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THE ETA INVARIANT AND FAMILIES OF
PSEUDODIFFERENTIAL OPERATORS

Richard B. Melrose

Abstract. For a compact manifold without boundary a suspended alge-
bra of pseudodifferential operators is considered; it is an algebra of pseu-
dodifferential operators on, and translation-invariant in, an additional real
variable. It is shown that the eta invariant, as defined by Atiyah, Patodi
and Singer for admissible Dirac operators, extends to a homomorphism
from the ring of invertible elements of the suspended algebra to the ad-
ditive real line. The deformation properties of this extended eta homo-
morphism are discussed and a related ‘divisor flow’ is shown to label the
components of the set of invertible elements within each component of the
elliptic set.

Introduction

The eta invariant of the spin Dirac operator, and of the signature op-
erator, on an odd dimensional manifold was introduced by Atiyah, Patodi
and Singer [1] as the boundary correction term for their index formula on
an even-dimensional compact manifold with boundary. Their definition
extends directly to all ‘admissible’ Dirac operators and was later shown to
extend to all self-adjoint elliptic pseudodifferential operators on compact
manifolds without boundary. In the Dirac setting there are various fur-
ther extensions to non-compact manifolds (by Brüning and Seeley [6], by
Müller [16], by Stern [19] and in [13]), to singular manifolds (by Cheeger
[8]) to boundary problems (by Branson and Gilkey [5], by Douglas and
Wojciechowski [9], by Lesch and Wojciechowski [11] and by Müller [17]),
to families (by Bismut and Cheeger [3], [2] and in [14], [15] ) also to define
‘higher’ eta invariants (by Lott [12], by Getzler [10] and by Wu [20]). Here
a somewhat different ‘pseudodifferential’ extension of the eta invariant is
given. This is closely related to Singer’s comments in [18] on the formal
analogy between the index function and the eta invariant (despite their
obvious differences).
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For purposes of comparison consider first the familiar properties of the
index. Let Ψ∗(Y ) be the algebra of 1-step polyhomogeneous pseudod-
ifferential operators on the compact manifold without boundary, Y. The
element A is elliptic if its symbol σm(A) �= 0 and then it defines a Fredholm
operator on C∞(Y ), i.e., A : C∞(Y ) −→ C∞(Y ) has finite dimensional null
space and closed range of finite codimension. The index is the difference
of the dimension of the null space and codimension of the range. It is
constant on connected components of the set Ell∗(Y ) ⊂ Ψ∗(Y ) of elliptic
elements, which is a ring, and is an additive homomorphism into Z :

ind : Ell∗ −→ Z, ind(A ◦B) = ind(A) + ind(B).(1)

Here we consider instead the ‘suspended’ algebra which we denote by
Ψ∗

sus(Y ). Despite the notation it is a subspace, which is an algebra, of the
translation-invariant part of the space Ψ∗(Y ×R) of all (1-step polyhomo-
geneous) pseudodifferential operators on the product Y ×R. This algebra
may be thought of as the ‘pseudodifferential suspension’ of Ψ∗(Y ). Within
it consider the elliptic elements of a given order Ellm, and let Ellm(A)
denote the component containing a given A ∈ Ellm. Let Invm denote the
set of invertible elliptic elements, of order m.

Although we have simply been discussing pseudodifferential operators
acting on functions here we really consider the corresponding algebras of
operators acting on sections of a vector bundle, E, over Y. The central
result of this paper is

Theorem 1. For any compact manifold Y and any vector bundle E over
Y , there is an additive homomorphism η from the ring of invertible elliptic
elements Inv∗ ⊂ Ψ∗

sus(Y ;E) into C, i.e.,

η : Inv∗ −→ C, η(A ◦B) = η(A) + η(B),(2)

and if ð is an admissible Dirac operator acting on the sections of some
Clifford module E over Y then provided ð is invertible η(iDt + ð) is the
eta invariant of ð in the sense of Atiyah, Patodi and Singer.

Here by an ‘admissible’ Dirac operator is meant one for which the Clifford
module is Hermitian and the connection defining the Dirac operator is
Clifford and unitary. The crucial property of such an admissible Dirac
operator is embodied in the local index theorem, see the argument of
Bismut and Freed [4] or the discussion in [13].

As for the Dirac case, under variation of metric or connection within
the class of admissible Dirac operators, the variation of the eta functional
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is local. More precisely there is a function, which is called here the formal
trace

T̃r : Ψ∗
sus(Y ;E) −→ C(3)

which vanishes for commutators and operators of order less than −dimY.
Thus it only depends on the finite symbols of an operator. It is a suspended
analogue of the ‘residue trace’ of Guillemin and Wodzicki. Similar trace
functionals have also been considered by Burns and Mazzeo in work on
Hochschild homology, [7].

Theorem 2. If As ∈ Ψm
sus(Y ;E) is a smooth family of elliptic and invert-

ible elements then

d

ds
η(As) =

2
i
T̃r

(dAs

ds
A−1

s

)
.(4)

The fact that T̃r(A) is local, i.e., symbolic, has the important conse-
quence that T̃r

(
dAs

ds A−1
s

)
can be defined even if As is not actually invert-

ible but rather is just elliptic. Indeed, replacing A−1
s by a parametrix for

As must give the same result. This allows the ‘divisor flow’ between two
invertible elements, A0 ∈ Invm and A1 ∈ Invm with A1 ∈ Ellm(A0), i.e.,
provided they are in the same component of the elliptic set, to be defined
by

DF(A1, A0) =
1
2

η(A1)− η(A0)− 2
i

1∫
0

T̃r
(dAs

ds
Bs

)
ds

(5)

where [0, 1] 	 s 
−→ As is a connecting curve in Ellm(A0) and Bs ∈ Ell−m

is a smooth parametrix, i.e., As ◦ Bs = Id−Rs, Rs ∈ Ψ−∞
sus (Y ;E). As the

name is supposed to indicate, this function has properties very similar to
the spectral flow for self-adjoint operators.

