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SEARCHING FOR p-ADIC EIGENFUNCTIONS

FERNANDO Q. GOUVEA AND BARRY MAZUR

To A. O. L. Atkin, on his retirement

In doing p-adic analysis on spaces of classical modular functions and
forms, it is convenient and traditional to broaden the notion of “modular
form” to a class called “overconvergent p-adic modular forms.” Critical
for the analysis of the p-adic Banach spaces composed of this wider class
of forms is the “Atkin U-operator”, which is completely continuous and
whose spectral theory (still not very well understood) seems to be the key
to a good deal of arithmetic. The part of the spectrum of U correspond-
ing to eigenvalues which are p-adic units' is somewhat more understood,
thanks to the work of Hida. As for the rest of the spectrum, it is surprising
how fragmentary our information is (although recent work of Coleman, re-
solving in part some prior conjectures of ours, has improved the situation).

We have begun an experimental search for nonclassical (but “overcon-
vergent”) eigenfunctions in a fairly simple way. We take a number of
classical modular functions which are p-adically overconvergent (e.g., 7,
1/4,...), and try to find their p-adic “U-eigenfunction expansion.” There
is a straightforward computational procedure to approximate such eigen-
function expansions, even though, on a theoretical level, we do not even
know that the “expansions” that our algorithm produces converge in any
sense, or even settle down numerically. Experimentally, they seem to, and
they produce candidate Fourier expansions.

In our computations, we specialize principally to p = 5. The same
eigenfunctions (produced by our algorithm) seem to occur as terms in
each of the eigenfunction expansions we have calculated. This leads us
to suspect that we have in fact encountered all the 5-adic eigenfunctions
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IWe call this the slope zero part, and in general define the slope of a generalized
U-eigenform to be the p-adic valuation of its eigenvalue.
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TABLE 1. Supersingular j-invariants for small primes

of small slope (i.e., slope at most 5) and tame level 1. More specifically,
up to scaling, we found exactly one “candidate eigenfunction” of slope 0
(the constant function 1), one of slope 1, one of slope 4, and one of slope
5. See section 4 below for an approximation to the Fourier expansions
(of the ones of positive slope!). A separate check on the consistency of
these experimental “results,” was provided by Jeremy Teitelbaum, who
used Koike’s formula in [13] to compute the characteristic series det(1 —
tUx) mod 3%7 for p = 3 and mod 528 for p = 5. His data is consistent
with our findings, and suggests that there are five 3-adic overconvergent
eigenfunctions of slope < 10 (one each of slopes 0, 2, 6, 8, 10) and there
are six 5-adic eigenfunctions of slope < 9 (one each of slopes 0, 1, 4, 5, 8,
9). It might be of interest to study their associated Galois representations
and p-adic L-functions.

We offer this article as a small retirement present to A. O. L. Atkin,
whose pioneering work on these issues has been the inspiration for these
investigations. In [1], [3], and [2], he describes his discovery “that some
‘p-adic’ theory of Hecke operators exists [which is] analogous to the exact
classical theory” (see [2, p. 33]). In particular, he showed that iterating the
U operator on forms of weight zero would produce approximate eigenforms,
very much as we have done. In the case of the j function and p = 13, Atkin
has given a proof (see [3]) that this procedure yields a p-adic eigenform of
slope 0. He has written (see [1]) that his methods extend to prove that
this process converges to a p-adic eigenform of slope 1 (the form we call
f1 below) for p = 5 and similarly for p = 3 and p = 2. Our work therefore
follows in his footsteps.

1. Overconvergent modular functions

Let p be a prime number, and let X = P}Z,,’ which we will think of as
the “j-line,” i.e., the modular curve of level 1. The set of supersingular
j-invariants in X (F,) is a finite set of points, all rational over Fz, e.g., if
p < 5, j = 0 is the only supersingular value of j, and if p =7, 7 = —1 is
the only supersingular value.

Table 1 lists these points for a few small primes p.

The notion of “overconvergent p-adic modular functions” (i.e., over-

convergent modular forms of weight zero) was introduced by Katz in [12]
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(more information can also be found in [6], [9], and [7]). We give here a
more “concrete” description of such functions, based on the idea that one
can understand a p-adic object by understanding its reduction modulo p”
for all v > 1.

Definition 1. An overconvergent p-adic modular function with integral q-
expansion f is a sequence of rational functions f, on the projective line
Xz pvz = X QL/p"Z over Z/p*Z for v =1, 2, ... satisfying the following
conditions:

(1) each of the f, is regular except possibly at the supersingular
points,

(2) the f, restrict one to another: f,41 = f, (mod p¥) for all v > 1,

(3) there exist real numbers C' and D such that the order of the poles
of f, at the supersingular points is less than or equal to Cv + D.

The f, form an inverse system of functions on the X7,z whose poles
at the supersingular points have orders that grow at most linearly in v.
We will write

for the overconvergent modular form corresponding to such a family. We
define the rate of growth of f to be the greatest lower bound of the C' that
one can take in the upper bound for the order of the poles.

