VERTEX OPERATOR ALGEBRAS ASSOCIATED TO $\bf{MODULAR \; INVARIANT \; REPRESENTATIONS \; FOR} \; \it A_{1}^{(1)}$

Dražen Adamović and Antun Milas

ABSTRACT. We investigate vertex operator algebras $L(k, 0)$ associated with modular-invariant representations for an affine Lie algebra $A_1^{(1)}$, where k is an'admissible' rational number. We show that VOA $L(k, 0)$ is rational in the category $\mathcal O$ and find all irreducible representations in the category of weight modules.

1. Introduction

Vertex operator algebras (VOA) are mathematical counterparts of conformal field theory (CFT) . It is very interesting that some representations of affine Lie algebras carries the structure of VOA (or modules for VOA) [FLM], [FZ], [MP].

The new insight in the theory of representations of VOA was made by Frenkel and Zhu (see [FZ], [Z]) by introducing the associative algebra $A(V)$ associated to VOA *V*. So called $A(V)$ -theory gave a theoretically elegant way for the classification of all irreducible representations of *V* and for calculating the 'fusion rules'.They also introduce the term of rational VOA which is a VOA with a finite number of irreducible modules, such that every finitely generated module is completely reducible.

In [FZ], [MP] and [KWn], the irreducible representations of the VOA $L(k,0)$, $k \in N$, associated to the irreducible highest weight representations for an affine Lie algebra, were classified.It seems that this case is much simpler because the associative algebra $A(L(k, 0))$ is finite dimensional (see $[KWn]$.

The main goal of this paper is a classification of the irreducible representations of the simple vertex operator algebra $L(k, 0)$ for $A_1^{(1)}$ on the admissible rational level *k*. Our main result is that irreducible $L(k, 0)$ modules from the category $\mathcal O$ are exactly modular invariant representations for $A_1^{(1)}$. To show this, we use $A(V)$ -theory and identify $A(L(k, 0))$ with a certain quotient of $U(g)$. Here we used Malikov-Feigin-Fuchs formula for the singular vectors in the Verma modules.Then, by using classification

Received May 8, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 17b65; Secondary 17A70, 17B67.

of the irreducible representations in the category \mathcal{O} , we find all irreducible representations in the category of weight modules for $A_1^{(1)}$.

Feigin and Malikov in [FM] have a geometrical approach to a similar problem (see also [AY]). They calculated conformal blocks for three admissible modules associated to three different points on \mathbb{CP}^1 . We interpret our result of the classification of irreducible modules in terms of conformal blocks considered in [FM].

2. Preliminaries

2.1. Vertex operator algebras and modules.

Definition 2.1.1. A vertex operator algebra is a *Z*-graded vector space $V = \bigoplus_{n \in \mathbb{Z}} V_n$ with a sequence of linear operators $\{a(n) \mid n \in \mathbb{Z}\} \subset \text{End } V$ associated to every $a \in V$, such that for fixed $a, b \in V$, $a(n)b = 0$ for *n* sufficiently large.We call a family of generating series

$$
Y(a, z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in (\text{End } V)[[z, z^{-1}]],
$$

vertex operators associated to *a*, if they satisfy the following axioms:

- **(V1)** $Y(a, z) = 0$ iff $a = 0$.
- **(V2)** There is a vacuum vector, which we denote by 1, such that

$$
Y(1, z) = I_V (I_V \text{ is the identity of } \text{End } V).
$$

(V3) There is a special element $\omega \in V$ (called the Virasoro element), whose vertex operator we write in the form

$$
Y(\omega, z) = \sum_{n \in Z} \omega(n) z^{-n-1} = \sum_{n \in Z} L_n z^{-n-2},
$$

such that

$$
L_0\mid_{V_n}=nI\mid_{V_n},
$$

(1)
$$
Y(L_{-1}a, z) = \frac{d}{dz}Y(a, z) \text{ for every } a \in V,
$$

(2)
$$
[L_m, L_n] = (m-n)L_{m+n} + \delta_{m+n,0} \frac{m^3 - m}{12}c,
$$

where c is some constant in C , which is called the *rank* of V . **(V4)** The Jacobi identity holds, i.e.,

