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CONVEXIFIABILITY AND

SUPPORTING FUNCTIONS IN C2

Martin Kolář

Let p be a point on the boundary of a smooth domain Ω ⊂ C2. A
holomorphic function defined in a neighbourhood U of p, which satisfies

{q ∈ U | f(q) = 0} ∩ Ω̄ = {p}

is called a supporting function at p. The reciprocal of such function provides
a function locally defined on Ω which blows up precisely at p. There is no
such function if the Levi form at p is negative.

A related problem is to find a holomorphic function in a neighbourhood
of p whose absolute value on Ω̄∩U attains its maximum at p (a holomorphic
peak function). More generally a Ck-peak function, for k = 0, 1, . . . ,∞, is
defined to be a holomorphic function in Ω∩U which belongs to Ck(Ω̄∩U)
and satisfies f(p) = 1 and |f(q)| < 1 for q ∈ Ω̄ ∩ U \ {p}. We will use the
term smooth peak function when k = ∞.

By local convexifiability we will mean the existence of local holomorphic
coordinates in a full neighbourhood of p such that bΩ is convex in the
induced linear space.

One of the basic properties of strongly pseudoconvex domains is that in
a neighbourhood of any boundary point there is a biholomorphism which
transforms the domain into a strongly convex domain. In particular it gives
immediately a supporting function and a holomorphic peak function.

In this paper we consider some weakly pseudoconvex domains and two
related questions: local convexifiability and existence of a supporting func-
tion. Since it is not any more difficult, we formulate the results also for
peak functions. The passage from supporting functions to smooth peak
functions is due to a result of Bloom in [B].

It follows from the Kohn-Nirenberg example that a weakly pseudoconvex
domain need not be locally convexifiable and need not have a supporting
function at a boundary point where the Levi form degenerates (see [KN]).
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The same domain, by a result of Fornæss, does not admit a C1-peak func-
tion (see [F]). One can contrast this fact with the result of Bedford and
Fornæss which gives a continuous peak function for weakly pseudoconvex
domains in C2 (see [BF] and also [FM]).

The Kohn-Nirenberg example is the domain

{(z, w) ∈ C2 | Re w > |z|8 +
15
7
|z|2Re z6},

where the point in question is the origin. In this example, 0 is a point of
finite type 8.

We will assume that Ω ⊆ C2 is a pseudoconvex domain with C∞ bound-
ary and p ∈ bΩ is a point of finite type (see [K] for the original definition
in C2 and [D] for a general definition). Recall that p is a point of type k if
in suitable local holomorphic coordinates (z, w) centered at p the boundary
is described by

(1) Re w = P (z, z̄) + o(|z|k, Im w),

where

(2) P (z, z̄) = |z|k +
∑

j=2,4,...,k−2

|z|k−jRe(ajz
j)

for some aj ∈ C. The model domain at p is the domain

{(z, w) ∈ C2 | Re w > P (z, z̄)}.

One possible question is whether the model domain admits a C∞-peak
function and a supporting function or is convexifiable. Another question
is how much the model domain determines the properties of bΩ at p.
For supporting functions and smooth peak functions, the model domain
almost always decides whether they exist at p on Ω. We prove the following
sufficient condition:

Proposition 1. Let the model domain at p be given by (2). If

(3)
∑
j�k

|aj | +
∑
j|k

k2 − j2

k2
|aj | < 1,

then there is a supporting function and a smooth peak function at p.

On the other hand, convexity of the model domain is not sufficient to
guarantee that bΩ is locally convexifiable; here the higher order terms also
play a role. We give a sufficient condition for convexity of the model do-
main:
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Proposition 2. If

∑
j2≥3k−2

j2 − k

k
|aj | +

∑
j2<3k−2

√
(4k − 4)(k2 − j2)
(4k − j2 − 4)k2

|aj | < 1,

then P is convex.

