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VERTEX OPERATOR ALGEBRAS ASSOCIATED TO
MODULAR INVARIANT REPRESENTATIONS FOR A

(1)
1

Dražen Adamović and Antun Milas

Abstract. We investigate vertex operator algebras L(k, 0) associated with

modular-invariant representations for an affine Lie algebra A
(1)
1 , where k

is an‘admissible’ rational number. We show that VOA L(k, 0) is rational
in the category O and find all irreducible representations in the category
of weight modules.

1. Introduction

Vertex operator algebras (VOA) are mathematical counterparts of con-
formal field theory (CFT). It is very interesting that some representations
of affine Lie algebras carries the structure of VOA (or modules for VOA)
[FLM], [FZ], [MP].

The new insight in the theory of representations of VOA was made
by Frenkel and Zhu (see [FZ], [Z]) by introducing the associative algebra
A(V ) associated to VOA V . So called A(V )-theory gave a theoretically
elegant way for the classification of all irreducible representations of V and
for calculating the ‘fusion rules’. They also introduce the term of rational
VOA which is a VOA with a finite number of irreducible modules, such
that every finitely generated module is completely reducible.

In [FZ], [MP] and [KWn], the irreducible representations of the VOA
L(k, 0), k ∈ N , associated to the irreducible highest weight representations
for an affine Lie algebra, were classified. It seems that this case is much
simpler because the associative algebra A(L(k, 0)) is finite dimensional (see
[KWn]).

The main goal of this paper is a classification of the irreducible rep-
resentations of the simple vertex operator algebra L(k, 0) for A

(1)
1 on the

admissible rational level k. Our main result is that irreducible L(k, 0)-
modules from the category O are exactly modular invariant representations
for A

(1)
1 . To show this, we use A(V )-theory and identify A(L(k, 0)) with a

certain quotient of U(g). Here we used Malikov-Feigin-Fuchs formula for
the singular vectors in the Verma modules. Then, by using classification
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of the irreducible representations in the category O, we find all irreducible
representations in the category of weight modules for A

(1)
1 .

Feigin and Malikov in [FM] have a geometrical approach to a similar
problem (see also [AY]). They calculated conformal blocks for three admis-
sible modules associated to three different points on CP 1. We interpret
our result of the classification of irreducible modules in terms of conformal
blocks considered in [FM].

2. Preliminaries

2.1. Vertex operator algebras and modules.

Definition 2.1.1. A vertex operator algebra is a Z-graded vector space
V =

⊕
n∈Z Vn with a sequence of linear operators {a(n) | n ∈ Z} ⊂ End V

associated to every a ∈ V , such that for fixed a, b ∈ V , a(n)b = 0 for n
sufficiently large. We call a family of generating series

Y (a, z) =
∑
n∈Z

a(n)z−n−1 ∈ (End V )[[z, z−1]],

vertex operators associated to a, if they satisfy the following axioms:

(V1) Y (a, z) = 0 iff a = 0.
(V2) There is a vacuum vector, which we denote by 1, such that

Y (1, z) = IV (IV is the identity of EndV ).

(V3) There is a special element ω ∈ V (called the Virasoro element),
whose vertex operator we write in the form

Y (ω, z) =
∑
n∈Z

ω(n)z−n−1 =
∑
n∈Z

Lnz−n−2,

such that

L0 |Vn= nI |Vn ,

Y (L−1a, z) =
d

dz
Y (a, z) for every a ∈ V,(1)

[Lm, Ln] = (m − n)Lm+n + δm+n,0
m3 − m

12
c,(2)

where c is some constant in C, which is called the rank of V .
(V4) The Jacobi identity holds, i.e.,



VERTEX OPERATOR ALGEBRAS FOR A
(1)
1 565

(3) z−1
0 δ

(
z1 − z2

z0

)
Y (a, z1)Y (b, z2)

− z−1
0 δ

(−z2 + z1

z0

)
Y (b, z2)Y (a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y (Y (a, z0)b, z2)

for any a, b ∈ V .

