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WEAK COVERING WITHOUT COUNTABLE CLOSURE

W. J. Mitchell and E. Schimmerling

Theorem 0.1. Suppose that there is no inner model with a Woodin cardi-
nal. Suppose that Ω is a measurable cardinal. Let K be the Steel core model
as computed in VΩ. Let κ ≥ ω2 and λ = (κ+)K . Then cf(λ) ≥ card(κ).

The main result of [MiSchSt] is that Theorem 0.1 holds under the ad-
ditional assumption that card(κ) is countably closed. But often, in ap-
plications, countable closure is not available. Theorem 0.1 also builds on
the earlier covering theorems of Jensen, Dodd and Jensen, and Mitchell;
some of the relevant papers are [DeJe], [DoJe1], [DoJe2], [Mi1], [Mi2], and
[Je]. The results for smaller core models do not require the existence of a
measurable cardinal; it is not known if the large cardinal hypothesis on Ω
can be eliminated completely from Theorem 0.1 (see [Sch2]).

In this paper, we outline a proof of Theorem 0.1. By Kc, we mean
Steel’s background certified core model. We shall reduce what we must
prove to some iterability properties for Kc (labeled “facts” in the proof).
In turn, Steel has shown that Kc is sufficiently iterable, using the methods
in [St, §9]. The proof of Theorem 0.1 is very closely tied to the proof in
[MiSchSt], to which we shall refer freely.

1. An internally approachable chain

Our proof of Theorem 0.1 begins much as the proof of Jensen’s covering
theorem for L, with an internally approachable chain. Fix Ω, κ, and λ as
in the statement Theorem 0.1, and assume for contradiction that cf(λ) <
card(κ). Let ε be a regular cardinal with cf(λ) < ε and ω2 ≤ ε ≤ card(κ).
Though ε = cf(λ)+ would do, we prefer to work in slightly more generality.

Let 〈 Xi | i < ε 〉 be a continuous chain of elementary substructures
of VΩ+1 such that for all j < ε, 〈 Xi | i ≤ j 〉 ∈ Xj+1, and Xj ∩ ε ∈ ε,
and card(Xj) = card(Xj ∩ ε). Assume also that κ ∈ X0. For i < ε, let
εi = Xi ∩ ε. Note that 〈 εi | i < ε 〉 is a normal sequence converging to ε.
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For i < ε, let πi : Ni −→ VΩ+1 be the uncollapse of Xi. So crit(πi) = εi.
We call a partial function F on ε a choice function if and only if F (i) ∈ Xi

for all i ∈ dom(F ).

Lemma 1.1. Suppose that F is a choice function and that dom(F ) is
stationary in ε. Then there is a stationary S ⊆ dom(F ) on which F is
constant. Moreover, if this constant value is an ordinal ≥ ε, then the map
i �→ (πi)−1(F (i)) is strictly increasing on S.

Proof. Let 〈 Gi | i < ε 〉 be a sequence, strictly increasing and continuous
with respect to inclusion, such that for all i < ε, Gi is a function from εi

onto Xi. Let C = { i < ε | εi = i }. Then C is club and if i ∈ C, then
crit(πi) = εi = i. Define H on dom(F )∩C by H(i) = (Gi)−1(F (i)). Then
H(i) < εi = i for all i ∈ dom(H). By Fodor’s lemma, there is a stationary
set S ⊆ dom(H) on which H is constant. Suppose that i, j ∈ S and i < j.
Then F (i) = Gi(H(i)) = Gj(H(i)) = Gj(H(j)) = F (j). Therefore, F is
constant on S.

Suppose that F maps into the ordinals. It is clear that i �→ (πi)−1(F (i))
is nondecreasing on S. Suppose that i < j are both in S and that F (i) =
F (j) ≥ ε. Then (πi)−1(F (i)) < ORNi < crit(πj) = εj = (πj)−1(ε) ≤
(πj)−1(F (j)).

Notation 1.2. Suppose that T is an iteration tree. We shall writeM(T , η)
for MT

η and E(T , η) for ET
η . If T has successor length, then we denote

the last model of T by M∞(T ).