Theorem 3. For each A0 ∈ Invm ∩Ellm the divisor flow

Ellm(A0) 	 A1 
−→ DF(A1, A0) ∈ Z(6)

is integer-valued, additive, conjugation-invariant, continuous and distin-
guishes between (i.e., labels) the connected components of Invm ∩Ellm(A0).

The proof of these results rests on the definition of a regularized trace
functional

Tr : Ψ∗
sus(Y ;E) −→ C.(7)
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The only operator of trace class in Ψ∗
sus(Y ;E) is the zero operator. How-

ever, if m < −dimY − 1 then this regularized trace functional can be
defined by

Tr(A) =
∫
Y

trA(y, y, 0)(8)

where the Schwartz kernel A(y, y′, t) is naturally a density on Y and tr is
the trace functional on homE. The extension, (7), defined below still has
the fundamental property of vanishing on commutators. In fact Tr(A) is
defined in terms of the usual trace of operators on Y. The eta invariant is
defined directly in terms of Tr by

η(A) = 2Tr([A, t]A−1).(9)

Here t represents the operation of multiplication in the real variable in
Y × R. The formal trace can be obtained from the regularized trace by

T̃r(A) = iTr([A, t]).(10)

It is anticipated that this extended eta invariant will play a rôle in an
index formula for b-pseudodifferential operators similar to that played by
η(ð) in the formula of Atiyah, Patodi and Singer. Indeed the possible
existence of such an invariant arose first in discussion with Paolo Piazza
concerning the structure of this putative formula. The results as presented
in this paper are in essence a by-product of discussions with Victor Nistor
concerning the K-theory of algebras of the type discussed here; the author
admonishes him severely for refusing to be a co-author. The relationship
between the eta homomorphism described here and K-theory will be dis-
cussed elsewhere in collaboration with Victor Nistor. The author would
also like to thank Xianzhe Dai, Ezra Getzler, Rafe Mazzeo and Is Singer
for their assistance.

In §1 the definition and basic properties of Ψ∗
sus(Y ;E), the suspended

algebra, are described. The indicial family of an element of this algebra,
obtained by Fourier transformation in the real variable, is introduced in §2
and its behaviour is related to ellipticity of the element in §3. The basic
regularized trace functional Tr is defined in §4 and is used to define the eta
functional in §5. Its identity with the eta invariant of Atiyah, Patodi and
Singer for admissible Dirac operators is shown in §6; Theorem 1 above
follows directly from Propositions 4 and 5. The formal trace functional
is investigated in §7 and used in §8 to express the variation of the eta
functional; Theorem 2 is a rephrasing of Proposition 7. This variation
formula is in turn used in §9 to define the divisor flow and prove Theorem 3.
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1. The suspended algebra

Let Y be a compact manifold without boundary. We shall consider an
algebra of pseudodifferential operators on Y ×R which can be thought of as
the suspension of the usual algebra Ψ∗(Y ) of pseudodifferential operators
on Y.

Since Y × R is a C∞ manifold, the space Ψ∗(Y × R) of 1-step polyho-
mogeneous pseudodifferential operators is well defined; it is not an algebra
because the growth of the kernels is unrestricted at infinity. However the
elements define operators from the space of compactly support smooth
functions to smooth functions

A : C∞c (Y × R) −→ C∞(Y × R).(1.1)

Consider the subspace of elements satisfying two conditions: translation
invariance and rapid decay of the kernel.

Let Tτ : Y ×R −→ Y ×R be translation in the second variable, Tτ (y, t) =
(y, t− τ). Thus we consider the pseudodifferential operators satisfying

T ∗
τ Af = A T ∗

τ f ∀ τ ∈ R, f ∈ C∞c (Y × R).(1.2)

In terms of the Schwartz kernels of these operators this means that A acts
as a convolution operator in the second variable

Af(y, t) =
∫
Y

∫
R

A(y, y′, t− s)f(y′, s) ds(1.3)

where A, as the (convolution) kernel, is a density in y′. Since A is a
pseudodifferential operator its kernel is only singular at the submanifold
{y = y′, t = 0}.

The additional constraint we place on A is that its kernel lie in the space

A ∈ C−∞
c (Y 2 × R; ΩY ) + S(Y 2 × R; ΩY )(1.4)

where S denotes the Schwartz space of sections of rapid decrease, with all
derivatives, at infinity.

Definition 1. For any m ∈ R, let Ψm
sus(Y ) ⊂ Ψm(Y × R) denote the

space of 1-step polyhomogeneous pseudodifferential operators satisfying
(1.2) and (1.4).

Note that even though the elements of Ψm
sus(Y ) are operators on Y × R,

we think of the object itself as associated to Y, hence the notation.
If E is a vector bundle over Y the suspended space of pseudodifferential

operators acting on sections of E can be defined by

Ψm
sus(Y ;E) = Ψm

sus(Y )⊗C∞(Y ) C∞(Y 2; Hom E)(1.5)
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where Hom E is the bundle over Y 2 with fibre hom(Ey′ , Ey) at (y, y′) ∈ Y 2.
The local formula (1.3) allows one to see that

A ∈ Ψm
sus(Y, E) =⇒ A : S(Y × R; E) −→ S(Y × R;E).(1.6)

Proposition 1. For any compact manifold Y and bundle E, Ψ∗
sus(Y ; E) is

naturally a complete topological vector space and an order-filtered ∗-closed
algebra.

Proof. This is a direct consequence of standard results on the composi-
tion of pseudodifferential operators. Notice that the topology is given by
the best constants in the symbol estimates in local coordinates and the
constants in the asymptotic expansions of the symbols in homogeneous
terms, together with C∞ estimates (and decay) on the kernels away from
the ‘diagonal’ {y = y′, t = 0}.