$$
(3) \quad z_0^{-1}\delta\left(\frac{z_1 - z_2}{z_0}\right)Y(a, z_1)Y(b, z_2)
$$

$$
- z_0^{-1}\delta\left(\frac{-z_2 + z_1}{z_0}\right)Y(b, z_2)Y(a, z_1)
$$

$$
= z_2^{-1}\delta\left(\frac{z_1 - z_0}{z_2}\right)Y(Y(a, z_0)b, z_2)
$$

for any $a, b \in V$.

The subspace *I* of *V* is called an ideal if $Y(a, z)b \in I[[z, z^{-1}]]$ for every $a \in V, b \in I$. Given an ideal *I* in *V* such that $1 \notin I$, $\omega \notin I$, the quotient *V/I* admits a natural VOA structure (see [FZ]).

Definition 2.1.2. Given a *VOA V*, a representation of *V* (or *V*-module) is a Z_+ -graded vector space $M = \bigoplus_{n \in Z_+} M_n$ and a linear map

$$
V \longrightarrow (\text{End } M)[[z, z^{-1}]],
$$

$$
a \longmapsto Y_M(a, z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1},
$$

satisfying

(M1) $a(n)M_m \subset M_{m+\deg a-n-1}$ for every homogeneous element a. **(M2)** *Y_M*(1*, z*) = *I_M*, and setting *Y_M*(ω *, z*) = $\sum_{n \in \mathbb{Z}} L_n z^{-n-2}$, we have

$$
[L_m, L_n] = (m - n)L_{m+n} + \delta_{m+n,0} \frac{m^3 - m}{12}c,
$$

$$
Y_M(L_{-1}a, z) = \frac{d}{dz} Y_M(a, z)
$$

for every $a \in V$.

(M3) The Jacobi identity holds, i.e.,

(4)
$$
z_0^{-1}\delta\left(\frac{z_1 - z_2}{z_0}\right)Y_M(a, z_1)Y_M(b, z_2)
$$

\t $- z_0^{-1}\delta\left(\frac{-z_2 + z_1}{z_0}\right)Y_M(b, z_2)Y_M(a, z_1)$
\t $= z_2^{-1}\delta\left(\frac{z_1 - z_0}{z_2}\right)Y_M(Y(a, z_0)b, z_2)$

for any $a, b \in V$.

The submodules, quotient modules, irreducible modules and completely reducible modules are defined in the usual way ([FHL]).

2.2. Associative algebra $A(V)$. Let *V* be a VOA. For any homogeneous element $a \in V$ and for any $b \in V$, following [Z], we define

(5)
$$
a * b = \text{Res}_{z} \frac{(1+z)^{wta}}{z} Y(a, z)b.
$$

Then extend this product bilinearly to the whole space *V*. Let $O(V)$ be the subspace of *V* linearly spanned by the elements of type

(6)
$$
\operatorname{Res}_z \frac{(1+z)^{wta}}{z^2} Y(a, z)b
$$
 for homogeneous elements $a, b \in V$.

Set $A(V) = V/O(V)$. The multiplication $*$ induces the multiplication on $A(V)$ and $A(V)$ becomes an associative algebra. The image of 1 in $A(V)$ becomes the identity element until the image of ω is in the center of $A(V)$ (see [Z]). Let $M = \bigoplus_{n \in \mathbb{Z}_+} M_n$ be a *V*-module. For a homogeneous element $a \in V$, define $o(a) = a(\deg a - 1)$. From the definition of *M*, it follows that operator $o(a)$ preserves the grading of M.

Theorem 2.2.1.

(a) On $End(M_0)$ we have

$$
o(a)o(b) = o(a * b)
$$

$$
o(x) = 0
$$

for every $a, b \in V$, $x \in O(V)$. The top level M_0 is an $A(V)$ module.