Notation 1.3. Suppose that N and M are transitive and π : N −→ M
is sufficiently elementary. Suppose that κ < ORN . Let E be the long
extender of length π(κ) derived from π. Suppose that P is a premouse
with κ < ORP and that E is a long extender over P. If P is a set premouse
and, for some n < ω, ρPn+1 ≤ κ, then we set n(P, κ) equal to the least such
n. Also, if n = n(P, κ), then we write ult(P, π, κ) for ultn(P, E). If, on
the other hand, P is a weasel, then we write ult(P, π, κ) for ult0(P, E).

Fix an inaccessible cardinal Γ < Ω such that Γ > λ. Let W be the
canonical very soundness witness for JK

Γ . We assume that Γ ∈ X0.
In [MiSchSt], a single hull X ≺ VΩ+1 was considered; N was the

transitive collapse of X, and various objects related to the coiteration
of (WN , W ) were identified. Here we have a chain of ε-many hulls Xi. We
shall use a subscript or a superscript i on the name of the object identified
in [MiSchSt] to indicate that it corresponds to the hull Xi.

Notation 1.4.

(a) Let W i = WNi .
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(b) Let (T i
, T i) be the pair of iteration trees resulting from the

coiteration of (W i, W ).
(c) Let θi + 1 be the common length of T i and T i

.
(d) Let Γi = (πi)−1(Γ).
(e) Let �κi = 〈 κi

α | α ≤ γi 〉 be the increasing list of cardinals of
M∞(T i

) up to and including Γi. That is, �κi is the initial segment
of the ℵ-function up to and including Γi in the last model of T i

.
(In fact, γi = Γi.)

(f) For α ≤ γi, let λi
α be the successor cardinal of κi

α in M∞(T i
).

So λi
α = κi

α+1 whenever α < γi. Put �λi = 〈 λi
α | α < γi 〉 (the

sequence of length γi).
(g) For α ≤ γi, let ηi(α) be the least η < θi such that E(T i, η) has
generators ≥ κi

α, if such an η exists, and put ηi(α) = θi if no such
η exists.

(h) Let (�Pi, �λi) be the phalanx of length γi + 1 derived from T i.
This means that for every α ≤ γi, Pi

α is the longest initial segment
ofM(T i, ηi(α)) with just the subsets of κi

α constructed before λi
α.

Pi
α might be a set premouse, or it might be a weasel; we cannot

rule out either case.
(i) For α < γi, let Ri

α = ult(Pi
α, πi, κ

i
α). This definition assumes

that the (εi, πi(κi
α)) long extender derived from πi measures sets

in Pi
α (which would follow from hypothesis (1)i

α of Definition 1.5
below). We allow for the possibility that Ri

α is ill-founded. Even
if Ri

α is well-founded, it seems possible that Ri
α is not a potential

premouse (ppm), as ḞRi
α , the last predicate of Ri

α, might code an
extender fragment, rather than a total extender, over Ri

α.
(j) Let πi

α : Pi
α −→ Ri

α be the ultrapower map.
(k) In [MiSchSt], a premouse Si

α is defined from T i � (ηi(α)+1) and
πi. When Ri

α is a premouse, then Si
α = Ri

α; but otherwise, Si
α �=

Ri
α. Si

α substitutes for Ri
α in many roles. The most important

difference is that Si
α is a premouse, even if Ri

α is not a premouse.
(l) Let Qi

α be the structure defined from Pi
α by analogy with how

Si
α was defined from Ri

α. In fact, Si
α = ult(Qi

α, πi, κ
i
α).

(m) Let Λi
α = sup(πi“λi

α). Then Λi
α = (πi(κi

α)+)S
i
α .

Definition 1.5. For each i < ε and α < γi, we name the following six
properties:

(1)i
α if η ≤ θi and E(T i

, η) �= ∅, then lh(E(T i
, η)) > λi

α;
(2)i

α ((W,Si
α), πi

α(κi
α)) is an iterable phalanx;

(3)i
α ((W i,Qi

α), κi
α) is an iterable phalanx;
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(4)i
α ((�Pi � α, W i), �λi � α) is an iterable phalanx;

(5)i
α (( �Ri � α, W ), �Λi � α) is an iterable phalanx;

(6)i
α (( �Si � α, W ), �Λi � α) is an iterable phalanx.