The subspace I of V is called an ideal if Y (a, z)b ∈ I[[z, z−1]] for every
a ∈ V, b ∈ I. Given an ideal I in V such that 1 /∈ I, ω /∈ I, the quotient
V/I admits a natural VOA structure (see [FZ]).

Definition 2.1.2. Given a V OA V , a representation of V (or V-module)
is a Z+-graded vector space M =

⊕
n∈Z+

Mn and a linear map

V −→ (End M)[[z, z−1]],

a 	−→ YM (a, z) =
∑
n∈Z

a(n)z−n−1,

satisfying

(M1) a(n)Mm ⊂ Mm+deg a−n−1 for every homogeneous element a.
(M2) YM (1, z) = IM , and setting YM (ω, z) =

∑
n∈Z Lnz−n−2, we have

[Lm, Ln] = (m − n)Lm+n + δm+n,0
m3 − m

12
c,

YM (L−1a, z) =
d

dz
YM (a, z)

for every a ∈ V.
(M3) The Jacobi identity holds, i.e.,

(4) z−1
0 δ

(
z1 − z2

z0

)
YM (a, z1)YM (b, z2)

− z−1
0 δ

(−z2 + z1

z0

)
YM (b, z2)YM (a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YM (Y (a, z0)b, z2)

for any a, b ∈ V .

The submodules, quotient modules, irreducible modules and completely
reducible modules are defined in the usual way ([FHL]).
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2.2. Associative algebra A(V ). Let V be a VOA. For any homogeneous
element a ∈ V and for any b ∈ V , following [Z], we define

a ∗ b = Resz
(1 + z)wta

z
Y (a, z)b.(5)

Then extend this product bilinearly to the whole space V . Let O(V ) be
the subspace of V linearly spanned by the elements of type

Resz
(1 + z)wta

z2
Y (a, z)b for homogeneous elements a, b ∈ V.(6)

Set A(V ) = V/O(V ). The multiplication ∗ induces the multiplication on
A(V ) and A(V ) becomes an associative algebra. The image of 1 in A(V )
becomes the identity element until the image of ω is in the center of A(V )
(see [Z]). Let M = ⊕n∈Z+Mn be a V -module. For a homogeneous element
a ∈ V , define o(a) = a(deg a − 1). From the definition of M , it follows
that operator o(a) preserves the grading of M .

Theorem 2.2.1.

(a) On End(M0) we have

o(a)o(b) = o(a ∗ b)
o(x) = 0

for every a, b ∈ V , x ∈ O(V ). The top level M0 is an A(V )-
module.

(b) Let U be an A(V )-module; there exists a V -module M such that
the A(V )-modules M0 and U are isomorphic.

Thus, we have one-to-one correspondence between irreducible V -modules
and irreducible A(V )-modules.

We have the following consequence of the definition of A(V ).

Proposition 2.2.2. Let I be an ideal of V . Assume 1 �∈ I, ω �∈ I. Then
the associative algebra A(V/I) is isomorphic to A(V )/[I], where [I] is the
image of I in A(V ).

2.3. Vertex operator algebras associated to affine Lie algebras.
Let g be a finite-dimensional simple Lie algebra over C. The affine Lie
algebra ĝ associated with g is defined as g ⊗C[t, t−1]⊕Cc with the usual
commutation relations. Let g = n− + h + n+ and ĝ = n̂− + ĥ + n̂+ be
the usual triangular decompositions for g and ĝ and P = C[t]⊗ g ⊕Cc be
upper parabolic subalgebra. Let U be any g-module. Considering U as a
P -module, we have the induced module (the generalized Verma module)
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M( , U) = U(ĝ)⊗U(P )U , where the central element c acts as multiplication
with l ∈ C.

For λ ∈ h∗, denote the Verma module by M(λ)j and its irreducible
quotient by V (λ) .

Set M( , λ) = M( , V (λ)). Let L(l, λ) denote its irreducible quotient.