(b) Let *U* be an *A*(*V*)-module; there exists a *V* -module *M* such that the $A(V)$ -modules M_0 and U are isomorphic.

Thus, we have one-to-one correspondence between irreducible *V* -modules and irreducible $A(V)$ -modules.

We have the following consequence of the definition of $A(V)$.

Proposition 2.2.2. Let *I* be an ideal of *V*. Assume $1 \notin I$, $\omega \notin I$. Then the associative algebra $A(V/I)$ is isomorphic to $A(V)/[I]$, where $[I]$ is the image of I in $A(V)$.

2.3. Vertex operator algebras associated to affine Lie algebras. Let *g* be a finite-dimensional simple Lie algebra over *C*. The affine Lie algebra \hat{g} associated with *g* is defined as $g \otimes C[t, t^{-1}] \oplus Cc$ with the usual commutation relations. Let $g = n_- + h + n_+$ and $\hat{g} = \hat{n}_- + \hat{h} + \hat{n}_+$ be the usual triangular decompositions for *g* and \hat{g} and $P = C[t] \otimes g \oplus Cc$ be upper parabolic subalgebra. Let U be any g -module. Considering U as a *P*-module, we have the induced module (the generalized Verma module) $M(\ell, U) = U(\hat{g}) \otimes_{U(P)} U$, where the central element *c* acts as multiplication with $l \in C$.

For $\lambda \in h^*$, denote the Verma module by $M(\lambda)$ *j* and its irreducible quotient by $V(\lambda)$.

Set $M(\ell, \lambda) = M(\ell, V(\lambda))$. Let $L(l, \lambda)$ denote its irreducible quotient.

Theorem 2.3.1. ([FZ]) Every $M(\ell,0), \ell \neq -g$ (where g denotes the dual Coxeter number) has the structure of VOA. Let *U* be any *g*-module. Then every $M(\ell, U)$ is a module for $M(\ell, 0)$. In particular, $M(\ell, \lambda)$ is a $M(\ell, 0)$ module.

Theorem 2.3.2. The associative algebra $A(M(\ell, 0))$ is canonically isomorphic to $U(q)$ and the isomorphism $F: A(M(\ell, 0)) \to U(q)$ is given by

 $F(a_1(-i_1-1)\cdots a_n(-i_n-1)1) = (-1)^{i_1+\cdots i_n} a_n \cdots a_1.$

for every $a_1, \dots, a_n \in g$ and every $i_1, \dots, i_n \in Z_+$.

3. Irreducible modules for VOA $L(k,0)$ in the category \mathcal{O}

3.1. Modular invariant representations for $A_1^{(1)}$. Let $g = sl(2, C)$ with generators e, f, h and relations $[h, f] = -2f, [h, e] = 2e, [e, f] = h$. Let Λ_0 , Λ_1 denote the fundamental weights for \hat{g} , and ω the fundamental weight for *g*.

Definition 3.1.1. $k = p/q \in Q$ is admissible if $q \in N$, $p \in Z$, $(p,q) = 1$ and $2q + p - 2 \ge 0$.

In [KW], V. Kac and M. Wakimoto define modular invariant representations.They also define weights which have admissible level and satisfy some technical conditions (for the definition, see $[KW]$). They call them admissible weights.

The following proposition describes the admissible weights and modular invariant representations on level *k*:

Proposition 3.1.2. Let $k = p/q \in Q$ be admissible. Set $t = k+2$. Define $P^k = \{(k-n+mt)\Lambda_0 + (n-mt)\Lambda_1, m, n \in \mathbb{Z}_+, n \leq 2q+p-2, m \leq q-1\}.$

Let *M* be any irreducible highest weight module with highest weight *λ*. The following statements are equivalent:

- (1) *M* is a modular-invariant.
- (2) λ is an admissible weight.
- (3) $\lambda \in P^k$.

(For proof, see [KW]).