Lemma 1.6. Consider any i < ε.

(a) If (1)i
α–(6)i

α hold for every α < γi, then Theorem 0.1 holds.
(b) If πi is continuous at ordinals of countable cofinality, then the
following implications hold for any α < γi.

(6)i
α =⇒ (5)i

α =⇒ (4)i
α =⇒ (1)i

α

∀ β < α (4)i
β =⇒ (3)i

α

∀β < α (2)i
β =⇒ (6)i

α

Lemma 1.6 was proved in [MiSchSt], where it was also argued that if
ωXi ⊂ Xi, then (3)i

α =⇒ (2)i
α for every α < γi, and consequently, Theorem

0.1 holds. We shall show that a weaker closure condition on Xi suffices,
and holds for a stationary set of i < ε. In light of Lemma 1.6(a) and our
denial of Theorem 0.1, we may make the following definition.

Definition 1.7. For any i < ε, define αi to be the least α such that at
least one of (1)i

α–(6)i
α fails.

If cf(i) > ω, then πi is continuous at ordinals of countable cofinality,
and so Lemma 1.6 implies that (1)i

αi and (3)i
αi–(6)i

αi hold, while (2)i
αi

fails. We shall use the following notation:

κi = κi
αi ηi = ηi(αi) Pi = Pi

αi Λi = Λi
αi Ri = Ri

αi

λi = λi
αi Qi = Qi

αi Si = Si
αi

From now on, we shall write �Pi when we mean �Pi � αi. As we shall never
again refer to coordinates of �Pi beyond αi, there is no ambiguity. The
same goes for �Qi, �κi, �λi, �Ri, �Si, and �Λi.

By Lemma 1.1, there is a stationary set S ⊆ { i < ε | cf(i) > ω ∧ εi = i }
on which the following choice functions are constant:

i �→ πi(αi) i �→ πi(κi) i �→ πi(ηi) i �→ n(Pi, κi)

i �→ πi(λi) i �→ n(Qi, κi)

Then i �→ αi and i �→ ηi are non-decreasing on S, while i �→ κi and
i �→ λi are strictly increasing on S. (Note that κi ≥ εi, since ((W, W ), εi)
is iterable; hence πi(κi) ≥ ε. Apply Lemma 1.1.)



WEAK COVERING WITHOUT COUNTABLE CLOSURE 599

2. A pull-back Q∗ of Qj

Let S be the stationary set from §1. For the rest of this paper, fix
j ∈ S ∩ lim(S). Since j ∈ S, (2)j

αj fails. Let U be an ill behaved iteration
tree on ((W,Sj), πj(κj)). We include here the possibility that Sj itself is
ill-founded, which would mean that U is the empty tree.

Let ψ : M −→ VΩ+1 be elementary with M countable and transitive
with everything relevant in the range of ψ. Say U = ψ(U ′), W = ψ(W ′),
Sj = ψ(S ′), and πj(κj) = ψ(κ′). U ′ is a countable, ill behaved iteration
tree on ((W ′,S ′), κ′), and ψ“(U ′), the copy of U by ψ is a countable, ill
behaved iteration tree on ((W,Sj), πj(κj)).

We remark that in [MiSchSt, 3.13], the countable completeness of the
extender Eπ derived from π was used to find maps from ((W ′,S ′), κ′) into
((W j ,Qj), κj). These maps were then used to copy U ′ to an ill behaved
iteration tree on ((W j ,Qj), κj), thereby contradicting (3)j

αj . But here, Eπ

is not countably complete.
For the rest of this paper, fix i ∈ S such that i < j and ran(ψ)∩Xj ⊂ Xi.

This is possible since j ∈ lim(S) and cf(j) > ω. Let πi,j : Ni −→ Nj be
the natural embedding, that is, the uncollapse of (πj)−1(Xi). We have the
following commutative diagram.