In the limit, one obtains functions on X which are not defined at points
in X corresponding to curves with supersingular reduction. We call the
set of points in X whose reductions modulo p are a fixed supersingular
point the supersingular disk determined by that supersingular point (it
is indeed isomorphic to a p-adic open disk in the rigid-analytic sense).
Under the hypotheses above, f has a Laurent expansion around each of
the supersingular disks which is infinite “to the left”, but whose coefficients
tend to zero at least linearly.

Consider, for example, what happens for p = 3 or p = 5. The only
supersingular point is j = 0, and the Laurent expansion of one of our
functions will look like

For p = 5, 1/j has a triple pole at j = 0, the rate of growth of f will be
< C'if we have

for some constant k (k may be negative, but note that we are requiring
ord(a,) > 0 in any case).
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Such functions are called overconvergent because they can, in fact, be
computed on some curves with supersingular reduction. In fact, if € > 0
and 0 < ord(j) < 3/(C + ¢), then

3n 3n
ord(anj ") > — — ———+k
(anj™") C C+e
tends to infinity with n, and the series converges. In other words, over-
convergent functions can be computed on curves that are “not too super-
singular.”
We extend the definition to Q, by allowing bounded denominators:

Definition 2. Let f be a function defined on the points of X correspond-
ing to curves without supersingular reduction. We say f is an overcon-
vergent p-adic modular function if, for some integer n > 0, p"f is an
overconvergent p-adic modular function with integral g-expansion.

Again, one can compute such f at points corresponding to curves which
are “not too supersingular,” but the values will now be in Q,.

Allowing poles at the supersingular points enlarges our space of func-
tions quite dramatically (it clearly gives an infinite dimensional space).
Controlling the rate of growth counteracts this somewhat. It turns out
that the optimal choices are when C' is around 1 + 1/p or around p + 1.

We now specialize to the case when p = 5. For a given C', we write
L(C) for the Z,-module of all functions

f = Zanj_n

for which the a,, are p-adic integers which satisfy

ord(a,) > 36” + b(n),

where b(n) > 0 and b(n) — oo as n grows. We write B(C) = L(C) ® Q,,
which is an infinite dimensional Q,-vector space. If we put a p-adic norm
on B(C) by declaring L(C') to be the unit ball, it becomes a p-adic Banach
space over Q,, which we call the space of overconvergent p-adic modular
functions of growth rate C.

The usual g-expansion map gives an inclusion of B(C) into the space
of power series in ¢ with coefficients in Q,. (More precisely, the image is
contained in Q, ® Zy[[¢q]]. In other words, the denominators in such an
expansion are bounded.)

It might be worth relating the notion of “growth rate C” to the nota-
tion in [6] or [9]. There we measured the degree of overconvergence by
a parameter r chosen from an extension R of Z,. The relation is simply
that if we choose an r € R such that ord(r) = 1/C, then the space of
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r-overconvergent p-adic modular forms of weight 0 is essentially the same
as our B(C). Since this is a technical point, we relegate a proof to the
appendix.

For every ¢ # p, one can define an action of the Hecke operator T,
on B(C). We will call an element of B(C) a Hecke eigenform if it is an
eigenfunction of T, for every ¢ # p.

We have found it useful to think of the growth rate C as playing a
role something like that of the “the power of p dividing the level” of the
overconvergent functions lying in B(C'). To pursue this heuristic view a
bit, one could denote (for r > 1)

B(Lo(p):= ()  B(C)C Q&L

C>pr=2(p+1)

and then note that, by [6], any classical modular function for T'g(p”) with
Fourier coefficients in Q, and with poles only at the ramified cusps lies in
B(Ty(p")). Moreover, an analogous statement holds for classical modular
forms of arbitrary weight k. It would be interesting to establish something
of a converse to this, e.g., is it true that a classical modular function for
Lo(pY) with Fourier coefficients in Q, and with poles only at the ramified
cusps which lies in B(I'g(p")) is actually a modular function for I'g(p")?
We remind the reader that the spaces B(I'o(p")) are not Banach spaces (at
least, they are not naturally so), but they are Frechet spaces with respect
to the family of norms inherited from the Banach spaces B(C) for all real
numbers C' > p"2(p + 1).

2. The U operator

Let B = B(C) for some fixed C' > 1 4 p. For our purposes, the basic
operator on B is Atkin’s U-operator, whose action can be described at the
g-expansion level by

U: Zanq” — Zanpq".

(This description gives no hint about why U maps B to Bj; a proof can be
found in [6].) One can show that if C' > 1 + p, the U operator decreases
the rate of growth. Specifically, U maps functions with growth rate C' to
functions with growth rate C'/p. Thus, we get a map

U: B(C) — B(C/p) — B(C).

The fact that the U operator factors through the inclusion implies that
U is a completely continuous operator. In elementary terms, this means
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the following. Let L = L(C) be the unit ball in B. Then, for each n > 0
there exists a finite dimensional subspace V,, C B such that

UL)CV,+p"L.

(Essentially, this says that U is the limit of a sequence of operators of finite
rank.) Given such an operator, it is natural to ask how the dimension of
V,, grows as a function of n. For the U operator, we gave such an estimate,
which we suspect is not optimal, in [9]. One might think of such estimates
as measuring the “degree of complete continuity” of an operator.