2. Indicial family

The ∗-invariance of the algebra means, by duality, that A ∈ Ψm
sus(Y ;E)

extends by continuity to a continuous linear map A : S ′(Y × R;E) −→
S ′(Y ×R;E). The t-translation invariance, (1.2), then shows that, for any
τ ∈ R and g ∈ C∞(Y ;E), Â(τ)g = e−itτA(eitτg) defines a pseudodiffer-
ential operator Â(τ) ∈ Ψm(Y ;E). Clearly the Schwartz kernel of Â(τ) is
obtained from that of A by Fourier transformation

Â(τ) =
∫

e−itτA(y, y′, t) dt.(2.1)

We call this smooth 1-parameter family of pseudodifferential operators
the indicial family of A. By inversion of (2.1), A itself can be recovered
from the family Â(τ).

3. Ellipticity

The elements of Ψ∗
sus(Y ;E) are, by definition, 1-step polyhomogeneous

(i.e., ‘classical’). Thus the leading part of the locally defined symbol is a
well-defined section of π∗ hom E over T ∗(Y × R) \ 0, where π : T ∗(Y ×
R) −→ Y is the natural projection; this section is homogeneous of degree
m. The translation invariance of the operator implies, from the uniqueness,
that the symbol too is t-translation invariant. From (1.4) this is the only
constraint on the symbol, so there is a short exact sequence

(3.1) 0 −→ Ψm−1
sus (Y ;E) ↪→ Ψm

sus(Y ;E)
σm−→ C∞(S∗

Y (Y × R);π∗ hom E ⊗Dm) −→ 0.
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Here S∗(Y × R) = (T ∗(Y × R)\0)/ ∼ is the quotient by the fibre action
of R+, S∗

Y (Y × R) is its restriction to Y × {0} and Dm is the line bundle
over S∗(Y × R) defined by the functions homogeneous of degree m on
T ∗(Y × R)\0.

An element of Ψm
sus(Y ;E) is elliptic if σm is invertible, as an element

of the fibre of homE ⊗Dm, with inverse in homE ⊗D−m, at each point.
This is the same as ellipticity in the larger space Ψm(Y × R;E).

Proposition 2. If A ∈ Ψm
sus(Y ;E) is elliptic then Â(τ) is elliptic in

Ψm(Y ;E) for all τ ∈ R and is invertible, with inverse in Ψ−m(Y ; E),
for |τ | > C = C(A).

Proof. The symbol of Â(τ) is easily computed from (2.1) in terms of the
symbol of A. Namely, under the decomposition T ∗(Y ×R) = T ∗Y ×Rt×Rτ ,

σm(Â(τ))(y, η) = σm(y, η, 0)(3.2)

i.e., just the restriction to τ = 0. It follows that the symbol of Â(τ) is
independent of τ and Â(τ) is elliptic if A is.

So, assuming A ∈ Ψm
sus(Y ;E) to be elliptic, standard constructions show

it to have a parametrix B ∈ Ψ−m
sus (Y ;E). Now, the residual algebra is

Ψ−∞
sus (Y ;E) ≡ S(Y 2 × R; ΩY ⊗Hom E)(3.3)

so the identity A ◦ B = Id−R, where R ∈ Ψ−∞
sus (Y ; E) gives, on passage

to indicial families, Â(τ) ◦ B̂(τ) = Id−R̂(τ). Here R̂(τ) ∈ S(Y 2×R; ΩY ⊗
Hom E). Thus, for |τ | large, Id−R̂(τ) is invertible with inverse Id−Ŝ(τ),
Ŝ(τ) ∈ Ψ−∞(Y ;E). It follows that Â(τ) is invertible for |τ | large with
inverse B̂(τ)− B̂(τ) · Ŝ(τ) ∈ Ψ−m(Y ; E).

It follows from (3.1) and the multiplicitivity of symbols, i.e.,

σm+m′(A ◦B) = σm(A) · σm′(B),(3.4)

that if A is invertible, with inverse in Ψ−m
sus (Y ; E), then it must be elliptic.

Conversely

Proposition 3. If A ∈ Ψm
sus(Y ;E) is elliptic and Â(τ)−1 exists, as an

operator on C∞(Y ;E), for all τ ∈ R then A is invertible with inverse in
Ψ−m

sus (Y ;E).

Proof. The invertibility of Â(τ) implies that the inverse is B̂(τ) + Ĝ(τ)
with Ĝ ∈ S(Y 2 × R; ΩY ⊗ Hom E). Since this space is invariant under
Fourier transformation it follows that the inverse of A is an element of
Ψ−m

sus (Y ;E).
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Note that, by Proposition 2, the invertibility of Â(τ) is in doubt only
for a bounded range of τ once it is known that A is elliptic.

By summing over the translates the elements of Ψ−m
sus (Y ;E) define oper-

ators on Y × S for a circle of any length; any operators acting trivially are
smoothing. This relationship can be used to transfer results well known in
the compact case to Ψ∗

sus(Y ;E). For instance if A ∈ Ψ0
sus(Y ;E) then A de-

fines a bounded operator on L2(Y ×R;E). It also follows, as in the compact
case, that the invertibility of A as a bounded operator on L2(Y ×R; E) is
equivalent to its invertibility as an element of Ψ0

sus(Y ;E).

4. Regularized trace

For A ∈ Ψm
sus(Y ;E), we define the regularized trace by

Tr(A) =
∫

Y

trA(y, y, 0), m < −dimT − 1.(4.1)

Here tr is the trace functional on homE. The functional Tr vanishes on
commutators and can be written in terms of the indicial family

Tr(A) =
1
2π

∞∫
−∞

Tr Â(τ) dτ.(4.2)

We shall use this representation to extend the functional to Ψm
sus(Y ;E) for

each m ∈ R.