VΩ+1

Ni Nj

πi

w
πi,j

u

πj

By a standard fine structural construction, we shall define a “pull-back”
of Qj to a premouse Q∗ that agrees with Qi below λi. This is done in two
cases, depending on whether or not Qj is a proper class. In both cases, Q∗

ends up being an appropriate hull in Qj of πi,j“κi and a parameter (part
of what we need to show is that no new ordinals < κj get into this hull).

Lemma 2.1. Suppose that Qj is a set premouse. Let n = n(Qj , κj).
There is a premouse Q∗ with the following properties:

(a) Q∗ and W i agree below λi;
(b) λi = (κ+

i )Q
∗
;

(c) Q∗ is κi-sound;
(d) n(Q∗, κi) = n;
(e) Qj = ult(Q∗, πi,j , κ

i);
(f) the ultrapower map π∗ : Q∗ −→ Qj is an n-embedding such that

π∗ � JQ∗
λi = πi,j � JW i

λi .
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Sketch. Recall that Qj is κj-sound in this case, with λj = ((κj)+)Q
j

, and
that Qj and W j agree below λj . Also, recall that Sj = ult(Qj , πj , κ

j) is
πj(κj)-sound, and Λj = sup(π“λj). The following claim implies that πi,j

is continuous at λi; that is, λj = πi,j(λi) = sup(πi,j“λi).

Claim 2.1.1. If Qj is a set premouse, then the map ψ : M −→ VΩ+1 is
cofinal in Λj.

Suppose, to the contrary, that ran(ψ) ∩ Λj is bounded in Λj . We can
use the condensation theorem, [Sch1, 2.8], to find a proper initial segment
L of Sj , an almost Σn+1-embedding ϕ, and a Σn+1-elementary embedding
ψ̃ such that following diagram commutes.

Sj L

S ′

u
ϕ

[
[

[̂

ψ

u

ψ̃

Moreover, we may arrange that ρn+1(L) = πj(κj) and sup(ran(ψ)∩Λj) <
(πj(κj)+)L = crit(ϕ) < Λj . This allows us to use the pair of maps ((ψ �
W ), ψ̃) to copy U ′ to an ill behaved iteration tree on ((W,L), πj(κj)). Since
Sj and W agree below Λj , L is a proper initial segment of W . Since W
is iterable, ((W,L), πj(κj)) is iterable. This contradiction completes the
sketch of Claim 2.1.1.

Because Qj is κj-sound, there is a directed system D ⊂ JQj

λj such that
Qj is the direct limit of D. We take D to have as structures, premice of
the form:

HQj�ξ
n+1 (κj ∪ p(Qj , κj))

for ξ < ORQj

. The maps of D are the natural Σn-elementary maps be-
tween the structures of D.

Let D∗ be the directed system whose structures are of the form: π−1
i,j (H)

for some structureH of D withH ∈ ran(πi,j). Likewise for the maps of D∗.
Then D∗ ⊂ JQi

λi . Let Q∗ be the direct limit of D∗, and let π∗ : Q∗ −→ Qj

be the natural map. Clearly, π∗ is Σn-elementary. But from Claim 2.1.1,
it follows that π∗ is cofinal, and therefore Σn+1-elementary. The lemma
now follows by standard calculations.

Lemma 2.2. Suppose that Qj is a weasel. There is a set premouse Q∗

such that, if we set λ∗ = ((κi)+)Q
∗
, then the following hold:

(a) Q∗ and W i agree below λ∗;
(b) λ∗ ≤ λi;
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(c) there is an elementary embedding π∗ : Q∗ −→ Qj such that

π∗ � JQ∗
λ∗ = πi,j � JQi

λ∗ .

Sketch. Let D be the directed system consisting of transitive premice of
the form HQj

ω (κj ∪ {x}) with x ∈ ran(ψ) ∩ |Qj |. Pull D back using πi,j to
a system D∗. Let Q∗ be the direct limit and let π∗ : Q∗ −→ Qj be the
natural elementary embedding.

Lemma 2.3. ((W, ult(Q∗, πi, κ
i)), πi(κi)) is not iterable.

