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SYMPLECTIC STRUCTURE ON RULED SURFACES

AND A GENERALIZED ADJUNCTION FORMULA

T. J. Li and A. Liu

0. Preliminary

In this section, we state the theorems needed in our paper. Recently,
Seiberg and Witten ([SW], [Wi]) have introduced a new set of 4-manifold
invariants. These invariants are in similar spirit to Donaldson invariants
but much easier to handle. Various longstanding conjectures including the
Thom conjecture are proved using Seiberg-Witten invariants. An important
ingredient in the proof of the Thom conjecture by Kronheimer and Mrowka
is the wall crossing formula for manifolds with b1 = 0.

Seiberg-Witten invariants take on a very simple form for Kahler sur-
faces ([Wi], [B], [FM1]). All the basic classes are explicitly known and in
particular, the anticanonical bundle is always a basic class. A large part
of this story is generalized to symplectic manifolds by Taubes who ([T1],
[T2], [T3], [T4]) proved several remarkable theorems on Seiberg-Witten
invariants of symplectic four-manifolds. Recall that every symplectic man-
ifold has a complex line bundle, K (called the canonical bundle), which is
canonical up to isomorphism. The first theorem of Taubes is

Theorem 1. ([T1]) Let M be an oriented symplectic four-manifold with
b+
2 ≥ 2. Let ω be a symplectic form compatible with the orientation. Then

c1(K−1) on M has Seiberg-Witten invariant ±1.

This result clearly shows that the Seiberg-Witten invariant is an impor-
tant tool to study the differential topology of symplectic four-manifolds;
we will see in this paper that indeed this has many applications. The next
two theorems of Taubes give very strong constraints on symplectic forms
and almost complex structures supporting symplectic structures.

Theorem 2. ([T2]) Let M , ω, K be as in the above theorem and let E ∈
H2(M ;Z) have nonzero Seiberg-Witten invariant. Then

|E · [ω]| ≤ c1(K) · [ω],
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and if equality holds then either ±E is equal to c1(K). In particular,

c1(K) · [ω] ≥ 0.

Theorem 3. ([T2]) The manifold CP 2 has no symplectic form ω for which
c1(K) · [ω] > 0.

In his latest paper, for a cohomology class V ∈ H2(M ;Z), Taubes uses
a new kind of Gromov invariant Gr(V ) (defined by Ruan [R], see also
[MS] and [RT]) counting embedded symplectic surfaces (not necessarily
connected) in the homology class Poincare dual to V .

Theorem 4. ([T3]) M as in Theorem 1. Let E be a nontrivial complex
bundle over M and use E to define a spinC structure L ∈Spin with S+ =
E ⊕ K−1 ⊗ E. Then SW (L) = ±Gr(c1(E)).

Theorem 1 and Theorem 4 are still true when b+
2 = 1, if we replace the

standard Seiberg-Witten equation by Taubes’s r → ∞ deformed Seiberg-
Witten equation. These theorems make it possible to study the structure
of the space of symplectic forms on a symplectic four-manifold.

In complex geometry, the corresponding problem of understanding the
moduli space of complex structures has been studied for a long time and
there are very satisfactory answers for many complex surfaces([FM2]). For
CP 2, Yau [Y] proved, as a consequence of his solution of Calabi’s con-
jecture, that any complex surface homotopic to CP 2 is holomorphically
isomorphic to CP 2.

The moduli space of symplectic structure is a very hard question. Even
for CP 2, not much was known until the middle 80’s, when Gromov invented
the concept of J-holomorphic curves (see [G]) and applied it to prove that
if a symplectic homology CP 2 has a pseudo-holomorphic rational curve
which represents the generator of H2, then it is symplectomorphic to CP 2

with the standard symplectic structure.
Gromov’s theorem was generalized by Mcduff [M] to cover the case of

rational or ruled surfaces assuming the existence of embedded pseudo-
holomorphic rational curves with nonnegative self-intersection. Although
this type of theorem strongly constrains the symplectic structures, at that
time, it was not clear at all if the assumption of the existence of the pseudo-
holomorphic rational curves could be achieved or not.

A striking consequence of Taubes’s theorems is that for any possible sym-
plectic structure on CP 2, the desired pseudo-holomorphic rational curve
always exists. Combining with Gromov’s result, he proved
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Theorem 5. ([T3]) The manifold CP 2 has a unique (up to symplectomor-
phism) symplectic structure.

Another consequence is

Theorem 6. ([T3]) Let M, ω, K be as in Theorem 1. If E ∈ H2(M ; Z)
is represented by a smooth −1 sphere, then it is also represented by a sym-
plectic −1 curve.