Lemma 1. If A ∈ Ψm
sus(Y ) then dpÂ(τ)/dτp ∈ Ψm−p(Y ;E) and if p >

m + dimY then

hp(τ) = Tr

(
dpÂ(τ)

dτp

)
∈ C∞(R)(4.3)

has a complete asymptotic expansion as τ → ±∞:

hp(τ) ∼
∑

l

h±
p,l|τ |m−p+dim Y −l.(4.4)

Proof. If A ∈ Ψ−∞
sus (Y ;E) then Â ∈ S(Y 2×R; ΩY ) so for any p, hp ∈ S(R)

has a trivial asymptotic expansion. This allows us to discard any part of
the kernel of A outside a given neighbourhood of the diagonal of Y 2. Using
a partition of unity it therefore suffices to consider A ∈ Ψm

sus(Y ;E) with
kernel supported in K2 × R, with K a compact subset of a coordinate
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patch on Y. Thus we can use the local representation of pseudodifferential
operators to write the kernel as

A(y, y′, t) = (2π)−n−1

∫
ei(y−y′)·η+itτa(y, η, τ) dη dτ |dy′|.(4.5)

Here a has compact support in y and is a polyhomogeneous symbol of order
m jointly in (η, τ) ∈ Rn+1, n = dimY. This gives an explicit representation

Â(τ)(y, y′) = (2π)−n

∫
ei(y−y′)·ηa(y, η, τ) dη |dy′|.(4.6)

Since a is a symbol, the first statement follows directly.
Furthermore, if p > m + dimY then dpÂ(τ)

/
dτp is of trace class and

hp(τ) = (2π)−n

∫ ∫
Rn

dpa

dτp
(y, η, τ) dη dy.(4.7)

The complete asymptotic expansion of a,

a ∼
∑
j≥0

am−j(y, η, τ) as |(η, τ)| −→ ∞,(4.8)

where am−j(y, η, τ) is homogeneous of degree m − j, gives a complete
asymptotic expansion of hp(τ), as in (4.4), with

h±
p,� = (2π)−n

∫∫
dpam−�

dτp
(y, η,±1) dy dη.(4.9)

The remainder terms can be estimated in the same way. Even though
the proof is written for E = R, the general case involves little more.

For A ∈ Ψm
sus(Y ;E) and hp defined by (4.3), consider the (p + 1)-fold

integral

gp(τ) =

τ∫
−τ

τp∫
0

· · ·
τ1∫
0

hp(r) dr dτ1 . . . dτp.(4.10)

As τ → ∞ this has a complete asymptotic expansion, as follows by inte-
gration of (4.4). Namely

gp(τ) ∼
∑
j≥0

gjτ
m+1+dim Y −j + g′(τ) + g′′(τ) log τ(4.11)

where g′(τ) and g′′(τ) are polynomials of degree at most p. To prove (4.11),
it is enough to integrate (4.4) term by term and hence conclude that there
is a function with the same (p + 1)-fold derivative as gp(τ) with such an
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expansion. It follows that gp(τ) itself can only differ from this function by
a polynomial of degree p.

This proof actually shows that the coefficients in (4.11) depend con-
tinuously, and linearly, on the element A in the topology of Ψm

sus(Y ; E).
They all define functionals on the algebra. We are interested in one in
particular.

Definition 2. The (regularized) trace of A ∈ Ψm
sus(Y ;E) is (2π)−1× the

coefficient of τ0 in the expansion (4.11) where gp(τ) is defined by (4.10)
and (4.3) for some p > m + dimY.

Of course this only makes sense because of

Lemma 2. The coefficient of τ0 in (4.11) is independent of p > m+dimY
and reduces to 2πTr(A) defined by (4.2) if m < −dimY − 1.

Proof. It suffices to consider the effect of the increase of p. Since

hp+k(τ) =
( d

dτ

)k
hp(τ)(4.12)

for k ≥ 0 and p ≥ m+dimY , the effect of the extra k integrals on defining
gp+k is that

gp+k(τ) =

τ∫
−τ

τp∫
0

· · ·
τ1∫
0

(hp(r) + gk(r)) dr dτ1 . . . dτp(4.13)

where gk(r) is a polynomial of degree k − 1. The next p integrals give a
polynomial of degree p + k − 1 and the last integral over [−τ, τ ] gives a
polynomial without constant term. Thus the coefficient of τ0 in gp+k(τ) as
τ →∞ is the same as that in gp(τ). This shows that Tr(A) is well defined
and reduces to (4.2) if m < −dimY − 1.

Lemma 3. The functional Tr vanishes on commutators.

Thus the functional Tr is invariant under conjugation in the algebra.

Proof. If A, B ∈ Ψ∗
sus(Y ;E) then the indicial family of the commutator is

[̂A, B](τ) = [Â(τ), B̂(τ)].(4.14)

Moreover

d

dτ
[Â(τ), B̂(τ)] =

[
dÂ(τ)

dτ
, B̂(τ)

]
+

[
Â(τ),

dB̂(τ)
dτ

]
,(4.15)

is a sum of commutators; each term in the sum has the sum of orders
reduced by 1. Proceeding iteratively ( d

dτ )p[Â(τ), B̂(τ)] is therefore a sum
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of commutators where each term has total order ord (A) + ord (B) − p.
Choosing p large enough it follows that the trace of such a commutator
vanishes. Thus hp(τ) ≡ 0 for p large, so Tr([A, B]) = 0.

Notice that Tr(A) = 0 if the kernel of A is odd under the reflection
t 
→ −t, or equivalently if Â(−τ) = −Â(τ).

5. Eta invariant

If A ∈ Ψm
sus(Y ;E) then the commutator [A, t] ∈ Ψm−1

sus (Y ;E) since it
has Schwartz kernel −A(y, y′, t)t.