Theorem 2.3.1. ([FZ]) Every M( , 0),  �= −g (where g denotes the dual
Coxeter number) has the structure of VOA. Let U be any g-module. Then
every M( , U) is a module for M( , 0). In particular, M( , λ) is a M( , 0)-
module.

Theorem 2.3.2. The associative algebra A(M( , 0)) is canonically iso-
morphic to U(g) and the isomorphism F : A(M( , 0)) → U(g) is given
by

F ( a1(−i1 − 1) · · · an(−in − 1)1 ) = (−1)i1+···inan · · · a1.(7)

for every a1, · · · , an ∈ g and every i1, · · · , in ∈ Z+.

3. Irreducible modules for VOA L(k, 0) in the category O
3.1. Modular invariant representations for A

(1)
1 . Let g = sl(2, C)

with generators e, f, h and relations [h, f ] = −2f , [h, e] = 2e, [e, f ] = h.
Let Λ0, Λ1 denote the fundamental weights for ĝ, and ω the fundamental
weight for g.

Definition 3.1.1. k = p/q ∈ Q is admissible if q ∈ N , p ∈ Z, (p, q) = 1
and 2q + p − 2 ≥ 0.

In [KW], V. Kac and M. Wakimoto define modular invariant represen-
tations. They also define weights which have admissible level and satisfy
some technical conditions (for the definition, see [KW]). They call them
admissible weights.

The following proposition describes the admissible weights and modular
invariant representations on level k:

Proposition 3.1.2. Let k = p/q ∈ Q be admissible. Set t = k+2. Define

P k = {(k−n+mt)Λ0+(n−mt)Λ1, m, n ∈ Z+, n ≤ 2q+p−2, m ≤ q−1}.
Let M be any irreducible highest weight module with highest weight λ. The
following statements are equivalent:

(1) M is a modular-invariant.
(2) λ is an admissible weight.
(3) λ ∈ P k.
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(For proof, see [KW]).
We need the following description of the set P k:

Lemma 3.1.3. Let λ ∈ ĥ∗. Then λ ∈ P k if and only if

〈λ, c〉 = k, 〈λ, h〉 = (N − it − j)

where i ∈ {0, · · · , l}, j ∈ {1, . . . , N}, N = 2q + p − 1, l = q − 1.

By using Corollary 2.1 in [KW] or the Kac determinant formula, we
have

Theorem 3.1.4. Let k = p/q ∈ Q be admissible. Then

L(k, 0) = M(k, 0)/U(ĝ)vsing,

where vector vsing is the unique singular vector of the weight kΛ0 − q(2q +
p − 1)δ + (2q + p − 1)α.

We also need the following theorem:

Theorem 3.1.5. (Kac-Wakimoto) Let M be a ĝ-module from the category
O such that for any irreducible subquotient L(µ) the weight µ is admissible.
Then ĝ-modul M is completely reducible.

3.2. Malikov-Feigin-Fuchs formula. Recall the Malikov-Feigin-Fuchs
result giving the singular vector in form with ‘rational powers’ (see [MFF]).

Theorem 3.2.1. (Malikov-Feigin-Fuchs) The singular vector

vsing = F (k).1

generates the maximal submodule of M(k, 0), where

F (k) = e(−1)N+ltf(0)N+(l−1)t · · · f(0)N−(l−1)te(−1)N−lt,(8)

for N = 2q + p − 1,l = q − 1 and t = p/q + 2.

Remark 3.2.2. In[MMF], it was proved that this formula really make sense,
because only with commutativity can we transform formula (8) to the usual
form in U(ĝ).
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3.3. Fundamental lemma. First we define

ε : U(n̂−) → U(g)
a1(−i1) · · · as(−is) 	→ a1 · · · as,

for every a1, . . . , as ∈ g, s ∈ N .
In the same way as in [F], we have

Proposition 3.3.1.

ε(F (k)) =
l∏

i=1

N∏
j=1

pi,j(h)eN ,

where pi,j(h) = ef + (it + j − 1)h − (it + j)(it + j − 1).