The spectral theory of completely continuous operators on p-adic Ba-
nach spaces is analogous to the classical theory due to Riesz and Fredholm.
It is systematically developed in [14], to which we refer the reader for de-
tails.

Given a rational number y, we say a form f € B is of slope y if there
exists a polynomial G € Q,[X] such that

e all the roots of G (in @p) have valuation y, and
. GU)(f) =0.

It follows from the complete continuity that the set of all modular functions
of slope y forms a finite dimensional, Hecke equivariant, continuous direct
summand of B, which we call BY. Although the space B depends on our
initial choice of the growth rate C' > 1 + p, the finite dimensional spaces
BY are independent of this choice. There exist continuous projections
ey: B — BY which commute with the Hecke operators.

For all y > 0, the space BY is contained in the Frechet space B(I'y(p))
of section 1. Now let B9 denote the closed subspace of the Frechet
space B(I'o(p)) generated by the spaces BY for all y.

It is not known whether the Hecke operators T, can be simultaneously
diagonalized on the spaces BY (though it is natural to conjecture that this
is the case). It is expected that the action of U on BY may fail to be semi-
simple, so that the elements of BY may only be generalized eigenfunctions
for the U operator. Nevertheless, it is clear that if BY is of dimension
one, then any generator will be a simultaneous eigenform for the Hecke
and U operators. (The dimension seems to be one in all the examples
we computed.) These eigenfunctions give rise, in the standard manner
(see [6] or [11]), to two-dimensional, continuous, p-adic representations of
Gal(Q/Q) whose determinant is the inverse of the cyclotomic character
and whose properties remain rather mysterious.

It follows from Hida’s work that if p > 5 then

dim B® = dim M),
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where Mg_l denotes the ordinary part of the space of classical eigenforms
of weight p—1 and level 1. We have conjectured that a similar result holds
in general, that is, that
dim BY = dim M;;’n(pil),

where n is any integer greater than or equal to y and the superscript
y denotes projection onto the subspace generated by U-eigenforms with
eigenvalues of valuation y. Since the numbers on the right can be computed
explicitly (see, for example, [8]), constructing elements of BY provides a
mild test of the conjecture.

In [4] and [5], Coleman has proved that there exists an A (depending
on y) such that

; Y — g Y
dim B —dlmMpn+A(p_1).

This goes a long way towards proving the conjecture mentioned above, but
unfortunately is not helpful from a computational point of view. Given
Coleman’s result, our computations can be seen as evidence that one can
take A = 0 in our situation, and we conjecture that one can always do so.

Further information on the spectrum of U is hard to come by. We point
to two results that may be relevant. First, there is the formula (due to
Dwork) that is discussed by Katz in [12, Appendix 3]. This expresses
the characteristic power series of the U operator (acting on overconver-
gent modular functions) as an infinite product of L-functions. These L-
functions are themselves quite mysterious and it seems difficult to obtain
much information on the spectrum directly from this result.

A second intriguing result is the recent work of Stevens on “rigid-
analytic modular symbols” (see [15]). Stevens constructs, for each weight k,
a p-adic Banach space which extends the classical space of modular sym-
bols attached to modular forms of weight k, defines an action of U and of
the Hecke operators, and shows that U acts completely continuously. He
then shows that the characteristic power series of U acting on this space
is related in a simple way to the characteristic power series of U acting
on overconvergent p-adic modular forms of weight k. It seems possible
that Stevens’ space of modular symbols will prove to be more amenable to
computation than the space of overconvergent modular forms.

3. Spectral decomposition

Since U is completely continuous, given a prime number p and a tame
level N, the set of eigenvalues for U acting on the space B of overconvergent
functions is a sequence tending to zero. Hence, the set of possible slopes is
a sequence of rational numbers (one knows that they are positive rational
numbers) tending to infinity. Let S = S(IV, p) be that sequence.
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For each i € S, we can consider the projection
ei(f) =i € B’

of f to the space of functions of slope i. For 0 < z < oo, let Bl?*] denote
the subspace of B generated by the eigenspaces BY for 0 < y < z. If
x < oo, BI%# is finite dimensional, and we have a continuous projection

e)(f) = ¢y € BT,

We clearly have

Pla) = €] (f) = Zei(f) = Z%‘-

i<z i<z

This suggests that we can associate to f the formal series formed by all
the projections to finite slope.

Definition 3. The infinite series

doealf)=> v

i€ES i€ES
is called the asymptotic U-spectral expansion of f € B.

There is, a priori, no reason to expect this series to converge. One does,
however, have the following result, which follows easily from the spectral
theory (much as in the complex case):

Proposition 1. Let

Then there exists € > 0 such that
ord(U"(f — ¢[a1)) > v(z +¢) for v > 0.

This justifies using the word “asymptotic” to describe our expansion.
It is easy to see that the asymptotic U-spectral expansion is the only
expansion satisfying the property given by this proposition.