Definition 3. If A ∈ Ψm
sus(Y ;E) is elliptic and invertible, the eta invariant

of A is defined to be

η(A) = 2Tr([A, t]A−1).(5.1)

Proposition 4. The eta invariant is an additive homomorphism from the
group of invertible elements of Ψ∗

sus(Y ; E) into C.

Proof. If A, B ∈ Ψ∗
sus(Y ;E) then [AB, t] = [A, t]B + A[B, t]. If both are

invertible then [AB, t](AB)−1 = [A, t]A−1 +A[B, t]B−1A−1. The conjuga-
tion invariance of Tr then shows that

η(AB) = η(A) + η(B).(5.2)

Observe that the indicial family of [A, t] is 1
i ∂Â(τ)/∂τ . Using (4.2) this

gives

Lemma 4. If A = Id +S with S ∈ Ψm
sus(Y ;E), m < −dimY such that A

is invertible then

η(A) =
1
πi

∫ ∞

−∞
Tr

(
∂Ŝ(τ)

∂τ

(
Id +Ŝ(τ)

)−1

)
dτ.(5.3)

Since Ŝ(τ) is trace class, det(Id +Ŝ(τ)) is well defined and (5.3) shows
that η(A) is the variation of the argument of det(Id +Ŝ(τ)) as τ ranges
from −∞ to ∞. It is in other words the winding number of the map
(−∞,∞) 	 τ 
−→ det(Id +Ŝ(τ)) ∈ C which has end points 1 and never
takes the value 0. In the general case, η(A) is by definition (πi)−1× the
coefficient of τ0 as τ →∞ in the expansion of

τ∫
−τ

τp∫
0

· · ·
τ1∫
0

Tr
(

d

dτ

)p
(

∂Â(s)
∂τ

Â(s)−1

)
ds dτ1 . . . dτp

for any p > dimY.

(5.4)
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6. Dirac operators

Let E be an Hermitian Clifford module for a metric on Y, which has
odd dimension, with a unitary Clifford connection specified. Let ð be the
associated Dirac operator on sections of E; we shall describe such a Dirac
operator as admissible. The differential operators

ð±
sus = ð± iDt ∈ Ψ1

sus(Y ; E), Dt =
1
i

∂

∂t
,(6.1)

are elliptic. Since ð is self-adjoint and ð̂±
sus = ð ± iτ , it follows from

Proposition 3 that ð±
sus are invertible with inverses in Ψ−1

sus(Y ;E) if and
only if ð is invertible.

Proposition 5. For any invertible admissible Dirac operator

η
(
ð±

sus

)
= ± 1√

π

∞∫
0

t−
1
2 Tr

(
ðe−tð2)

dt = ±η(ð)(6.2)

is ± the eta invariant of ð as defined by Atiyah, Patodi and Singer.

Proof. Formally if 1 = (
√

π)−1
∫ ∞
−∞ t

1
2 exp(−tτ2)dτ is inserted into the

integral in (6.2) and the t integral is carried out first, the result is

(π)−1

∫ ∞

−∞
Tr ð(ð2 + τ2)−1dτ

which reduces to η(ð+). To justify this exchange of order of integration,
the special properties of admissible Dirac operators, in particular the local
index theorem, will be used. This means that the function

h(t) = Tr
(
ðe−tð2) ∈ t

1
2 C∞([0,∞)).(6.3)

It is also exponentially decreasing as t→∞.
Consider the integral

g(s, τ) =

∞∫
s

e−tτ2
h(t) dt, s ≥ 0.(6.4)

This is a C∞ function of s
1
2 in s ≥ 0, τ ∈ R. Moreover, as τ → ∞, it is

rapidly decreasing if s > 0 and the smoothness and vanishing in (6.3) gives
uniform bounds∣∣(τ∂τ

)p
g
(
s, τ

)∣∣ ≤ Cp

(
1 + τ2

)−1
, s ≥ 0, τ ∈ R.(6.5)
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Thus, g is uniformly a symbol of order −2 as s ↓ 0. The order of the limits
in the following expression can be exchanged to show that

η(ð) =
1√
π

∞∫
0

t−
1
2 Tr

(
ðe−tð2)

dt =
1
π

lim
s↓0

∫ ∞

−∞
g(s, τ) dτ.(6.6)

Since we wish to arrive at (4.10), set g′p(s, τ) = g(s, τ)−∑
j<p

τj

j! ∂
j
τg(s, 0) and

observe that gp(s, τ) =
τ∫

−τ

g′p(s, r) dr has a uniform asymptotic expansion

as τ →∞, as s ↓ 0, down to terms of order |τ |−1; i.e., with error uniformly
bounded by a multiple of |τ |−2. Thus, from (6.6)

η(ð) =
1
π

lim
s↓0

∞∫
−∞

g(s, τ) dτ

=
1
π
× the coefficient of τ0 in the expansion of gp(0, τ).

(6.7)

On the other hand, for s = 0, this corresponds to the even part of the
function in (4.10) for A with indicial family

Â(τ) =

∞∫
0

e−tτ2
(±iτ + ð)e−tð2

dt =
(∓iτ + ð

)−1
.(6.8)

Since the odd part does not contribute to Tr and ∂
∂τ (±iτ + ð) = ±i, we

finally conclude that

η(ð) = ±η(ð±
sus) = ±Tr([ð±

sus, t](ð
±
sus)

−1).(6.9)

7. Formal trace

To capture the variation of the eta functional we define a second ‘trace’
functional on the suspended algebra. If A ∈ Ψm

sus(Y ;E) consider the ana-
logue of (4.10) but with one less integral

g̃p(τ) =

τ∫
−τ

τp−1∫
0

· · ·
τ1∫
0

hp(r) dr dτ1 . . . dτp−1,(7.1)

where hp is still given by (4.3).