Proof. We have the following commutative diagram.

Q∗ Qj Sj

ult(Q∗, πi,j , κ
i) ult(Q∗, πi, κ

i) S ′

w
π∗

w

w

u u

k
ψ

u
ψ′

And, crit(k) > πi(κi). So we can use the pair of embeddings (ψ, ψ′) to
copy U ′ to an ill behaved iteration tree on ((W, ult(Q∗, πi, κ

i)), πi(κi))

It is worth noting that the map from ult(Q∗, πi,j , κ
i) into Qj in the

diagram above is elementary and has critical point strictly greater than
κj . In fact, if Qj is a set premouse, then the map is the identity.

Definition 2.4.

(a) A premouse M is ∞-bad iff ((W, ult(M, πi, κ
i)), πi(κi)) is a

phalanx, but is not iterable.
(b) M is j-bad iff ((W j ,ult(M, πi,j , κ

i)), κj) is a phalanx, but is
not iterable.

Corollary 2.5.

(a) Qi is ∞-bad.
(b) Q∗ is ∞-bad.
(c) Q∗ is not j-bad.

Proof. By our choice of αi, (2)i
αi fails. Therefore, clause (a) holds. Clause

(b) follows from Lemma 2.3. Recall that (3)j
αj holds and asserts that

((W j ,Qj), κj) is an iterable phalanx. Since ult(Q∗, πi,j , κ
i) embeds into

Qj with critical point greater than κj , clause (c) holds.

Lemma 2.6. If M is ∞-bad and M ∈ ran(πj), then M is j-bad. In
particular, Qi is j-bad.
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Proof. Since πj is elementary and π−1
j (πi � πi(κi)) = πi,j � κj , we have

that
Nj � “((W j ,ult(π−1

j (M), πi,j , κ
i)), κj) is not iterable.”

By absoluteness (using the generic branch formulation of iterability),

((W j ,ult(π−1
j (M), πi,j , κ

i)), κj)

is not iterable. By the shift lemma, we have a map k with crit(k) ≥ κj so
that the following diagram commutes:

π−1
j (M) M

ult(π−1
j (M), πi,j , κ

i) ult(M, πi,j , κ
i)

w
πj

u u
w

k

An ill behaved iteration tree on ((W j ,ult(π−1
j (M), πi,j , κ

i)), κj) can be
copied to an ill behaved iteration tree on ((W j ,ult(M, πi,j , κ

i)), κj) using
the pair ((id � W j), k). So M is j-bad.

In light of Corollary 2.5(c) and Lemma 2.6, we would have a contradic-
tion if we could show that Qi embeds into Q∗ with critical point at least
κi. This is a first approximation to our general strategy.

Definition 2.7. A premouse M is i-good iff ((�Pi,M), �λi) is an iterable
phalanx.

Fact 2.8. (Steel). Qi is i-good.

The fact is proved using the methods of [St, §9]. Much of the rest of
this section will be taken up with showing that Q∗ is also i-good.

Definition 2.9. Let Λi,j
β = sup(πi,j“λi), Ri,j

β = ult(Pi, πi,j , κ
i
β), and

Si,j
β = ult(Qi

β , πi,j , κ
i
β), for any β < αi.

Lemma 2.10. Let β < αi. There is an iteration tree Vβ on W such that

(a) Vβ extends T j � (ηj(πi,j(β)) + 1);
(b) Vβ has a last model;
(c) there is Nβ, a premouse, and ϕβ : Si,j

β −→ Nβ, an elementary
embedding, such that Nβ is an initial segment of M∞(Vβ), and
crit(ϕβ) ≥ πi,j(κi

β).
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Sketch. Fix β < αi. Intuitively, the idea is to compare Si,j and T j .
Suppose that

((�Pj � πi,j(β),Si,j
β ), �λj � πi,j(β))

and

((�Pj � πi,j(β),Pj
πi,j(β)), �λ

j � πi,j(β))

are coiterable, and that (U ,V) is the pair of iteration trees resulting from
the coiteration. Then, by standard arguments, the iteration tree V can
be rearranged as the iteration tree Vβ that we are looking for, with the
embedding along the branch from Si,j

β to M∞(U) serving as ϕβ . The
details are like those in the proof of [MiSchSt, 3.14 and 3.15] (the lemmas
that derive (1)j

α from (4)j
α, for α = πi,j(β)). The second phalanx displayed

above is iterable, since W is. The first phalanx is also iterable, as we now
argue.