Both conditions follow from exact conditions which are computable for
model domains of the Kohn-Nirenberg type, defined by

(4) P k,l
a (z, z̄) = |z|k + a|z|k−lRe zl,

where l < k is an even integer and a > 0.
In part 2 we also formulate an exact condition for convexifiability of

domains defined by (4) when l � k, and compare it with the conditions for
the existence of a supporting function.

1. Supporting functions

Let Mk,l
a denote the domain in C2 defined by

{(z, w) ∈ C2 | u > P k,l
a (z)},

where w = u + iv. The Levi form on bMk,l
a is equal to

1
4
∆(P k,l

a )(z) = k2|z|k−2 + a(k − l)(k + l)|z|k−l−2Re zl.

It follows that Mk,l
a is pseudoconvex for

(5) a ≤ k2

k2 − l2
.

If a < 1, then P k,l
a (z) > ε|z|k and there is a linear supporting function

at the origin. By a result due to Bloom, pseudoconvexity is in this case
enough to give also a smooth peak function at p (see [B]).

For a > 1, we first consider the case when l � k. A simple modification
of the proof of the main proposition in [F] (for peak functions) and of
Proposition 28.1 in [FS] (for supporting functions) gives

Lemma 1. Suppose that the model domain at p ∈ bΩ is Mk,l
a , and l � k. If

a > 1, then there is no C1-peak function and no supporting function at p.

(See [Ko] for more details.) In the remaining case, when a = 1, there is
a supporting function on Mk,l

1 at 0, e.g., f(z, w) = w + zkl, and a smooth
peak function g(z, w) = exp(−w − zkl + w2). However, if Mk,l

1 is a model
domain at p, then in general there need not be a smooth peak function
at p. An example due to Bloom shows that there need not be a C13-peak
function (see [B]).

Now we consider the case when l | k.
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Lemma 2. If the model domain at p is given by Mk,l
a and l | k, then there

exists a supporting function and a C∞-peak function at p.

Proof. We need to consider a ≥ 1. In polar coordinates, (1.4) becomes
u = rk(1 + a cos lθ). Let k = m l. The pseudoconvexity condition is now
a ≤ m2

m2−1 . For a real number c, we define new coordinates by w∗ =
w + c

2zk, z∗ = z. In such coordinates, after dropping stars,

u = rk(1 + a cos lθ + c cos kθ).

We will show that there is a constant c0 such that 1+a cos lθ+c0 cos kθ > 0.
It is enough to consider a = m2

m2−1 . Denote φ = lθ, and put c = (−1)m 1
m2−1 .

We will prove that the function

f(φ) = 1 +
m2

m2 − 1
cos φ + (−1)m 1

m2 − 1
cos mφ

is nonnegative. Note that c is chosen so that f(π) = 0. We calculate the
minimum of f . If f has minimum at φ, then

− m2

m2 − 1
sinφ + (−1)m+1 m

m2 − 1
sin mφ = 0,

i.e., m sinφ = (−1)m+1 sinmφ. Concavity of the function sinφ in the
interval (0, π) implies that sinφ > 1

m sin mφ when φ ∈ (0, π), while the
reverse holds for φ ∈ (π, 2π). So the only extrema of f are at φ = 0 and
φ = π, namely minimum at π and maximum at 0. Since f(π) = 0, we have
f(φ) > 0 for φ 
= π.

Since (−1)m cos mπ > 0, it follows that if ε > 0 is small enough, then
for c0 = c + ε

(6) 1 + a cos lθ + c0 cos kθ > 0.

Therefore, in the new coordinates, the function f(z, w) = w is a supporting
function at 0. Since (6) implies that u ≥ ε|z|k on bΩ , the existence of a
C∞-peak function follows again from [B]. �
Proof of Proposition 1. We rewrite P as

P (z) =
∑

j

Pj(z) + (1 − A)|z|k

where Pj(z) = k2−j2

k2 |aj ||z|k + |z|k−jRe ajz
j if j | k and Pj(z) = |aj ||z|k +

|z|k−jRe ajz
j if j � k, and where A is the sum on the left hand side of (3).
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For j | k, by Lemma 2, there exists a cj ∈ C such that Pj(z)+Re cjz
k ≥ 0,

while if j � k, then already Pj ≥ 0. So if we take c =
∑
j|k

cj , then

P (z) + Re czk > (1 − A)|z|k.