Definition 4. If A ∈ Ψm
sus(Y ;E) the formal trace, T̃r(A), is defined to be

(2π)−1× the coefficient of τ0 in the expansion of g̃p(τ) as τ → ∞. As for
Tr(A), T̃r(A) is independent of the choice of p, provided p > m + dimY.
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Lemma 5. If A ∈ Ψm
sus(Y ;E) with m < −dimY then T̃r(A) = 0.

Proof. If the order of A is less than −dimY then h̃p(τ) can have no con-
stant term in its asymptotic expansion.

Lemma 6. For any A ∈ Ψm
sus(Y ;E)

T̃r(A) = iTr([A, t]).(7.2)

Proof. Since [̂A, t](τ) = 1
i

∂
∂τ Â(τ), this is by definition.

In particular this shows that T̃r([A, B]) = 0 if A, B ∈ Ψ∗
sus(Y ;E) since

by Jacobi’s identity [[A, B], t] = [A, [B, t]] + [[A, t], B] is a sum of commu-
tators in the algebra.

As for the closely related ‘residue trace’ of Guillemin and Wodzicki, it
is straightforward to give an explicit formula for the formal trace in terms
of the symbol expansion for the operator. Since T̃r is linear and vanishes
on low order operators, it suffices to consider A of the form (4.5) with
amplitude a(y, η, τ) compactly supported, in y, in a coordinate patch over
which E is trivial.

Proposition 6. If A ∈ Ψm
sus(Y ;E) is of the form (4.5) with support in

a coordinate patch over which E is trivial then T̃r(A) = 0 if m /∈ Z or
m < −dimY and

T̃r(A) = lim
L→∞

∫∫
{|η|≤L}

(tr am−q(y, η, 1)− tr am−q(y, η,−1))ωn,

n = q −m = dimY,

(7.3)

where ω is the symplectic form on T ∗Y and tr is the trace functional on
hom E.

Proof. It is enough to consider the case that E = R. Using (4.5) and (4.7)
the formula (7.1) becomes

g̃p(τ) =

τ∫
−τ

τp−1∫
0

· · ·
τ1∫
0

∫
R2n

dp

dsp
a(y, η, s) dy dη ds dτ1 . . . dτp−1.(7.4)

Let ϕ ∈ C∞(Rn+1) have ϕ(η, τ) = 1 in |(η, τ)| ≥ 1 and ϕ(η, τ) = 0 in
|(η, τ)| ≤ 1

2 . Then a in (7.4) can be replaced by the finite sum

a 
−→
∑

m−j≥− dim Y

ϕ(η, τ)am−j(y, η, τ).(7.5)
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Here the am−j are homogeneous of degree m−j, and homogeneous terms of
degree less than −dimY can be dropped because of Lemma 5. It therefore
suffices to consider (7.4) with one such term.

Now am−j , which we will denote by b, is homogeneous of degree greater
than or equal to −dimY. It therefore defines a locally integrable function,
and hence a distribution, on Rn×Rn×R; this will be denoted µ(y, η, τ) =
b(y, η, τ) ∈ C−∞(R2n+1). The difference µ − ϕb ∈ C−∞(R × Rn+1) has
compact support. We know that T̃r(A) is not affected by a polynomial
term in h̃p(τ) so the contribution of this term to g̃p(τ) is asymptotically
zero.

Thus, T̃r(A) is the coefficient of τ0 as τ →∞ in

τ∫
−τ

τp−1∫
−1

· · ·
τ1∫

−1

∫
R2n

dp

dsp
µ(y, η, s) dy dη ds dτ1 . . . dτp−1.(7.6)

Here the origin of integration has been moved to a point near which the
integrand is smooth. Now the integral over R2n is a distribution in s which
is homogeneous of degree deg b + dimY − p. The p integrals therefore give
a distribution homogeneous of degree deg b + dimY plus a polynomial.
Taking the even part gives no constant term at infinity unless deg b =
−dimY.

In the remaining case, deg b = −dimY ; p in (7.6) can be taken as 1.

Thus we need to compute
τ∫

−τ

∫
R2n

d
dsµ(y, η, s) dy dη ds for τ > 0 since this

must be constant. This is the volume integral of the form

d(µ(y, η, τ) dy dη) =
d

dτ
µ(y, η, τ) dτ dy dη.(7.7)

By Stokes’ theorem

1∫
−1

∫
R2n

∂µ

∂τ
dτ dy dη =

∫
|η|≤L

b(y, η, 1) ds dη −
∫

|η|≤L

b(y, η,−1) dy dη.

(7.8)

The terms on the left do not converge, separately, as L → ∞. Indeed
they will in general diverge logarithmically but the coefficients of log L
will cancel.
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8. Variation of eta

The smooth dependence of Tr(A) on A shows that if As is a 1-parameter
family in Ψm

sus(Y ;E) which depends smoothly on s ∈ (−ε, ε) and is elliptic
and invertible then η(As) is smooth.

Proposition 7. If As ∈ Ψm
sus(Y ;E) is elliptic and invertible and depends

smoothly on s ∈ (−ε, ε) then

d

ds
η(As) =

2
i
T̃r

(
dAs

ds
A−1

s

)
.(8.1)

Proof. From the definition, (5.1), of η

d

ds
η(As) = 2Tr

([
dAs

ds
, t

]
A−1

s − [As, t]A−1
s

dAs

ds
A−1

s

)
(8.2)

where the usual identity for the variation of the inverse has been used.
Moreover

0 = [AsA
−1
s , t] = As[A−1

s , t] + [As, t]A−1
s(8.3)

so from (8.2) and the conjugation invariance of Tr it follows that

d

ds
η(As) = 2Tr

([
dAs

ds
, t

]
A−1

s +
[
A−1

s , t
] dAs

ds

)
.(8.4)

Thus

d

ds
η(As) = 2Tr

([
dAs

ds
A−1

s , t

])
=

2
i
T̃r

(
dAs

ds
A−1

s

)
(8.5)

by Lemma 6.