We need the following description of the set *P^k*:

Lemma 3.1.3. Let $\lambda \in \hat{h}^*$. Then $\lambda \in P^k$ if and only if

 $\langle \lambda, c \rangle = k$, $\langle \lambda, h \rangle = (N - it - j)$

where $i \in \{0, \dots, l\}, j \in \{1, \dots, N\}, N = 2q + p - 1, l = q - 1.$

By using Corollary 2.1 in [KW] or the Kac determinant formula, we have

Theorem 3.1.4. Let $k = p/q \in Q$ be admissible. Then

$$
L(k,0) = M(k,0)/U(\hat{g})v_{sing},
$$

where vector v_{sing} is the unique singular vector of the weight $k\Lambda_0 - q(2q +$ $p-1)\delta + (2q+p-1)\alpha$.

We also need the following theorem:

Theorem 3.1.5. (Kac-Wakimoto) Let M be a \hat{q} -module from the category O such that for any irreducible subquotient $L(\mu)$ the weight μ is admissible. Then *g*ˆ-modul *M* is completely reducible.

3.2. Malikov-Feigin-Fuchs formula. Recall the Malikov-Feigin-Fuchs result giving the singular vector in form with 'rational powers' (see [MFF]).

Theorem 3.2.1. (Malikov-Feigin-Fuchs) The singular vector

$$
v_{sing} = F(k).1
$$

generates the maximal submodule of $M(k, 0)$, where

(8)
$$
F(k) = e(-1)^{N+lt} f(0)^{N+(l-1)t} \cdots f(0)^{N-(l-1)t} e(-1)^{N-lt},
$$

for $N = 2q + p - 1, l = q - 1$ and $t = p/q + 2$.

Remark 3.2.2. In[MMF], it was proved that this formula really make sense, because only with commutativity can we transform formula (8) to the usual form in $U(\hat{g})$.

3.3. Fundamental lemma. First we define

$$
\epsilon : U(\hat{n}_-) \to U(g)
$$

$$
a_1(-i_1) \cdots a_s(-i_s) \mapsto a_1 \cdots a_s,
$$

for every $a_1, \ldots, a_s \in g, s \in N$.

In the same way as in $[F]$, we have

Proposition 3.3.1.

$$
\epsilon(F(k)) = \prod_{i=1}^{l} \prod_{j=1}^{N} p_{i,j}(h) e^{N},
$$

where $p_{i,j}(h) = ef + (it + j - 1)h - (it + j)(it + j - 1).$

We define the *Z*-grading on $U(\hat{g})$ with

(9)
$$
\deg a_1(-i_1)\cdots a_k(-i_k) = i_1 + \cdots + i_k,
$$

for every $a_1, \ldots, a_k \in g$.

In the following lemma, we use ordinary transposing \overline{T} in $U(g)$ (see $[Dix]$.

Lemma 3.3.2. Let $g \in U(\hat{n}_-)$, such that $\deg g = n$. Then we have

$$
\epsilon(g) \equiv (-1)^n (F[g.1])^T \mod U(g)n_-.
$$

Proof. First notice that n_1 - $1 = 0$. Since $\deg g = n$, one can write g in a form

$$
g = \sum_{i=0}^{r} g_i f(0)^i,
$$

where

$$
g_i = \sum a_{i_1}^{(i)}(-j_1 - 1) \cdots a_{i_t}^{(i)}(-j_t - 1),
$$

 $a_{i_1}^{(i)}, \ldots, a_{i_t}^{(i)} \in g, j_1, \ldots, j_t \in Z_+, j_1 + \cdots + j_t + t = n, r \in Z_+,$ and get $\epsilon(g) \equiv g_0 \mod U(g)n_-.$

Set $a_{i_j} = a_{i_j}^{(0)}$. Since

$$
g.1 = g_0.1 = \sum a_{i_1}(-j_1 - 1) \cdots a_{i_t}(-j_t - 1),
$$

we have that

$$
F([g.1])^{T} = \sum_{i=1}^{n} (-1)^{n-t} (a_{i_{t}} \cdots a_{i_{1}})^{T}
$$

$$
= (-1)^{n} \sum_{i=1}^{n} (a_{i_{1}} \cdots a_{i_{t}})^{T}
$$

and the lemma holds. \square

Set $Q = F([v_{sing}]) \in U(g)$. From proposition 3.3.1 and lemma 3.3.2 we have

Lemma 3.3.3.

$$
Q^{T} \equiv (-1)^{q(2q-p-1)} \prod_{i=1}^{l} \prod_{j=1}^{N} p_{i,j}(h) e^{N} \mod U(g) n_{-}
$$

where polynomials $p_{i,j}$ are as in proposition 3.3.1.