By a standard copying argument, it is enough to show that the phalanx

(( �Rj � πi,j(β),Si
β), �Λj � πi,j(β))

is iterable. Briefly, for each γ < πi,j(β), we can copy using the ultrapower
map πj

γ : Pj
γ −→ Rj

γ = ult(Pj
γ , πj , κ

j
γ) on Pj

γ . And, we use the map from
the diagram

Qi
β Si

β = ult(Qi
β , πi, κ

i
β)

Si,j
β ult(Si,j

β , πj , πi,j(κi
β))

w
πi

β

’
’
’
’
’
’’)πi,j

β

w

u

identity

between the starting models Si,j
β and Si

β . All the copying maps agree with
πj out to the appropriate ordinals.

Next we indicate why it is enough to show that

(( �Sj � πi,j(β),Si
β), �Λj � πi,j(β))

is iterable. Recall [MiSchSt, 3.18], the lemma that says (6)j
α =⇒ (5)j

α

whenever α < αj , in particular, when α = πi,j(β). The proof involved a
kind of enlargement that differed from the usual copying construction, that
used the details of how each Sj

γ was obtained from Rj
γ . It might be helpful

to recall that the enlarged iteration tree had a different tree structure
from the given iteration tree. Without giving the details, if we carry out
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the analogous enlargement construction here, we see how to reduce the
iterability of (( �Rj � πi,j(β),Si

β), �Λj � πi,j(β)) to that of

(( �Sj � πi,j(β),Si
β), �Λj � πi,j(β)).

Now, we outline how to reduce the iterability of the last phalanx to that
of a W -based phalanx. First, because (1)i

β and (2)i
β hold, [MiSchSt, 3.12]

gives an iteration tree Y on W such that Y has a successor length, and all
extenders used on Y have length at least Λi

β , and the corollary also gives
an elementary embedding k from Si

β into an initial segment A of M∞(Y),
with crit(k) ≥ πi(κi

β). Similarly, for each γ < πi,j(β), because (1)j
γ and

(2)j
γ hold, [MiSchSt, 3.12] gives an iteration tree Yγ on W such that Yγ

has a last model, and all extenders used on Yγ have length at least Λj
γ , and

the corollary also gives an elementary embedding kγ from Sj
γ into an initial

segment Aγ of M∞(Yγ), with crit(kγ) ≥ πj(κj
γ). Using the sequence of

maps (〈 kγ | γ < πi,j(β) 〉, k) we can copy a putative iteration tree on

(( �Sj � πi,j(β),Si
β), �Λj � πi,j(β))

to an iteration tree on (〈Aγ | γ < πi,j(β)〉,A), �Λj � πi,j(β)). This last
phalanx is W -based, and therefore iterable, by the main result in [St, §9].

There is a small subtlety in the last copying argument, since we must
allow for the possibility that crit(kβ) = πi(κi

β). It is the variation of the
usual copying procedure, as explained in [St, §6], and also in the proof of
[MiSchSt, 3.16] (deriving (3)j

α from (4)j
α), that we have in mind.

Lemma 2.11. Q∗ is i-good.

Sketch. We must see that the phalanx ((�Pi,Q∗), �λi) is iterable. By the
usual copying construction, it is enough to show that (( �Ri,j ,Qj), �Λi,j) is
iterable.

We remark that �Si,j is obtained from �Ri,j as �Qi was obtained from �Pi.
The proof is like that of the claim in the proof of [MiSchSt, 3.13].

Now recall the proof that (6)i
β =⇒ (5)i

β for β < αi, that is, the proof
of [MiSchSt, 3.18]. Using an enlargement similar to the one introduced
there, we see that it is enough to show that (( �Si,j ,Qj), �Λi,j) is iterable.