Thus, just as for the eta invariant in the usual sense, the variation
is ‘local’. We can exploit this by noting that if Bs ∈ Ψm

sus(Y ; E) is a
smooth family of elliptic, but not necessarily invertible, operators then the
‘variation of the eta function’

vη(Bs) =
2
i
T̃r

(
dBs

ds
Qs

)
, Bs ◦Qs ≡ Id mod Ψ−∞

sus (Y ; E)(8.6)

is defined independent of the choice of parametrix Qs ∈ Ψ−m
sus (Y ;E). It is

smooth in s, since Qs can be chosen to be smooth.
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9. Divisor flow

Let Ellm ⊂ Ψm
sus(Y ;E) be the open set of elliptic elements and let

Ellm(A), for A ∈ Ellm, denote the component containing A.

Definition 5. If A ∈ Ψm
sus(Y ;E) is elliptic and invertible and B ∈ Ellm(A)

is invertible, the divisor flow from A to B is

DF (B, A) =
1
2

η(B)− η(A)−
1∫

0

vη(Bs) ds

(9.1)

where Bs is a smooth family in Ellm(A) with B0 = A, B1 = B.

Clearly the divisor flow from B to A does not depend on the path
chosen. Indeed, by Proposition 7, it is constant on the components of
Invm ∩Ellm(A), where Invm ⊂ Ψm

sus(Y ;E) is the open set of invertible
elliptic elements.

Theorem 4. For each A ∈ Ψm
sus(Y ;E) elliptic and invertible, DFA(B) =

DF(B, A) defines a surjective map

DFA : Invm ∩Ellm(A) −→ Z(9.2)

which parametrizes the components, i.e., if DFA(B) = DFA(B′) with
B, B′ ∈ Ellm(A) ∩ Invm then B and B′ are connected by a smooth curve
of elliptic and invertible operators.

Proof. It is enough to prove this result for one fixed invertible elliptic
operator A ∈ Ψsus(Y ;E) since if G is another such operator of order m′

and B ∈ Ellm′(G) ∩ Invm′ then B′ = BG−1A ∈ Ellm(G) ∩ Invm and

DFG(B) =
1
2

(
η(B)− η(G)−

∫ 1

0

vη(Qs)ds

)
=

1
2

(
η(B′)− η(A)−

∫ 1

0

vη(Q′
s)ds

)
= DFA(B′) = DFA(BG−1A)

(9.3)

where Qs is a smooth curve in Ellm′(G) connecting B and G so Q′
s =

QsG
−1A is a smooth curve in Ellm(A) connecting B′ and A. Acting by

composition on the right, G−1A maps the components of Ellm′(G)∩ Invm′

to those of Ellm(A)∩ Invm . For simplicity we shall therefore take A = Id .
We proceed to a more special version of the desired result from which

we then deduce the general case.
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Proposition 8. On the algebra of operators A = Id +Ψ−∞
sus (Y ;E), the

function DFId maps onto the integers, is constant on the components of
A ∩ Inv0, satisfies

DFId ((Id +S)(Id +S′)) = DFId(Id +S) + DFId(Id +S′),(9.4)

and DFId(Id +S) = DFId(Id +S′) for S, S′ ∈ Ψ−∞
sus (Y ; E) implies that

Id +S and Id +S′ are in the same component of A ∩ Inv0; in particular
DF(·, ·) is a 0-cycle on A spanning H0(A; Z).

Proof. Certainly DFId(Id +S) is constant on the components of A ∩ Inv0

since its local variation vanishes. Choose an Hermitian connection on the
bundle E and consider the connection Laplacian ∆∇. This is an elliptic,
nonnegative, self-adjoint operator. Let Pj be the projection onto the span
of the eigenfunctions of ∆∇ with eigenvalue less than j. Let Sj be the kernel
of the operator Pj◦S◦Pj . This sequence converges in S(Y 2×R; Ω⊗Hom E)
to the kernel of S as j →∞. Moreover, for large enough j, ‖S − Sj‖ < 1

2
acting on L2(Y ×R;E) so that for r ∈ [0, 1], Id +rS+(1−r)Sj is invertible
on L2(Y × R;E) and hence as an element of A. Now

DFId(Id +Sj) =
1

2πi

∫ ∞

−∞
Tr

(
dŜj(τ)

dτ
(Id +Ŝj(τ))−1

)
dτ

=
1

2πi

∫ ∞

−∞

d

dτ
log det(Id +Ŝj(τ)dτ

(9.5)

is the winding number of the curve Id +Ŝj(τ) considered as a curve into
GL(N ; C) where N is the rank of Pj . It is therefore an integer and (9.4)
follows. Moreover this function captures π1 (GL(N ; C)) .

Thus if S′ is another such operator with Id +S′ invertible then, taking
j large enough, the equality DFId(Id +S) = DFId(Id +S′) implies that
the curves Id +Ŝj(τ) and Id +Ŝ′

j(τ) are homotopic as curves in GL(N ; C).
This homotopy can certainly be arranged to be linear in the parameter for
|τ | large and hence to be the indicial family of an homotopy in A. Since
the surjectivity of DFId follows similarly, this completes the proof of the
proposition.