We define the Z-grading on U(ĝ) with

deg a1(−i1) · · · ak(−ik) = i1 + · · · + ik,(9)

for every a1, . . . , ak ∈ g.
In the following lemma, we use ordinary transposing T in U(g) (see

[Dix]).

Lemma 3.3.2. Let g ∈ U(n̂−), such that deg g = n. Then we have

ε(g) ≡ (−1)n(F [g.1])T mod U(g)n−.

Proof. First notice that n−.1 = 0. Since deg g = n , one can write g in a
form

g =
r∑

i=0

gif(0)i,

where
gi =

∑
a
(i)
i1

(−j1 − 1) · · · a(i)
it

(−jt − 1),

a
(i)
i1

, . . . , a
(i)
it

∈ g, j1, . . . , jt ∈ Z+, j1 + · · · + jt + t = n, r ∈ Z+, and get

ε(g) ≡ g0 mod U(g)n−.

Set aij = a
(0)
ij

. Since

g.1 = g0.1 =
∑

ai1(−j1 − 1) · · · ait(−jt − 1),

we have that

F ([g.1])T =
∑

(−1)n−t(ait
· · · ai1)

T

= (−1)n
∑

(ai1 · · · ait)

and the lemma holds.
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Set Q = F ([vsing]) ∈ U(g). From proposition 3.3.1 and lemma 3.3.2 we
have

Lemma 3.3.3.

QT ≡ (−1)q(2q−p−1)
l∏

i=1

N∏
j=1

pi,j(h)eN mod U(g)n−

where polynomials pi,j are as in proposition 3.3.1 .

3.4. Classification of representation. M(k, 0), the vertex operator al-
gebra, has maximal ideal M1(k, 0). It is generated by the vector vsing. Let
L(k, 0) be the quotient VOA. Proposition 2.2.2 and Theorem 2.3.2 imply

Proposition 3.4.1. A(L(k, 0)) is isomorphic to U(g)/I where I is a two-
sided ideal generated by the vector Q.

Let U be any A(L(k, 0))-module. Then U is a g-module. We have

Proposition 3.4.2. Let U be any U(g)-module. Then the following state-
ments are equivalent:

(1) U is a A(L(k, 0))-module,
(2) Q.U = 0.

Set R = U(g).Q and RT = U(g).QT . Clearly R and RT are irreducible
g-modules and R ∼= RT ∼= V (2Nω) ∼= V ∗(2Nω).

From these facts and proposition 3.4.2, one can obtain

Lemma 3.4.3. Let V (µ) be the irreducible highest weight g-module with
the highest weight vector vµ. The following statements are equivalent:

(i) V (µ) is a A(L(k, 0))-module ,
(ii) RV (µ) = RT V (µ)∗ = 0,
(iii) R0vµ = RT

0 v∗µ = 0,

where R0 (RT
0 ) denotes the zero-weight subspace of R (RT ).

For p ∈ S(h) and µ ∈ h∗, define p(µ) ∈ C with p(h).vµ = p(µ)vµ.
Let u1 ∈ R0 and u2 ∈ RT

0 . Clearly there exists unique polynomials
p1, p2 ∈ S(h) such that

u1 ≡ p1(h) mod U(g)n+ u2 ≡ p2(h) mod U(g)n−.

Then u1.vµ = p1(µ)vµ and u2.v
∗
µ = p2(−µ)v∗µ.

We have

Lemma 3.4.4. There is a one-to-one correspondence between each two of
the following three sets:

(1) µ ∈ h∗ such that V (µ) is A(L(k, 0))-module ,
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(2) µ ∈ h∗ such that p1(µ) = 0,
(3) µ ∈ h∗ such that p2(−µ) = 0.

3.5. The main theorem. The following lemma is obtained by direct
calculation:

Lemma 3.5.1.