3.4. Classification of representation. $M(k, 0)$, the vertex operator algebra, has maximal ideal $M^1(k, 0)$. It is generated by the vector v_{sing} . Let $L(k,0)$ be the quotient VOA. Proposition 2.2.2 and Theorem 2.3.2 imply

Proposition 3.4.1. $A(L(k, 0))$ is isomorphic to $U(g)/I$ where *I* is a twosided ideal generated by the vector *Q*.

Let *U* be any $A(L(k, 0))$ -module. Then *U* is a *g*-module. We have

Proposition 3.4.2. Let *U* be any *U*(*g*)-module. Then the following statements are equivalent:

- (1) *U* is a $A(L(k,0))$ -module,
- (2) $Q.U=0.$

Set $R = U(q)$. Q and $R^T = U(q)$. Q^T. Clearly R and R^T are irreducible *g*-modules and $R \cong R^T \cong V(2N\omega) \cong V^*(2N\omega)$.

From these facts and proposition 3.4.2, one can obtain

Lemma 3.4.3. Let $V(\mu)$ be the irreducible highest weight *g*-module with the highest weight vector v_μ . The following statements are equivalent:

(i) $V(\mu)$ is a $A(L(k,0))$ -module,

(ii)
$$
RV(\mu) = R^T V(\mu)^* = 0
$$
,

(iii) $R_0 v_\mu = R_0^T v_\mu^* = 0,$

where R_0 (R_0^T) denotes the zero-weight subspace of R (R^T).

For $p \in S(h)$ and $\mu \in h^*$, define $p(\mu) \in C$ with $p(h).v_{\mu} = p(\mu)v_{\mu}$.

Let $u_1 \in R_0$ and $u_2 \in R_0^T$. Clearly there exists unique polynomials $p_1, p_2 \in S(h)$ such that

$$
u_1 \equiv p_1(h) \bmod U(g)n_+ \quad u_2 \equiv p_2(h) \bmod U(g)n_-.
$$

Then $u_1 \cdot v_\mu = p_1(\mu)v_\mu$ and $u_2 \cdot v_\mu^* = p_2(-\mu)v_\mu^*$. We have

Lemma 3.4.4. There is a one-to-one correspondence between each two of the following three sets:

(1) $\mu \in h^*$ such that $V(\mu)$ is $A(L(k, 0))$ -module,

(2) $\mu \in h^*$ such that $p_1(\mu) = 0$, (3) $\mu \in h^*$ such that $p_2(-\mu) = 0$.

3.5. The main theorem. The following lemma is obtained by direct calculation:

Lemma 3.5.1.

$$
[f^N, ef + (it + j - 1)(h - (it + j))] = (-N - 1 + it + j)(h - it - j + N)f^N
$$

Proposition 3.5.2. All irreducible $A(L(k, 0))$ -modules from the category \mathcal{O} are $V(r\omega), r \in S$, where

(10)
$$
S = \{N - it - j : i = 0, ..., l; j = 1, ..., N\}.
$$

Proof. Let $u \in R_0^T$. Then $u = (ad \ f)^N . Q^T \equiv f^N Q^T \text{ mod } U(g) n_-.$ By using lemma 3.5.1 we have

$$
u \equiv c_1 \prod_{i=1}^{l} \prod_{j=1}^{N} q_{i,j}(h) f^{N} e^{N} \text{ mod } U(g) n_{-},
$$

where $q_{i,j}(h) = h - it - j + N$, $c_1 \in C$. Since $f^N e^N \equiv c_2 h(h + 1) \cdots (h + j)$ $n-1$) mod $U(g)n$ _−, for some $c_2 \in C$, we conclude that polynomial p_2 from lemma 3.4.4 is proportional to

$$
\prod_{i=0}^{l} \prod_{j=1}^{N} (h - it - j + N).
$$

Now, proposition follows from lemma 3.4.4. \Box

We can obtain the main theorem:

Theorem 3.5.3. The set $\{L(k, r\omega) : r \in S\}$ provides a complete list of irreducible $L(k,0)$ -modules from the category $\mathcal O$. Moreover, the irreducible $L(k,0)$ -modules from the category $\mathcal O$ are exactly irreducible highest weight representations with admissible highest weights.

Proof. Proposition 3.5.2 and theorem 2.2.1 imply that $L(k, r\omega)$, for $r \in$ *S*, are all irreducible $L(k,0)$ -modules from the category \mathcal{O} . The second statement follows from lemma 3.1.3. \Box

Theorem 3.5.4. Let *M* be a $L(k,0)$ -module from the category O . Then *M* is a completely reducible $L(k, 0)$ -module.

Proof. Let *M* be a $L(k, 0)$ -module from the category \mathcal{O} and let *N* be an irreducible subquotients of M . Then N is an irreducible $L(k,0)$ -module. From Theorem 3.5.3, it follows that *N* is an irreducible highest weight module with admissible highest weight. Now Theorem 3.1.5 implies that *M* is a completely reducible \hat{g} -module and so a completely reducible $L(k,0)$ module. \square

Remark 3.5.5. A vertex operator algebra is by definition rational if it has only finitely many irreducible modules and if every finitely generated module is a direct sum of irreducible ones. We have showed that VOA $L(k, 0)$ has finitely many irreducible modules in the category $\mathcal O$ and every module from the category $\mathcal O$ is completely reducible. By using these arguments we say that the vertex operator algebra $L(k, 0)$, for $k \in Q$ admissible, is *rational* in the category \mathcal{O} .

Remark 3.5.6. In [A] some modular invariant representations for $C_{\ell}^{(1)}$ were considered, and it was proved that the VOA $L(n-\frac{3}{2},0)$, $n \in N$, is rational in the category \mathcal{O} .

We have

Conjecture 3.5.7. Let *g* be any simple finite-dimensional Lie algebra and $L(k,0)$ the associated vertex operator algebra such that the highest weight of $L(k,0)$ is admissible. Then $L(k,0)$ is rational in the category \mathcal{O} .

4. Irreducible modules for $L(k,0)$ in the category of weight **modules**

Let *M* be any irreducible $L(k,0)$ -module. From [FHL] we have that the countergradient $L(k,0)$ -module M^* is also irreducible. Moreover, M^{**} and *M* are isomorphic $L(k, 0)$ -modules. One can easily see that for $M =$ $L(k, \lambda)$, M_0^* is isomorphic to $V(\lambda)^*$. We have

Proposition 4.0.8. If $r \in S$, then $V(r\omega)^*$ are all irreducible lowest weight $A(L(k, 0))$ -modules.

Set $E_{r,\mu} = t^{\mu}C[t, t^{-1}]$ where $r, \mu \in C$ and $E_i = t^{\mu+i}$. Define a $U(g)$ action on $E_{r,\mu}$ by the following formulas:

(11)
\ne.E_i = -(\mu + i)E_{i-1},
$$
h.E_i = (-2\mu - 2i + r)
$$
, $f.E_i = (\mu + i - r)E_{i+1}$.

We find all pairs (r, μ) , such that $E_{r,\mu}$ is an irreducible $A(L(k, 0))$ -module.

Theorem 4.0.9. Set *T* = { (r, μ) : $r \in S - Z_+$, $\mu \notin Z$, $r - \mu \notin Z$ }. *Then* $E_{r,\mu}$ is an irreducible $A(L(k,0))$ -module if and only if $(r,\mu) \in T$.