That gives a supporting function. The existence of a C∞-peak function
follows again from [B]. �

2. Local convexifiability

Now we turn to the question about convexity of model domains, and
convexifiability of Ω near p. First we calculate the conditions for convexity
of Mk,l

a .

Lemma 3. If l2 ≥ 3k − 2, then Mk,l
a is convex for

a ≤ k

l2 − k
.

If l2 < 3k − 2, then Mk,l
a is convex for

a2 ≤ (4k − l2 − 4)k2

(4k − 4)(k2 − l2)
.

Proof. Let us calculate the real Hessian of P k,l
a on the unit circle (and use

homogeniety of P k,l
a ). We will express the values of P k,l

a and its derivatives
in terms of polar coordinates (r, θ) and calculate the Hessian at a point
eiθ with respect to the rotated basis ∂

∂n (θ), ∂
∂t (θ) formed by the unit outer

normal vector and the unit tangent vector to the unit circle at (1, θ).
Denote F = P k,l

a , i.e.,

F (r, θ) = rk(1 + a cos lθ).

The relation between Fnn, Ftt, Fnt and the derivatives of F with respect to
polar coordinates follows from the formulas

∂2

∂n2
=

∂2

∂r2

∂2

∂t2
=

1
r2

∂2

∂θ2
+

1
r

∂

∂r
∂2

∂n∂t
=

1
r

∂2

∂r∂θ
− 1

r2

∂

∂θ
.
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From this we obtain the entries of the Hessian:

Fnn = k(k − 1)(1 + a cos lθ)

Ftt = k + a(k − l2) cos lθ

Fnt = a(l − lk) sin lθ.(7)

So Fnn ≥ 0 for a ≤ 1, and Ftt ≥ 0 for

(8) a ≤ k

|l2 − k| .

The determinant of the Hessian, FnnFtt − F 2
nt, is a quadratic function

in cos lθ. Let x = cos lθ, and let p(x) = Ax2 + Bx+ C be this function. Its
coefficients are

A = a2(k − 1)(k2 − l2)

B = a k(k − 1)(2k − l2)

C = k2(k − 1) − a2(k − 1)2l2.

So A > 0, and p(x) as a function on (−∞,+∞) has minimum at x = − B
2A ,

i.e., at

x =
k(2k − l2)
2a(k2 − l2)

.

There are two possibilities, either − B
2A ∈ (−1, 1), or the minimum of p(x)

on [−1, 1] is attained at 1 or -1. The first possibility occurs when

(9) a >
k|2k − l2|
2(k2 − l2)

.

When condition (8) is stricter than (9), i.e., if

(9a)
k|2k − l2|
2(k2 − l2)

>
k

|l2 − k| ,

then − B
2A is not in (−1, 1) for a ≤ k

l2−k and the determinant is nonneg-
ative on (−1, 1) if and only if it is nonnegative at +1 and −1, i.e., when
Fnn, Ftt ≥ 0. Condition (9a) simplifies to

l2 > 3k − 2,
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and if this condition is satisfied, then automatically k
l2−k < 1. In other

words, Mk,l
a is convex if and only if Ftt ≥ 0, i.e., for a ≤ k

l2−k . If l2 < 3k−2,
then there are values of a for which Fnn, Ftt ≥ 0, but p(x) is negative
somewhere inside of (−1, 1). Then the condition for convexity comes from
the discriminant of p(x). Mk,l

a is convex if and only if B2 − 4AC ≤ 0. This
simplifies to the condition

a2 ≤ (4k − l2 − 4)k2

(4k − 4)(k2 − l2)
. �

Proof of Proposition 2. We split P in the same way as in the proof of
Proposition 1. By Lemma 3, each of the summands is convex. So their
sum, P (z), is also convex. �

If the model domain at p is Mk,l
a and l � k, then its convexity gives a

necessary condition for convexifiability of bΩ around p.