Returning to the proof of Theorem 4 we first show that if A ∈ Ell0(Id)∩
Inv0 then DFId(A) ∈ Z. Let As ∈ Ell0(Id) be a curve with A0 = Id and
A1 = A. Choosing ρ ∈ C∞c (R) with ρ(t) = 1 for |t| < 1 and ρ(t) =
0 for |t| > 2 consider the family with kernels As(y, y′, t)ρ(t/n). For n
sufficiently large, Aρ(t/n) must still be invertible since (1−ρ(t/n))A −→ 0
in S(Y 2 × R; ΩY ⊗ Hom E). Thus we can assume that all the As have
(uniformly) compactly supported convolution kernels.
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Lemma 7. For A ∈ Ψm
sus(Y ;E) elliptic, with compactly supported (convo-

lution) kernel, the indicial family Â(τ) is entire with values in Ψm(Y ;E)
and with divisor (set of points of non-invertibility) a discrete set contained
in a region such that |Re τ | → ∞ as |τ | → ∞.

Proof. The ellipticity of A allows a parametrix B ∈ Ψ−m
sus (Y ;E) to be

constructed and B can also be taken to have compactly supported ker-
nel. The error term, R = A ◦ B − Id ∈ Ψ∞

sus(Y ;E), therefore has kernel
in C∞c (Y 2 × R; ΩY ⊗ Hom E). The indicial families are all entire, as the
Fourier(-Laplace) transforms of compactly supported distributions. The
indicial family of the error term satisfies

|R̂(τ)| ≤ CN (| Im τ |)(1 + |τ |)−N(9.6)

for each N, with CN (r) some function. This proves the invertibility outside
a set as indicated and the discreteness of the divisor follows from analytic
Fredholm theory.

For any r ∈ R the family R 	 τ −→ Â(τ + ir) is the indicial family of
A(y, y′, t) exp(rt). By Lemma 7 the set of points r ∈ R such that Â(τ + ir)
is not invertible for all τ ∈ R is discrete in R. Thus for each s ∈ [0, 1] there
is certainly some (small) value of r such that As exp(rt) ∈ Ψ0

sus(Y ;E) is
invertible. The estimates in (9.6) are uniform in s ∈ [0, 1] so As exp(rt)
must remain invertible for nearby s. Thus we can cover [0, 1] by a finite
number of closed intervals [sj−1, sj ] with corresponding constants rj ∈ R

such that for s ∈ [sj−1, sj ] the operator with kernel A′
s,j = As exp(rjt)

is invertible. Now DFId(A′
s,j) must be constant on these intervals, so

it suffices to show that the difference DFId(Asj ,j) − DFId(Asj ,j+1) is an
integer for each j.

The difference of operators

Q = Asj ,j −Asj ,j+1 = As(y, y′, t) (exp(rjt)− exp(rj+1t)) ∈ Ψ−1
sus(Y ;E)

(9.7)

is of order −1, since the symbol of As exp(rt) is independent of r. It follows
that Q can be norm approximated by operators in Ψ−∞

sus (Y ; E), this can be
done in the topology of pseudodifferential operators of order −1/2 ‘with
bounds’ (but not in the polyhomogeneous topology). If Q′ is a sufficiently
close approximation then

Mu = Asj ,j+1 + u(Q−Q′) = Asj ,j −Q + u(Q−Q′)(9.8)

must be invertible for u ∈ [0, 1]. Thus DFId(Asj ,j+1) = DFId(Asj ,j −Q′).
So we are reduced to showing that

DFId(Asj ,j)−DFId(Asj ,j −Q′) ∈ Z.(9.9)
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Now set (Asj ,j −Q′)A−1
sj ,j = Id−Q′′, so Q′′ ∈ Ψ−∞

sus (Y ;E) and

DFId(Asj ,j)−DFId(Asj ,j −Q′) = −DF(A′
sj ,j , Asj ,j −Q′)

= DFId(Id−Q′′) ∈ Z
(9.10)

by (9.3) and Proposition 8. Thus, using (9.3), DFA(B) ∈ Z whenever A, B
are elliptic and invertible and B ∈ Ellm(A).

Now we suppose that A ∈ Ell0(Id) ∩ Inv0 has DFId(A) = 0; we wish
to show that it can be connected to Id by a curve in the invertible set
Inv0 ∩Ell0(Id). Consider again the curve linking A to Id in Ell0(Id). In-
serting the linear homotopies as in (9.8) to modify the Asj ,j+1 to be
Asj ,j − Qj with Qj ∈ Ψ−∞

sus (Y ;E) and renormalizing the parameter, re-
named to r, the curve can be assumed to consist of 2p − 1 segments
of parameter length one alternating between p seqments on which the
elements are invertible and p − 1 segments where it is a linear homo-
topy Asj ,j − (r − 2j + 1)Qj , r ∈ [2j − 1, 2j]. On the invertible seqments
DFId(Ar) = mj ∈ Z, r ∈ [2j−2, 2j−1], j = 1, . . . , p is constant. By Propo-
sition 8, we can choose Rj ∈ Ψ−∞

sus (Y ; E) such that Id−Rj is invertible and
mj = −∑

l≤j DFId(Id−Rl). Modifying the curve Ar successively (in j) by
multiplying on [2j − 1, 2j], by Id−(r − 2j + 1)Rj , and on [2j, 2j + 1], by
Id−Rj , gives a curve A′

r with the same properties as before except that
DFId(A′

r) vanishes on all the ‘invertible’ intervals [2j, 2j + 1] and the end-
point has changed to A

∏
j(Id−Rj). Now Proposition 8 can be used again

to show, that on each of the intervals r ∈ [2j − 1, 2j], A′
r can be deformed

to be invertible without changing the endpoints and that the final endpoint
can be connected to A by an invertible curve, since

DFId

∏
j

(Id−Rj)

 = 0(9.11)

by assumption. This shows that A is connected to Id by a curve in the
invertible set.

This completes the proof of Theorem 4, the surjectivity of

DFId : Ell0(Id) −→ Z,

and hence, the surjectivity in the general case, being a consequence of
Proposition 8.

Theorem 3 is an immediate consequence of Theorem 4.
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