Proof. First, we notice that $E_{r,\mu}$ is an irreducible $U(g)$ -module iff $\mu \notin Z$ and $r - \mu \notin Z$.

By using (11) we have

(12)
$$
Q.E_i = (p_0(r) + p_1(r)(i + \mu) + \cdots + p_N(r)(i + \mu)^N)E_{i-N},
$$

for some polynomials $p_0, p_1 \cdots p_N$ and $\mu \in C$.

Step 1. Let $E_{r,\mu}$ be an irreducible $A(L(k,0))$ -module, then $r \in S - Z_+$.

From Proposition 3.4.2, it follows that $Q.E_i = 0$ for all $i \in Z$. From this fact and from (12), we have that

$$
p_0(r) = p_1(r) = \cdots = p_N(r) = 0.
$$

If $\mu = 0$, we have that $C[t]$ is a submodule of $C[t, t^{-1}]$ isomorphic to $M(r\omega)$. From (12) and Proposition 3.4.2, it follows that $M(r\omega)$ is $A(L(k, 0))$ module. Then Theorem 3.5.3 implies that $r \in S - Z_+$ (in this case $V(r\omega) = M(r\omega)$.

Step 2. If $(r, \mu) \in T$ then $E_{r,\mu}$ is the irreducible $A(L(k, 0))$ -module.

Since $r \in S - Z_+$, we have that $M(r\omega) = V(r\omega) \cong C[t]$ and $Q.C[t] = 0$. By using (11) for $\mu = 0$, we conclude that $p_0(r) = p_1(r) = \cdots = p_N(r) = 0$. This fact implies that

$$
Q.E_i = 0 \quad \text{for all} \quad i \in Z,
$$

and we obtain that for $(r, \mu) \in T$, $E_{r,\mu}$ is an $A(L(k, 0))$ -module. \Box

Recall that a $U(g)$ -module *U* is called a weight module if *h* acts semisimply on *U* and all weight subspaces are finite-dimensional.We know that the irreducible weight modules are highest weight, lowest weight and modules $E_{r,\mu}$ defined by (11).

We have obtained

Corollary 4.0.10. Let *U* be an irreducible $A(L(k, 0))$ -weight module, then *U* is one of the following modules:

 (1) $V(r\omega)$, $r \in S$, (2) $V(r\omega)^{*}$, $r \in S$ or (3) $E_{r,\mu}$, $(r,\mu) \in T$.

Theorem 4.0.11. Let *M* be an irreducible $L(k,0)$ -module such that M_0 is a weight module. Then *M* is one of the following modules:

(1) $L(k, V(r\omega))$, $r \in S$, (L) $L(k, V(r\omega)^*)$, $r \in S$ or

(3) $L(k, E_{r,\mu})$, $(r, \mu) \in T$.

5. Connection with the geometrical approach

Let *E* be any finite subset of \mathbb{CP}^1 and let $g(E)$ denote the Lie algebra of meromorphic functions on \mathbb{CP}^1 holomorphic outside E with values in g . For every $z \in CP^1$ and $\lambda \in h^*$ we can define an irreducible highest weight $g(z)$ -module $L(k, \lambda, z)$ attached to *z* (for definition see [FM]).

Let z_1, z_2, z_3 be three different points on \mathbb{CP}^1 and $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{h}^*$. Consider the $g(z_1, z_2, z_3)$ -module $L(k, \lambda_1, z_1) \otimes L(k, \lambda_2, z_2) \otimes L(k, \lambda_3, z_3)$ and the space of coinvariants

$$
H^{\circ}(g(z_1, z_2, z_3), L(k, \lambda_1, z_1) \otimes L(k, \lambda_2, z_2) \otimes L(k, \lambda_3, z_3)).
$$

In a previous section, we showed that the irreducible $L(k,0)$ -modules (in the category \mathcal{O}) are exactly $L(k, r\omega)$, $r \in S$. Those modules were considered in [FM]. They calculated the dimension of the space

$$
H^{\circ}(g(0,1,\infty), L(k,r_1\omega,0)\otimes L(k,r_2\omega,1)\otimes L(k,r_3\omega,\infty)),
$$

(known as *conformal block*), for all triples $r_1, r_2, r_3 \in S$ and obtained the 'fusion algebra'.