Let T be the closed algebra of endomorphisms of B(C') generated by
the Hecke operators T, for ¢ # p. Since the Hecke operators commute with
U, the action of T stabilizes each of the finite dimensional spaces B*. It
is tempting to try to refine our expansion further by expressing each ¢;
as a linear combination of Hecke eigenfunctions of slope ¢. This would be
possible if one knew that the action of T on each B is semisimple; unfor-
tunately, one does not know whether that is the case. In the computations
below, the functions we obtain do turn out to be Hecke eigenfunctions.
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It is interesting to ask whether the asymptotic U-spectral expansion
might be a convergent series, and, if so, whether it will converge to f
itself. In this direction, note that each of the terms of the expansion are
U-eigenfunctions (or generalized eigenfunctions) with nonzero eigenvalue,
and hence belong to B(I'g(p)). If the expansion were to converge, one
would then expect it to converge to a function in B(I'g(p)); in fact, it
would belong to the subspace denoted B>l above. For f ¢ B(I'o(p)),
then, the sum of the expansion (if it converges) cannot be equal to f.
Perhaps one could think of it as a projection of f to Bl0:>I?

The computations below exploit first Proposition 1 and then the possi-
bility that the expansions we get are actually convergent.

4. Some 5-adic modular functions

Let p = 5. We attempted to compute subspaces of small slope by
starting with a reasonably simple element of B and then iterating the
U operator. This is essentially Atkin’s idea; see, for example, [1]. (The
details of the computations are described in the next section.) The results
are consistent with the following picture of B0:5],

We seem to have BY # 0 with y < 5 only for y = 0, 1, 4, and 5. The
only classical forms of weight 0 are the constants, which, by Hida’s theory,
are also the slope 0 subspace. So we set fy = 1.

The slope 1 subspace seems to be one-dimensional, generated by an
eigenform f7 such that

f1 =q + 8528631¢° + 8596652¢° + 2788848¢* + 3054065¢°
+ 6727787¢° + 2747331¢" + 7297460¢° + 69893124°
+1247515¢"° + 538817¢"" + 96431464'2 + 6371187¢*®
+ 5536986¢** + 7427880¢° + 8198461¢'° + 322665647
+ 5179372¢*® + 7613040¢"° + 8613995¢%° + 67389374
+ 275777¢%% + 658622¢%% + 3400795¢** + 8336725¢°
+2954997¢%¢ + 8893915¢7 + 3799063¢® + 6152060¢°°
+ 8960405¢°° + 5895922¢3" + 4363161¢>2 + 756309¢>°
+3309811¢**  (mod 5'°, ¢%)
Using the data above, one can check, by computing T,(f1) directly for
prime numbers £ such that 2 < ¢ < 17, that f; does behave as an eigenform

within the precision of the calculation. For example, Ty(f1) = 8528631 f1
(mod 519, ¢1®).
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We know the first few coefficients of f; to better precision:

f1 =q+ 731184881¢> + 994924777¢> + 246929473¢*
4 149538440¢° + 817274662¢°  (mod 5'3,¢")

The slope 4 subspace seems also to be one dimensional, generated by
an eigenform fy given by

f1 =q+13584¢% + 13213¢> + 1618¢* + 1875¢° + 10174°
+ 48444 + 3370¢% + 10452¢° + 125040 + 467¢"*
+3634¢'? + 7143¢"3 + 4021¢'* + 8750¢'°
+ 11646¢*° + 1714¢'"  (mod 55, ¢*®)

(The reason for the loss of precision, both 5-adically and in the number of
terms of the g-expansion, will become clear when we describe our compu-
tation.)

Finally, our computations yield a 5-adic eigenform of slope 5, given by:

f5 =q + 14016¢° 4 8637¢> + 2943¢* + 9375¢° + 9317¢° + 156¢"
+ 7705¢% + 9227¢° + 9375¢% + 2092¢" + 12441¢"% + 2932¢"3
+ 14621¢™ + 3125¢"° + 152464¢'° 4 7586¢'7  (mod 5%, ¢'®)

Again, one easily checks that these numbers are consistent with the claim
that f; and f5 are eigenfunctions.

The conjectures described in [8] and [7] predict that the dimension of
the slope 1 subspace in weight 0 should equal the dimension of the slope
1 subspace of the space of classical modular forms of weight 20 and level
1, and in fact the unique normalized cusp form of level 1 and weight 20 is
of slope 1, and is congruent to f; modulo 52.

One can also test the conjectures by considering the subspace of slope
2. In our computations, this is of dimension zero (i.e., we see no forms of
slope 2). The conjectures would predict, then, that there are no classical
modular forms of slope 2 in weight 100 and level 1, and indeed there are
no such forms.

5. Computing the spectral expansion

We begin by obtaining a reasonably large number of terms in the g¢-
expansion of a 5-adic modular function of tame level 1. To obtain such a
form, we can use several different ideas. First, classical modular functions
on I'g(5™) will be overconvergent, and if they are regular at the cusp at
infinity then they will be regular from the 5-adic point of view. In partic-
ular, we can work with the inverses of the hauptmoduls for levels 5 and
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25, which are (1(52)/1(2))% and 1(252)/n(z). Since the curve with j = 0
has supersingular reduction, we can also work with 1/j5. In addition, we
can use the U operator to “kill off” a pole; for example, we can work with
U(j). Finally, we can take classical modular forms of higher weight 4k,
and divide them by a power of E4 (which is a lift of the Hasse invariant).
In particular, we work with (n(2)n(52))*/Es.