[fN , ef + (it + j − 1)(h− (it + j))] = (−N − 1 + it + j)(h− it− j + N)fN

Proposition 3.5.2. All irreducible A(L(k, 0))-modules from the category
O are V (rω), r ∈ S, where

S = {N − it − j : i = 0, ..., l; j = 1, ..., N}.(10)

Proof. Let u ∈ RT
0 . Then u = (ad f)N .QT ≡ fNQT mod U(g)n−. By

using lemma 3.5.1 we have

u ≡ c1

l∏
i=1

N∏
j=1

qi,j(h)fNeN mod U(g)n−,

where qi,j(h) = h− it− j + N , c1 ∈ C . Since fNeN ≡ c2h(h + 1) · · · (h +
n−1) mod U(g)n−, for some c2 ∈ C, we conclude that polynomial p2 from
lemma 3.4.4 is proportional to

l∏
i=0

N∏
j=1

(h − it − j + N).

Now, proposition follows from lemma 3.4.4.

We can obtain the main theorem:

Theorem 3.5.3. The set {L(k, rω) : r ∈ S} provides a complete list of
irreducible L(k, 0)-modules from the category O. Moreover, the irreducible
L(k, 0)-modules from the category O are exactly irreducible highest weight
representations with admissible highest weights.

Proof. Proposition 3.5.2 and theorem 2.2.1 imply that L(k, rω), for r ∈
S, are all irreducible L(k, 0)-modules from the category O. The second
statement follows from lemma 3.1.3.

Theorem 3.5.4. Let M be a L(k, 0)-module from the category O. Then
M is a completely reducible L(k, 0)-module.
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Proof. Let M be a L(k, 0)-module from the category O and let N be an
irreducible subquotients of M . Then N is an irreducible L(k, 0)-module.
From Theorem 3.5.3, it follows that N is an irreducible highest weight
module with admissible highest weight. Now Theorem 3.1.5 implies that M
is a completely reducible ĝ-module and so a completely reducible L(k, 0)-
module.

Remark 3.5.5. A vertex operator algebra is by definition rational if it has
only finitely many irreducible modules and if every finitely generated mod-
ule is a direct sum of irreducible ones. We have showed that VOA L(k, 0)
has finitely many irreducible modules in the category O and every module
from the category O is completely reducible. By using these arguments
we say that the vertex operator algebra L(k, 0), for k ∈ Q admissible, is
rational in the category O.

Remark 3.5.6. In [A] some modular invariant representations for C
(1)
� were

considered, and it was proved that the VOA L(n− 3
2 , 0), n ∈ N , is rational

in the category O.
We have

Conjecture 3.5.7. Let g be any simple finite-dimensional Lie algebra and
L(k, 0) the associated vertex operator algebra such that the highest weight
of L(k, 0) is admissible. Then L(k, 0) is rational in the category O.

4. Irreducible modules for L(k, 0) in the category of weight
modules

Let M be any irreducible L(k, 0)-module. From [FHL] we have that the
countergradient L(k, 0)-module M∗ is also irreducible. Moreover, M∗∗

and M are isomorphic L(k, 0)-modules. One can easily see that for M =
L(k, λ), M∗

0 is isomorphic to V (λ)∗. We have

Proposition 4.0.8. If r ∈ S, then V (rω)∗ are all irreducible lowest weight
A(L(k, 0))-modules.

Set Er,µ = tµC[t, t−1] where r, µ ∈ C and Ei = tµ+i. Define a U(g)
action on Er,µ by the following formulas:

e.Ei = −(µ + i)Ei−1, h.Ei = (−2µ − 2i + r), f.Ei = (µ + i − r)Ei+1.

(11)

We find all pairs (r, µ), such that Er,µ is an irreducible A(L(k, 0))-module.

Theorem 4.0.9. Set T = { (r, µ) : r ∈ S − Z+, µ /∈ Z, r − µ /∈ Z}.
Then Er,µ is an irreducible A(L(k, 0))-module if and only if (r, µ) ∈ T .
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Proof. First, we notice that Er,µ is an irreducible U(g)-module iff µ /∈ Z
and r − µ /∈ Z.