When $r_3 = 0$, their result implies that

(13) dim
$$
H^{\circ}(g(0, 1, \infty), L(k, r_1\omega, 0) \otimes L(k, r_2\omega, 1) \otimes L(k, 0, \infty))
$$

=
$$
\begin{cases} 1 & \text{if } r_1 = r_2 \in S, \\ 0 & \text{otherwise.} \end{cases}
$$

We have the following characterisation of $L(k,0)$ -modules:

Theorem 5.0.12. $L(k, \lambda)$ is a $L(k, 0)$ -module if and only if

$$
dim H^{\circ}(g(0,1,\infty), L(k,\lambda,0) \otimes L(k,\lambda,1) \otimes L(k,0,\infty)) = 1.
$$

As in [FHL], for three modules, we can define fusion rules (dimension of the space of intertwining operators).From the previous theorem, it follows that when one of the modules is $L(k, 0)$, then the fusion rules and the dimension of the corresponding conformal block are equal. It seems that this is true for any three modules.

References

- [A] D. Adamović, *Some rational vertex algebras*, Glasnik Matematički 2 (1994), 25–41, q-alg/9502015.
- [AY] H. Awata and Y. Yamada, *Fusion rules for the fractional level sl*(2)∼ *algebra*, KEK-TH-316 KEK Preprint 91–209, 1992.
- [Dix] J. Dixmier, *Algebres envelopantes*, Gauthier-Villard, 1978.
- [DL] C. Dong and J. Lepowsky, *Generalized vertex algebras and relative vertex operators*, Progress in math. 112, Birkhauser, Boston, 1993.
- [F] D. B. Fuchs *Projekcija osobije vektora modula Verma algebre A*¹ ¹, Funkc. Anal. I Ego. Priloˇzenja **2** (1989), 82–86.
- [FHL] I. Frenkel, Y.-Z.Huang and J. Lepowsky, *An axiomatic approach to Vertex operator algebras and modules*, Memoirs of the AMS 494, 1994.
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, *Vertex operator algebras and the monster*, Pure and appl. math. 134, Academic Press, Boston, 1988.
- [FM] B. Feigin and F. Malikov, *Fusion algebra at a rational level and cohomologyof nilpotent subalgebras of sl*(2)∼, Letters in Math. Phsics **31** (1994), 315–325.
- [FZ] I. Frenkel and Y.-C.Zhu, *Vertex operator algebras associated to representations of affine and Virasoro algebras*, Duke Math. J. **66** (1992), 123–168.
- [K] V. Kac, *Infinite dimensional Lie algebras*, Cambridge Univ. Press, 1990.
- [KW] V. Kac and M. Wakimoto, *Modular invariant representations of infinite dimensional Lie algebras and superalgebras*, Proc. Natl. Acad. Sci. **85** (1988), 4956–4960
- [KWn] V. Kac and W. Wang, *Vertex operator superalgebras and their representations*, preprint.
- [MFF] F. G. Malikov, B. L. Feigin and D. B. Fuchs, *Osobije vektori v moduljah Verma nad algebrama Kaca-Mudi*, Funkc. Anal. I Ego priloženja 20 (1986), 25–37.
- [MP] A. Meurman and M. Primc, *Annihilating fields of sl*(2*, C*)∼ *and combinatorial identities*, preprint.
- [W] W. Wang, *Rationalityof Virasoro vertex operator algebra*, Duke Math. J. IMRN **71** (1993), 197–211.
- [Z] Y.-C. Zhu, *Vertex operator algebras, elliptic function and modular forms*, PhD Thesis, Yale University, 1990.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZAGREB, BLJENIČKA 30. 41000 ZAgreb, Croatia

E-mail address: adamovic@cromath.math.hr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZAGREB, BLJENIČKA 30. 41000 ZAgreb, Croatia

E-mail address: milas@cromath.math.hr