One sees a qualitative difference between the results for functions that
are “of level 5” (i.e., that are known to belong to B(I'g(5))) and the results
for functions of higher level (e.g., 25). In the first case, the behavior is very
close to what one would expect if the asymptotic expansion of f actually
converges to f. In the second, things are much more fuzzy.

Suppose one has found enough? terms of the g-expansion of such a
modular function h. We can then begin to determine its decomposition.
We describe the process in a “good” case, i.e., a form that belongs to
B(I'o(5)).

First, we subtract off any constant term in the g-expansion, which will
be the projection to slope zero. Let ¢y be the constant term, and set
h' = h — c¢o. We know, then, that U™(h") will be divisible by 5 when n is
sufficiently large. Optimistically, we assume this will hold for all n > 1 (as
indeed it does in our computations, for functions of level 5, at least for the
first several terms in the g-expansion®), and we compute hy = U(R')/5,
and h2 == U(hl)/5

If we assume that

h = co + ¢1 f1 + terms of higher slope,

we would expect that hy should be congruent to a multiple of ¢; f1 modulo
a high power of 5, and should therefore be highly congruent to a Hecke
eigenform. We check this by dividing hy by its leading coefficient to get a
normalized form h}, computing T5(hf) — aghl, (where ag is the coefficient
of ¢? in the g-expansion of hj) and checking the 5-adic valuations of all
the coefficients we have available. If m is the smallest of these valuations,
we reduce modulo 5™. In all of our computations, this process always
produces (to the precision available) the same form f;, and we check that
it is a Hecke eigenform (to the precision available). Both facts strongly
suggest that the subspace of slope 1 functions is one-dimensional.

To compute the coefficient ¢y, we must divide the leading coeflicient
of hy by (A/5)?, where ) is the eigenvalue of U on f;. To obtain this as

2How much is enough depends on how many terms of the g-expansion we want to
test at the end, and to what 5-adic precision. When we could, we used over a thousand
terms.

3For the case h = U(j), the results announced by Atkin in [1] would imply that this
does hold.
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precisely as possible, we took the best of our computations (for h = 1/j)
and computed hs = U(ha)/5, which gives us (fewer terms of) f; modulo
513 so that in particular we know A\/5 modulo 5'2, which allows us to
compute ¢; without loosing any 5-adic precision.

Now we look at b/ = h — ¢y — ¢1 f1. We expect that U(h") should be
highly divisible by 5 (though the theorem only assures us of this for high
powers of U). Computing U more times, however, would require us to
know many terms of the g-expansion of f;, which would require much too
many terms in the initial expansion of h. So we proceed in a different way,
which depends on the possibility that the asymptotic expansion actually
approximates h.

We first test h” for divisibility by 5; it is quite often divisible by 5% (all
but one of the computations). After dividing by a power of 5 (and therefore
losing some 5-adic precision), we attempt to diagonalize the action of the
Hecke operators on the space generated by h”. In practice, we diagonalize
the action of T5 on the space spanned by A" and T5(h") (checking that this
space is Hecke-stable modulo a power of 5), and check that the resulting
two functions are Hecke eigenfunctions (within the limits of our precision,
both 5-adic and in g-expansion). In all our computations, these functions
are fy and f5. The actual slopes are determined in the computation for
1/j, which allows us to find both functions modulo 5°. The fact that
this computation succeeds (and gives always the same two eigenfunctions
fa and f5) is evidence that the spaces of slopes 4 and 5 are both one-
dimensional. It also suggests that the next step in the decomposition
should involve functions of somewhat higher slope.

The result is an asymptotic expansion

h~cy+efi+teafs+esfs+... (mod5™, ¢")

In Table 2, we record the coefficients obtained for various choices of h. In
addition, we record the 5-adic precision m and the number n of terms of
the g-expansion which were checked.

We only did two computations for functions which are not known to be
“of level 5” in the sense introduced earlier. These were g1 = 17(25z)/n(2),
which is the inverse of a hauptmodul for level 25, and the form ¢, =
(n(52)n(252))*/E4, which is an oldform of weight 4 and level 25 divided
by E4. For both of these functions, the first half of the computation works
well, giving the same form f; of slope 1 modulo a power of 5. (There is
one slight glitch for go. In this case U3(g2) is only divisible by 52, but
dividing by 52 yields a multiple of f; modulo 519.)

In both cases, however, the second part of the process does not work
as well. For g;, the expression we get for (T5)?(h”) (using the notation
above) as a linear combination of h” and Ty(h"') is only correct modulo 53,
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Function co c1 c4 cs n | m
1/4 0 8295001 5%.5786 | 54-12192 || 18 | 10
5 4
WZ)E”—(Z)) 0 1121501 54.1031 | 53-1498 || 17| 9
4
U(@4) 744 | 5214624 55.93 56.2 171 8
5 6
("( Z)> 0 559751 53.532 | 5%.248 || 17| 8
n(2)
25
n(252) 0 4377 " « 35| 6
n(z)
2 4
W 0 | 571244252 * * 25 | 10
4

TABLE 2. U-spectral expansion of modular functions

and one only recovers f4 and f5 to a very low 5-adic accuracy (modulo 5
in one case, modulo 52 in the other). For go, the fact that U3(gs) is only
divisible by 52 makes the coefficient ¢; have 5-adic valuation —1, and this
makes the rest of the computation hard to carry out. In the table, we have
recorded only the results of the first half of the computation.

