We can further assume
that

(4.8) τ̇j(ζ) = 0 if |ζ − 1| < ε or |ζ + 1| < ε for l < j ≤ r.
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(Otherwise, for j > l, we replace Ȧj by Ȧj−
∑l

ν=1 uνȦν , where (u1, . . . , ul)T

= τ̇j(−1), see (4.7).)
We restrict the evaluation map to the discs As ∈ Ãp, s ∈ Rr, As ↔

(ws, τs), where

ws = w0 +
r∑

j=1

sjẇj and

τs = τ0 +
r∑

j=1

sj τ̇j = τ0 +
l∑

j=1

sjejψ +
r∑

j=l+1

sj τ̇j .(4.9)

Let H : s �→ F(As) = As(−1). The mapping H is Ck,β in a neighborhood
of zero U ⊂ Rr for all 0 < β < α. Since ∂H(0)/∂sj = F ′(A0)Ȧj are
linearly independent, H is an immersion if U is small.

Let S̃ = H(U). Since τs(−1) = (s1, . . . , sl)T , we have (s1, . . . , sl)T ∈ Γ
iff H(s) ∈ M . Therefore, S = S̃ ∩ M = H((Γ × Rr−l) ∩ U) is a manifold
with edge S0 = S̃ ∩ M0 = H((0 × Rr−l) ∩ U).

We now prove that T c(S) = T c(M)|S . We first note that if s ∈ Rr is
small, then (s1, . . . , sl)T = τs(−1) ∈ Γ implies that τs(ζ) ∈ Γ for all ζ ∈ b∆,
ζ �= 1. Indeed, since Γ is convex and ψ(ζ) ≥ 0, by (4.8) the right-hand side
of (4.9) is in Γ for ζ close to ±1. If ζ is outside a neighborhood of ±1,
τs(ζ) ∈ Γ holds for small s because τ0(ζ) ∈ Γ for ζ ∈ b∆, ζ �= ±1.

Let q ∈ S, q = H(s), s ∈ (Γ×Rr−l)∩U . By the remark above, As ∈ Ap,
that is As is attached to M∩M0. Since H is obtained as a restriction of the
evaluation map F , we have Tq(S) ⊂ L(As). Since As ∈ Ap is close to A0,
def(As) = d. Therefore, by Proposition 4.1, dimTq(S) = r = dim(M)−d =
dimL(As). Hence, Tq(S) = L(As) ⊃ T c

q (M), which is what we need.
The proof of (B) is complete.
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