1. Statements of results

In this paper, we are going to study the symplectic topology of symplec-
tic four manifolds. An important tool is the general wall crossing formula
of Seiberg-Witten invariants. If b+

2 > 1, then the SW invariants are well
defined smooth invariants. However, when b+

2 = 1, as in the case of Don-
aldson invariants, a general one parameter deformation can not avoid the
bad points where reducible solutions occur, so the invariance breaks down.
It is Kronheimer and Mrowka [KM] who first studied the wall crossing for-
mula when b1 = 0 and the moduli space is zero-dimensional in their proof
of the Thom conjecture. In [LL], we generalize their wall crossing formula
to allow arbitrary b1 and arbitrary dimension of the moduli space as long
as it is nonnegative. The difficulties arise because the reducible solutions
are not anymore isolated points as in the case b1 = 0. In fact, they are
parametrized by the Albanese torus, and the geometry around them is very
complicated. By several reductions, we bypass these difficulties and prove

Theorem (General wall crossing formula). Let M be an oriented four-
manifold with b+

2 = 1 and b1 even, and L ∈ H2(M ;Z) a spinC structure
with dimM(L) ≥ 0, then after crossing a wall, SW (L) changes by

±(
1
2
(Ω2 · L)[M ])b1/2/(b1/2)! [T b1 ].

As a corollary, we get

Corollary 1 (Wall crossing formula for ruled surfaces). Let M be
an S2 bundle over a riemann surface Σ of genus g or its blow-up, and let
E ∈ H2(M ;Z) have a Seiberg-Witten moduli space with nonnegative formal
dimension (−c1(K) · E + E · E ≥ 0). Then after crossing a wall, SW (E)
changes by

±(
c1(M) + 2E

2
[S2])g.

For the precise meaning of Ω, see [LL]. The main conclusion is that when
crossing a wall, the invariant does not always change by ±1 as in the case
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discussed by Kronheimer and Mrowka, but depends on some characteristic
classes calculation. The new phenomenon is the jump of the SW invariant
of a line bundle; it only depends on its first Chern class and can change by
either an even integer or an odd integer which we call even type and odd
type respectively. For an even type line bundle, the SW invariant is still a
smooth invariant modulo two.

For a symplectic manifold with b+
2 = 1, combined with Taubes’s Theo-

rems 1-6, we can often get interesting results without detailed understand-
ing of the geometry of the manifold. This is different from the study of
Kahler manifolds which crucially depends on the classification and explicit
knowledge of the underlying manifolds. This is illustrated by the following
theorem.

Theorem A (−1 curve theorem). Let M be a symplectic four-manifold
with b+

2 = 1. If a cohomology class E can be represented by a −1 sphere and
its paring with K is ±1, then E or −E can be represented by a symplectic
sphere.

The proof is inspired by Taubes’s proof of Theorem 6. One main ap-
plication of the explicit wall crossing formula is to study the uniqueness of
the symplectic structure on ruled surfaces.

Theorem B. For an S2-bundle over a Riemann surface, the symplectic
structure is unique (up to diffeomorphism and symplectic deformation).

Theorem C. For blow-ups of geometrically ruled surfaces, the symplectic
structures are unique.

Theorem D. There is a unique symplectic structure on CP 2#kC̄P
2 for

2 ≤ k ≤ 9 up to diffeomorphisms and deformation. For k ≥ 10, The
symplectic structure is still unique for the standard canonical class.

We can also show that for geometrically ruled surfaces, the symplectic
cone is the union of the ample cones for all different complex structures.
Other interesting applications are the following two theorems.

Theorem E (Generalized adjunction inequality). Suppose M is a
symplectic four-manifold with b+

2 = 1 and ω is a symplectic form. Let C be
a smooth, connected, embedded surface with nonnegative self-intersection.
If [C] · ω > 0, then 2g(C) − 2 ≥ K · [C] + [C]2.

Theorem F. For a symplectic four-manifold with b+
2 = 1, ω1 and ω2

are two symplectic forms, and ω1 is in the forward cone, K1 and K2 are
canonical classes for ω1 and ω2, if ω1 ·ω2 > 0, then K1 ·ω1 ≥ K2 ·ω1 where
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equality holds if and only if K1 = K2 modulo torsion. If ω1 · ω2 < 0, then
K1 · ω1 ≥ −K2 · ω1.

However as the forward cone and backward cone are disjoint, Theorem
E does not imply K1 · ω1 ≥ |K2 · ω1| which is impossible since it would
contradict Taubes’s Theorem 3.

The proof of Theorem E basically follows Kronheimer and Mrowka’s
proof for CP 2, but also use Taubes’s theorems. Also note that the Thom
conjecture for Kahler surfaces was proved by Morgan, Szabo and Taubes
([MST]).

This paper is organized as follows. In §2, we first introduce some def-
initions. Then we study in detail the wall crossing behaviour in Taubes’s
perturbation and prove Theorem A. In §3, we prove Theorems B, C and
D. In §4, we prove Theorems E and F.

2. SW invariants for b+
2 = 1 and wall crossing

Let us first give some definitions. Denote by p the quotient map from
the space of closed 2-forms to H2(M ;R).