Notice that this behavior is consistent with the fact that the “error
term” (the difference between the initial form and a partial sum of the
asymptotic expansion) must be “more serious” in this case than in the
level 5 case, since all the terms of the asymptotic expansion are of level
5. In the level 5 case, it is conceivable that the asymptotic expansion is
actually convergent, while in the general case it cannot be. In fact one
might ask ...

Question 1. Suppose f € B(T'g(p)). Does the U-spectral expansion of f
converge to f7

Notes on the table:

(1) The coefficients ¢ are in fact known to infinite p-adic precision,
since they are simply the constant terms in the g-expansions.

(2) For the “level 5” computations (the first four lines), the initial
portion of the expansion, cg + ¢1 f1, was in fact computed to 2n
terms of the g-expansion; this precision was halved in the second
part of the computation by computing 75.
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The verification that the functions that appear in the expansions
are indeed fi1, fi, and f5 is done to the precision allowed by the
data. Hence, for example, the identification of f; was checked
modulo 5! for the first row, but only modulo 5° for the third. In
particular, when h = U(j)/25, we can only identify f; modulo 53,
and fs modulo 52.

In the fourth line, ¢; is in fact known modulo 5°, but finding the
other two coefficients involves a division by 5.

In the last two lines, which correspond to functions which are not
“of level 5”, we have recorded only the coefficient which we can
determine to some degree of precision, namely, c;.

Note that for the “level 5” cases the coefficients ¢4 and c¢5 seem to
be highly divisible by 5. This is consistent with a positive answer
to our question about whether the U-spectral expansion of a form
“of level 5” is actually convergent.

6. Some 3-adic results

We have done similar computations in a 3-adic context. In this case,
one can use results of Hatada [10], together with the conjectures in [8]

and [7],
consistent with the following picture for the space B

to predict that the smallest nonzero slope is 2. Our findings are
[0,6].

e BY is nonzero only for y = 0, 2, and 6.

e BY is one-dimensional, generated by fy = 1.

e BY is one-dimensional, generated by an eigenform

fo = q + 8088¢% + 14580¢> + 18976¢" + 4818¢° + 2187¢°
+14801q" + 5493¢® + 15327¢'° + 131284 + 5832¢*2
+7073¢" + 18165¢'* 4 17496¢° + 13048¢*® + 1440047
+18047¢" 4 18516¢%° + 13851¢%! + 9162¢%2 + 4908¢%*
+17496¢%* + 14740¢%° + 7626¢%¢ + 7049¢8 + 17619¢*°
+6561¢%° + 15344¢31 + 1875642 + 8748¢>*
+ 2889¢%1 +19392¢%°  (mod 3'9, ¢%%)
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e B? is one-dimensional, generated by an eigenform

fo =q + 228432¢% + 2136060¢° + 1378318¢* + 2704551¢°
+309447¢5 4 3835247¢" + 3322797¢° + 782298¢°
+ 423720940 + 32992864¢'! + 3813192¢'% + 4463207¢*3
+1493943¢ + 2800224¢*° + 3992659¢'¢ + 148653¢7
+ 608958¢™® + 1760357¢% + 77874¢*° + 5739304
+ 508284¢%*% + 3870618¢*% + 2129301¢* + 663307¢%°
+ 1629384¢%° + 20412¢°7 + 23087¢® + 4523646¢%°
+ 843615¢° + 4221431¢%' + 1801071¢%? 4 2397141¢%
4 2805165¢* + 1906464¢>° + 201528043 + 1687682¢>7
+ 3317487¢%% + 1070325¢%% + 1324737¢"° + 39926764
+ 2797470¢"% + 3528329¢"3 + 108570¢** + 4152141¢*°
+ 29275744 + 312425447 + 4112919¢"*® 4 322806¢*°
+ 869673¢%° + 4764177¢%1 + 2524127¢%? 4 275445943
+ 414217845 + 4199031¢°° + 4622259¢°° 4 1434690¢°7
+ 4182498¢°% + 2860773¢°% + 1440558¢°° + 2625458¢°1
+1197195¢5% + 2216565¢5% + 1218385¢%* + 770997¢5°
+ 723978¢5% + 1331693¢°" + 3062601¢°® + 33738664%°
4 3274029¢°  (mod 3, ¢"™)

e Finally, we find one more eigenform, determined (mod 36, ¢3°),
which is of slope bigger than 6.

Appendix: relating the two definitions

The definition of overconvergent forms and of the Banach spaces B(C)
given in section 1 is different from the one found in [12] or in [6]. The
purpose of this section is to reconcile the two definitions by showing that
they are in fact equivalent. We begin by recalling the basic definitions.
It seems more natural to put this more generally at first, and work with
general weight k£ and level N.

Let p be a prime number, p > 5, let R denote the ring of integers in a
finite extension K of Q,, and let E,_; be the classical Eisenstein series of
weight p — 1. About E,_1, recall that it can be understood as a function
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of an elliptic curve with a non-vanishing differential, and that E,_; (EF,w)
(mod p) is equal to the Hasse invariant of the reduction of E.