For β < αi, let ϕβ : Si,j
β −→ Nβ be the map from Lemma 2.10. Then

copying using (〈ϕβ | β < αi〉, id � |Qj |) can be used to see that it is enough
to show that

((〈Nβ | β < αi〉,Qj), �Λi,j)

is iterable. The following picture illustrates the situation.
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Nβ

T j

Si,j
β

W

ϕβ

Vβ

QjQj

id

In the last copying construction, we must allow for the possibility that
crit(ϕβ) = πi,j(κi

β). It is the variation of the usual copying procedure, as
explained in [St, §6], and also in the proof of [MiSchSt, 3.16], that we have
in mind.

Fact 2.11.1 (Steel). ((〈Nβ | β < αi〉,Qj), �Λi,j) is iterable.

The fact is proved by the methods of [St, §9], and the lemma follows.

Recall that Q∗ is not j-bad; this was Lemma 2.3(c). The following
lemma is a strengthening of this fact. It might be read as saying that Q∗

is “hereditarily not j-bad”.

Lemma 2.12. Suppose that I is an iteration tree on ((�Pi,Q∗), κi) and
that Q∗∗ is an initial segment of M∞(I). Then Q∗∗ is not j-bad.

Sketch. Let I and Q∗∗ be as in the statement of the lemma. We remark
that there is no assumption on which model starts the main branch of I.
We must see that ((W j ,ult(Q∗∗, πi,j , κ

i)), κj) is an iterable phalanx.
First, let I ′ be the iteration tree on a phalanx with starting model Qj

and back-up models Nβ for β < αi, that comes from I by the copying–
enlarging–copying procedure done in the proof of Lemma 2.11. Let Φ
be the map from Q∗∗ into an initial segment M of M∞(I ′) that comes
from this procedure. Then Φ � κj = πi,j � κj . So we have a map Ψ with
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crit(Ψ) ≥ κj , and the following commutative diagram:

M

Q∗∗ ult(Q∗∗,Φ, κi) = ult(Q∗∗, πi,j , κ
i)

4 4 4 4 4 4 4 4 446
Φ

w

u

Ψ

Now consider any γ < αj . Since (4)j
γ holds, we can apply [MiSchSt,

3.14] to get an iteration tree Uγ extending T j � (ηj(γ) + 1), and an ele-
mentary embedding ψγ from W j into an initial segment Mγ of M∞(Uγ)
such that crit(ψγ) ≥ κj

γ . The following picture illustrates the situation:

Nβ

T j

W

Vβ

I ′

M
Ψ

ult(Q∗∗, πi,j , κ
i)

Qj

W j

T j

W

Uγ

Mγ

ψγ

We can use the system of maps (〈ψγ | γ < αj〉, Ψ) to copy a putative
iteration tree on ((W j ,ult(Q∗∗, πi,j , κ

i)), κj) to a putative iteration tree
on

((〈Mγ | γ < αj〉,M), �λj).
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Fact 2.12.1 (Steel). ((〈Mγ | γ < αj〉,M), �λj) is iterable.

The fact is proved by the methods of [St, §9], and the lemma follows.

3. A minimal i-good, j-bad premouse M∗

We continue the proof of Theorem 0.1. Our strategy is to find a pre-
mouse M∗ which, like Qi, is both i-good and j-bad. Since Q∗ is also
i-good, we shall be able to coiterate the phalanxes ((�Pi,M∗), �λi) and
((�Pi,Q∗), �λi). We shall choose M∗ so that this coiteration yields a map ϕ
from M∗ into the last model on the Q∗-side, with crit(ϕ) ≥ κi. Using the
next lemma, and Lemma 2.12, we shall derive a contradiction.

Lemma 3.1. Let ϕ : M−→ M̃ be an n-embedding with crit(ϕ) ≥ κi.

(a) If M is ∞-bad, then M̃ is ∞-bad.
(b) If M is j-bad, then M̃ is j-bad.