By using (11) we have

Q.Ei = (p0(r) + p1(r)(i + µ) + · · · + pN (r)(i + µ)N )Ei−N ,(12)

for some polynomials p0, p1 · · · pN and µ ∈ C.
Step 1. Let Er,µ be an irreducible A(L(k, 0))-module, then r ∈ S −Z+.
From Proposition 3.4.2, it follows that Q.Ei = 0 for all i ∈ Z. From

this fact and from (12), we have that

p0(r) = p1(r) = · · · = pN (r) = 0.

If µ = 0, we have that C[t] is a submodule of C[t, t−1] isomorphic to M(rω).
From (12) and Proposition 3.4.2, it follows that M(rω) is A(L(k, 0))-
module. Then Theorem 3.5.3 implies that r ∈ S − Z+ (in this case
V (rω) = M(rω)).

Step 2. If (r, µ) ∈ T then Er,µ is the irreducible A(L(k, 0))-module.
Since r ∈ S−Z+, we have that M(rω) = V (rω) ∼= C[t] and Q.C[t] = 0.

By using (11) for µ = 0, we conclude that p0(r) = p1(r) = · · · = pN (r) = 0.
This fact implies that

Q.Ei = 0 for all i ∈ Z,

and we obtain that for (r, µ) ∈ T , Er,µ is an A(L(k, 0))-module.

Recall that a U(g)-module U is called a weight module if h acts semisim-
ply on U and all weight subspaces are finite-dimensional. We know that the
irreducible weight modules are highest weight, lowest weight and modules
Er,µ defined by (11).

We have obtained

Corollary 4.0.10. Let U be an irreducible A(L(k, 0))-weight module, then
U is one of the following modules:

(1) V (rω), r ∈ S,
(2) V (rω)∗, r ∈ S or
(3) Er,µ, (r, µ) ∈ T .

Theorem 4.0.11. Let M be an irreducible L(k, 0)-module such that M0

is a weight module. Then M is one of the following modules:

(1) L(k, V (rω)), r ∈ S,
(2) L(k, V (rω)∗), r ∈ S or
(3) L(k, Er,µ), (r, µ) ∈ T .
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5. Connection with the geometrical approach

Let E be any finite subset of CP 1 and let g(E) denote the Lie algebra
of meromorphic functions on CP 1 holomorphic outside E with values in g.
For every z ∈ CP 1 and λ ∈ h∗ we can define an irreducible highest weight
g(z)-module L(k, λ, z) attached to z (for definition see [FM]).

Let z1, z2, z3 be three different points on CP 1 and λ1, λ2, λ3 ∈ h∗. Con-
sider the g(z1, z2, z3)-module L(k, λ1, z1) ⊗ L(k, λ2, z2) ⊗ L(k, λ3, z3) and
the space of coinvariants

H◦(g(z1, z2, z3), L(k, λ1, z1) ⊗ L(k, λ2, z2) ⊗ L(k, λ3, z3)).

In a previous section, we showed that the irreducible L(k, 0)-modules
(in the category O) are exactly L(k, rω), r ∈ S. Those modules were
considered in [FM]. They calculated the dimension of the space

H◦(g(0, 1,∞), L(k, r1ω, 0) ⊗ L(k, r2ω, 1) ⊗ L(k, r3ω,∞)),

(known as conformal block), for all triples r1, r2, r3 ∈ S and obtained the
‘fusion algebra’.

When r3 = 0, their result implies that

(13) dim H◦(g(0, 1,∞), L(k, r1ω, 0) ⊗ L(k, r2ω, 1) ⊗ L(k, 0,∞))

=
{

1 if r1 = r2 ∈ S,
0 otherwise.

We have the following characterisation of L(k, 0)-modules:

Theorem 5.0.12. L(k, λ) is a L(k, 0)-module if and only if

dim H◦(g(0, 1,∞), L(k, λ, 0) ⊗ L(k, λ, 1) ⊗ L(k, 0,∞)) = 1.

As in [FHL], for three modules, we can define fusion rules (dimension
of the space of intertwining operators). From the previous theorem, it
follows that when one of the modules is L(k, 0), then the fusion rules and
the dimension of the corresponding conformal block are equal. It seems
that this is true for any three modules.

References
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