Definition 4. Let N be an integer not divisible by p, and let » € R.
A test-object of level N and growth condition r over R is a quadruple
(E/A,w,,Y), where
(1) E is an elliptic curve over a p-adically complete and separated
R-algebra A,
(2) w is a non-vanishing differential on E,
(3) ¢: py — E[N] is an inclusion of finite flat group-schemes over A
and
(4) Y € A satisfies the equation

Y -E,_1(E,w) =r,
where E,_; is the classical Eisenstein series of weight p — 1.

The idea is to mimic the classical definition of an elliptic curve with
level structure, but add a constraint on ord(E,_;(E,w)). Now we define
p-adic modular forms as functions of test-objects.

Definition 5. Let r € R, and let N and k be integers, with p{ N. An
r-overconvergent p-adic modular form of weight k and level N defined over
R is a rule f which assigns to each test-object (E/A, w,t,Y) of level N and
growth condition r defined over R, an element

f(E/A,w,1,Y) € A,

called the value of f at the test-object, satisfying the following conditions:

(1) The value f(E/A,w,t,Y) depends only on the isomorphism class
of the test-object (E/A,w,t,Y).

(2) The formation of the value f(E/A,w,t,Y) commutes with base-
change of p-adically complete R-algebras.

(3) For any A € A* we have

A 0,0, Y) =X f(E/A,w,0,Y).

(4) Let Tate(q) be the Tate elliptic curve over Z,((g)), and consider it
as an elliptic curve over the p-adic ring A = R®Z,((q)) of Laurent
series in ¢ with coefficients in R. Let Ay denote the subring of
power series in ¢:

Ao = R&Ly[[q]] = R[q]] € A= R&Zy((q))-
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Let w be the canonical differential on Tate(q), and let ¢ be any
inclusion ¢: puy <— Tate(q)[N] of group schemes over A. Fi-
nally, recall that E,_;(Tate(q)) is invertible in Z,[[¢]], and let
Y =rE,_1(Tate(q),w)™!. Then we require that

f(Tate(Q)/A7w7 L7Y) €A = RHQH

Condition (4) is to be understood as requiring “holomorphicity at the
cusps.” This is because the Tate curve with various level N structures
gives uniformizations of formal neighborhoods of the cusps.

Definition 6. We denote by My (R, N;r) the R-module of all p-adic mod-
ular forms of weight k, level NV, and growth condition r which are defined
over R, and we define My (K, N;r) = My(R,N;r)® K.

If we give the K-vector space My (K, N;r) the p-adic metric whose unit
ball is equal to My (R, N;r), it becomes a p-adic Banach space over K. If
r1|re, there is a map

My (K,N;ry) — Mp(K,N;r),

which can be shown to be an inclusion. When ord(ry) > ord(ry) this map
is completely continuous; when ord(r;) = ord(rs), it is an isomorphism.
Using this, we can think of all of our spaces as contained in My (K, N;1),
which we shall call the space of all p-adic modular forms of weight k& and
level N (over K).

We want to say a p-adic modular form is overconvergent if it belongs to
My (K, N;r) for a non-unit . We have to be just a little careful because
of the requirement that r € R, and we will call the notion we are defining
“M-overconvergence” to distinguish it from the notion used in the main
text.

Definition 7. A p-adic modular form f € My (K, N;1) is said to be M-
overconvergent if there exists a finite extension L of K and a non-unit
element r in the ring of integers of L such that f € My (L, N;r).

The goal of this appendix is to prove two facts:

(1) a modular function is M-overconvergent if and only if it is over-
convergent (in the sense of Definition 1);

(2) ifr € K is such that ord(r) = 1/C, then My(K, N;r) is isomorphic
to the space B(C).

The main tool to establish this connection is a more explicit description
of p-adic modular forms given by Katz in [12], as sums of power series
in E;_ll. We recall how that is done, specializing to the case of modular
functions, i.e., modular forms of weight zero.
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Given k and N, let M£(N) denote the space of classical modular forms
of weight k on I'y(IV) with coefficients in Z,. For each k, multiplication
by E,_1 gives an injective map

M (N) — Mg, 1 (N).

Katz shows that this map is split, and hence that for every ¢ > 0 we can

choose a submodule B;(Z,, N) C Mic(lpil)(N) such that

M, 1 (N) = Ep 1 M{ 1y, 1)(N) & Bi(Zy, N).

i(p—1)

(For i = 0, we just take Bo(Z,, N) = M§(N) = Z,.) We extend this
to general Z,-algebras R by setting B;(R,N) = B;(Z,,N) ® R. For f €
B;(R, N) with g-expansion ) | a,¢", we set ord(f) = inf ord,(a,,), where as
usual we normalize the p-adic ord by requiring ord,(p) = 1. It follows from
the g-expansion principle for classical modular forms that ord(f) =z > 0
implies that f = sfy, where s € R, ord(s) = x and ord(fy) = 0.