Proposition 3. (a) Let the model domain at p be Mk,l
a , where l � k and

l2 ≥ 3k − 2. If a > k
l2−k , then Ω is not convex in any holomorphic coordi-

nates around p.
(b) Let the model domain at p be Mk,l

a , where l � k and l2 < 3k − 2. If
a2 > (4k−l2−4)k2

(4k−4)(k2−l2) , then Ω is not convex in any holomorphic coordinates
around p.

Proof. Let (z, w) be local holomorphic coordinates in which bΩ is described
by

u = F (z, z̄, v),

where F is a C∞ function vanishing together with its 1-st partial derivatives
at p (the general case is obtained by an affine change of coordinates). A
usual argument (contained, e.g., in [Ko]) shows that either

(10) F (z, z̄, v) = Re αzj + O(|z|j+1, v),

where 2 ≤ j ≤ k − 1 and α ∈ C \ {0}, or

(11) F (z, z̄, v) = P̃ (z, z̄) + O(|z|k+1, v),

where P̃ is a homogeneous nonharmonic polynomial of degree k, and that in
the second case P̃ is obtained from P k,l

a by a transformation z∗ = αz, w∗ =
w+βzk, where α, β ∈ C, α 
= 0. If F has form (10), bΩ is not convex around
p. Let F have form (11). We have, up to a linear transformation of the z

variable, P̃ (z) = P k,l
a (z)+Re czk for some c ∈ C. By Lemma 3, P k,l

a is not
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convex. We need to show that P̃ is not convex. Consider again the unit
circle, parametrized by θ. Let D2f(θ, ξ) denote the value of the Hessian of
a function f at θ in the direction ξ, and let P = P k,l

a . From (7) it follows
that

(12) D2P (θ, ξ) = b + c cos lθ + d sin lθ,

where b, c, d are functions of the coordinates of ξ with respect to the basis
∂

∂n (θ), ∂
∂t (θ). Let θ̃, ξ̃ be such that D2P (θ̃, ξ̃) < 0 and let ξ̃ = ξ1

∂
∂n (θ̃) +

ξ2
∂
∂t (θ̃). If θj = θ̃ + 2πj

l , j = 0, ..., l − 1, then by (12),

D2P (θj , ξj) = D2P (θ̃, ξ̃),

where ξj = ξ1
∂

∂n (θj) + ξ2
∂
∂t (θ

j). Denote hc = Re czk. Again from (7), we
get

D2hc(θ, ξ) = b cos kθ + c sin kθ,

where b, c are functions of the coordinates of ξ with respect to the basis
∂

∂n (θ), ∂
∂t (θ). It follows that

l−1∑
j=0

D2hc(θj , ξj) = 0,

so

(13)
l−1∑
j=0

D2P̃ (θj , ξj) < 0,

and P̃ is not convex. Therefore, by (13) and (11), if r0 > 0 is sufficiently
small, then for every r < r0 there exists a j such that

D2F (r eiθj

, ξj) < −εrk−2,

and F is not convex in any neighbourhood of p. �
To compare the conditions for supporting functions and for local con-

vexifiability, take as an example

P 8,6
a (z, z̄) = |z|8 + a|z|2Re z6.

M8,6
a is pseudoconvex for a ≤ 16

7 . When a = 15
7 , it gives the Kohn-

Nirenberg example. If 1 < a ≤ 16
7 , then there is no supporting function

and no C1-peak function at 0. If 2
7 < a ≤ 1, then there is a supporting

function and a smooth peak function at 0, but there are no local holo-
morphic coordinates in which the boundary is convex. If a ≤ 2

7 , then the
domain is convex.
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