Proof. We prove (a), the proof of (b) being almost identical. Consider the
diagram

M M̃

ult(M, πi, κ
i) ult(M̃, πi, κ

i)

w
ϕ

u u
w

k

where
k([a, f ]MEπi

) = [a, ϕ(f)]M̃Eπi
.

Then k is an n-embedding with crit(k) ≥ κj (in particular, ult(M̃, πi, κ
i) is

a premouse). So, a copying argument using the pair of maps (id � W j , k)
reduces the iterability of ((W j ,ult(M, πi, πi(κi)), κi), πi(κi)) to that of
((W j ,ult(M̃, πi, πi(κi)), κi), πi(κi)).

Lemma 3.2. There is an i-good, ∞-bad premouse M∗ with the follow-
ing properties. Suppose that I is an iteration tree of successor length on
((�Pi,M∗), �λi). Then

(a) No proper initial segment of M∞(I) is ∞-bad.
(b) Suppose that M∞(I) is ∞-bad. Then M∞(I) lies above M∗

in the tree ordering of I and there is no dropping along the branch
from M∗ to M∞(I). That is, root I(lh(I)− 1) = αi and

DI ∩ (αi, (lh(I)− 1)) = ∅.
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Sketch. We define a sequence 〈M0, . . . ,Mn, . . . 〉 by induction. PutM0 =
Qi. Suppose that Mn has been defined, Mn is i-good, but there is an
iteration tree I on ((�Pi,Mn), �λi) witnessing that (a) or (b) fail for Mn.
Let In be such an iteration tree I. Let Mn+1 be the shortest initial
segment N of M∞(In) such that N is ∞-bad.
Fact 3.2.1(Steel). Mn+1 is i-good.

Fact 3.2.2 (Steel). For some n, Mn+1 is not defined.

Both facts are iterability properties of W (recall thatM0 = Qi is an initial
segment of a model on T i, and that T i is an iteration tree on W ). They
are proved by the methods of [St, §9].

We remark that Lemma 3.2 expresses what we mean by “minimal” in
the title of this section. Fix some premouse M∗ as in Lemma 3.2. By
elementarity, we may choose M∗ so that M∗ ∈ ran(πj); in fact, the proof
of Lemma 3.2 gives such an M∗. By Lemma 2.6, M∗ is also j-bad.

For the rest of this paper, let (U ,V) be the pair of iteration trees result-
ing from the coiteration of ((�Pi,M∗), �λi) versus ((�Pi,Q∗), �λi).

Lemma 3.3. root U (lh(U)− 1) = αi and DV ∩ (αi, (lh(V)− 1)) = ∅.

Proof. Suppose otherwise.

Case A. Qj is a set premouse.

In Case A, we have available to us the κi-soundness of Q∗. The usual
fine structural considerations show thatQ∗ =M∞(V) is an initial segment
of M∞(U). Since Q∗ is ∞-bad, Lemma 3.2(a) tells us that Q∗ cannot be
a proper initial segment of M∞(U). So Q∗ = M∞(U). Thus, M∞(U) is
∞-bad, contradicting Lemma 3.2(b).

Case B. Qj is a weasel.

In Case B, we have available to us that Q∗ is a model of ZFC. The usual
fine structural considerations show that M∞(V) is an initial segment of
M∞(U), and that root V(lh(V) − 1) = αi. But then, by Lemma 3.1(a),
M∞(V) is ∞-bad. By Lemma 3.2(a), we must have that M∞(V) =
M∞(U). But this contradicts Lemma 3.2(b).

Lemma 3.4. M∞(U) is a initial segment of M∞(V).
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Proof. Otherwise, M∞(V) is a proper initial segment of M∞(U),

root V(lh(V)− 1) = αi ,

and DV ∩ (αi, (lh(V) − 1)) = ∅. But then, by Lemma 3.1(b), M∞(V) is
∞-bad, which contradicts Lemma 3.2(a).

By lemma 3.1(b), we have that M∞(U) is j-bad. It follows easily
that M∞(V) is j-bad. But, by Lemma 2.12, M∞(V) is not j-bad. This
contradiction completes the proof of Theorem 0.1.
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