With these notations, Katz shows that any element of My(R, N;1) can

be written as
oo
P oma
i=0

where b; € B;(R, N) and we have ord(b;) — oo. Furthermore, we can show
that f € Mg(R, N;r) if and only if we have

e ord(b;) > iord(r) for every i

e ord(b;) —iord(r) — oo as i — 0.
(If we only want to identify which f € My(K, N;r), then the second
condition will suffice.)

We are now ready to prove that “overconvergent” (as defined in the
text) and “M-overconvergent” are equivalent. We formulate our argument
in the specific context of weight zero and level 1, but a similar argument
would work in a more general setting.

Proposition 2. Let R be a finite extension of Z,, and let r € R be a

non-unit. Let f € My(R,1;7). Then there exist rational functions f, on

Xp)poz = X QL/p'L for v =1, 2, ... satisfying the following conditions:
(1) each of the f, is regular except possibly at the supersingular points;
(2) the f, restrict one to another: f,+1 = f, (mod p*) for allv > 1;
(3) there exist constants C' and D such that the order of the poles of

fu at the supersingular points is less than or equal to Cv + D;

(4) the f, converge to f in the g-expansion topology.

In other words, if f € My(R,1;71), then f is overconvergent with integral
q-expansion.
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Proof. Suppose f € My(R,1;r). Then, as above, we can write

f:Z r'b; E;zp

with b; € B;(R,1). Given v, let

=[5

be the smallest integer that is greater than or equal to v/ord(r). Then

a

f= Z ribE," —%ZribiEZj (mod p"),

p 1 =0

and the right-hand side is a rational function on Xz, with poles of order
at most a at the supersingular points. Hence, if we set

Zr’b Ep 1

pliO

we find that f, has a pole of order at most

LSM <o T

This gives the system of rational functions f, we are looking for, with
C=1/ord(r)and D =1. O

The converse is just a little harder.

Proposition 3. Let f be an overconvergent modular function with integral
g-expansion. Then f is M-overconvergent.

Proof. Suppose f is an overconvergent modular function with integral ¢-
expansion, so that we have a system of rational functions f, as above.
Enlarging C' if necessary, we can assume that f, has poles of order at most
Cv at the supersingular points. Then ngl fv will have no poles at the
supersingular points, and hence will be a classical modular form of weight
Cv(p —1). Using Katz’s result above, we can write this in terms of the
Bi(Zy,1), so that

Cv
gy Sy = Z b ES

and therefore

Cv
o= Z bz('V)E;il
1=0
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with b; € B;(Zy,1).
Now, for every v we know that f, — f,_1 is divisible by p*~!. This
translates to congruences for the bg”):

bz(»y) - bgl’_l) =0 (mod p*~1), fori=0,1,...C(v—1);
bgy) =0 (mod p¥71), fori>C(v—1).

It follows that for each ¢ the sequence bg”) converges in B;(Z,,1), so
that we may set

b; = lim b € Bi(Zp,1),

V— 00

and we note that we also get that for each v > 1
ord(b;) > v —1 ifi>C(v—1).

This implies that the b; “tend to zero”, so that we may define

f=> bE,";.
=0

We clearly have f, — f as v — oo, and it remains to check that f is
M-overconvergent.

To see this, let R be a finite extension of Z, in which there exists an
element r satisfying ord(r) = 1/2C. Then we have

1
ord(rfb;) > v — 3 if i>Cv—-1),
which gives

ord(r®b;) > iord(r) for all i

and
ord(r€b;) —iord(r) — oo as i — oo,
which means that ¢ f € My(R,1;7), so that f is M-overconvergent, as

claimed. [

In fact, it is easy to see that the argument at the end may be modified
to show that for any r such that ord(r) < 1/C, some multiple of f is
r-overconvergent.

Corollary 4. “Overconvergent” and “M-overconvergent” are equivalent.
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Now it remains to consider the explicit definition of the spaces L(C') and
B(C) given in the text. Since the definition uses the fact that one has an
expansion in powers of 57!, it depends specifically on the fact that we are
working with p = 5, weight zero, and level 1. Restricting to this situation
allows us to describe the spaces B;(Z,, 1) completely explicitly, since we
know that the algebra of all classical forms is generated by E,_; = E4 and
Eg. We can take:

® By(1) = Zy,
e if i = 3k, then B;(Z,,1) = E¥7Z,,
e otherwise, B;(Z,,1) = 0.
Thus, the expansion of a typical f € My(R,1;7) will look like
oo N
Fe Z r3 EC)LSEG _ ngkak <E_§> ,
k=0

with ar € R, ap — 0.
Furthermore, one can easily find the expansion of 1/j:

1) 1 E}-E 1 ) E2
j 1728E} 1728 E3)’

so that, in particular, 735~ € My (R, 1;7) (for any r). Conversely, we have

E2 1728
2 =6 _ 14

and these two formulas give an easy way to translate between our expan-
sions and the expansions in 1/ used in the text, giving:

Proposition 5. Let R be a finite extension of Z,, let K be its field of
fractions, and let r € R be an element with ord(r) = 1/C. Then we have

L(C)®R = My(R,1;7)
and

B(C)&K = My(K, 1;7).

Proof. Just use equations (1) and (2) to change from an expansion in terms
of E2/E3 to one in j~! and vice-versa. [
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