Let J be an almost complex structure on M . We say a nondegenerate
2-form ω is J-compatible if J is ω-compatible, i.e., ω(V, JV ) > 0 for all
nonzero tangent vector V . We call J a symplectic almost complex structure
if there exists J-compatible symplectic forms. For such a J , define the
symplectic cone CJ of J to be the image of all the J-symplectic forms
under the map p.

Let K ∈ H2(M ;Z) be the canonical class of a homotopy class of almost
complex structures. We say K is a symplectic canonical class if there
exists a symplectic almost complex structure in this homotopy class. For a
symplectic canonical class K, define the symplectic cone CK to be the union
of the symplectic cones CJ of all the symplectic almost complex structures
in this homotopy class.

We call two symplectic forms ω1 and ω2 deformation equivalent if ω1 and
ω2 are joined by a path of symplectic forms (not necessarily cohomologous).
We say that ω1 and ω2 give the same symplectic structure if there exists a
self-diffeomorphism Φ such that ω1 and Φ∗ω2 are deformation equivalent.

For a four-manifold M with b+
2 = 1, in general, the Seiberg-Witten

invariant is no longer a smooth invariant of the underlying manifold, since
a generic 1-parameter deformation can not avoid reducible solutions, i.e.,
solutions with the spinor part ψ are identically zero. The moduli space
has singularities at reducible solutions, and the invariant may jump. Given
a metric g, since the self-dual harmonic 2-form is one-dimensional, there
is a unique associated self-dual harmonic 2-form ωg for g, mod nonzero
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scalars. For the standard SW equation, reducible solutions exist if and
only if P+FA = 0, or equivalently, c1(L) · [ωg] = 0. The cohomology classes
with positive square form a cone with two connected components. Given
an orientation of H+, one is called the forward cone and the other is called
the backward cone.

In the rest of this section, we assume that M is a four-manifold with
b+
2 = 1. Let us examine in detail Taubes’s constructions. There are three

parts:

Standard SW equation:

(1a)
DAψ = 0

P+FA =
1
4
τ(ψ ⊗ ψ∗).

Perturbed SW equation:

(1b)
DAψ = 0

P+FA =
1
4
τ(ψ ⊗ ψ∗) + tP+FA0 −

it

4
· ω 0 ≤ t ≤ 1

where A0 is a canonical connection on K−1 (up to gauge equivalence).

Deformed SW equation:

(1c)
DAψ =0

P+FA =
1
4
τ(ψ ⊗ ψ∗) + P+FA0 −

ir

4
· ω r ≥ 1.

A wall could appear in any of the following three steps,
(1) The standard metric wall: where anti-self-dual harmonic 2-forms

suddenly appear.
(2) From the standard SW equation to the perturbed SW equation:

there might be some walls for some t ∈ [0, 1].
(3) From the perturbed SW equation to the deformed SW equation:

there might be some walls for r ≥ 1.
In the following, we will study the number of walls that occurred in each

step of Taubes’ perturbation. We say the wall crossing number of L is n if
after crossing a wall, the SW invariant of L changes by ±n.

Lemma 2.1. If c1(E) · ω ≤ 0 (in particular, if c1(E) · ω = 0), then there
are no walls in step 3.

Proof. Suppose (A, 0) occurs as a reducible solution. Wedge ω with the
deformed equation,

P+FA = P+FA0 − irω, r ≥ 1
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and note that FA is the curvature of K−1 ⊗ E2 and FA0 is the curvature
of K−1. We get

c1(K−1 ⊗ E2) · ω = c1(K−1) · ω + rω · ω.

By assumption, c1(E) · ω ≤ 0, so r ≤ 0 and does not lie in the defining
region r ≥ 1. �

The above equation, viewed as an equation of r, always has a real solu-
tion; let rcr be the unique solution. Then we have the following lemma:

Lemma 2.2. Suppose some walls occur in step 2, then

(1 − t)c1(K−1 ⊗ E2) · ω = (1 − rcr)tω · ω.

If c1(E) · ω > 0, then we can assume rcr > 1.

Proof. Suppose (A, 0) occurs as a reducible solution. Wedge ω with the
perturbed equation,

P+FA = tP+FA0 − itω, 0 ≤ t ≤ 1,

then we have c1(K−1 ⊗ E2) · ω = tc1(K−1) · ω + tω · ω. So

(1 − t)c1(K−1 ⊗ E2) · ω = tc1(E2) · ω + tω · ω.

By the definition of rcr, this gives (3.8). �

If c1(E) · ω > 0, then rcr > 0. Notice that the right hand side of (3.8)
is quadratic in ω while the left hand side is linear in ω; by scaling ω by
a positive constant, rcr can be chosen to be greater that 1. The scaling
would not affect the number of walls occurring in steps 2 and 3.

Corollary 2.3. If (K−1 +2E) ·ω > 0 then there is an odd number of walls
in steps 2 and 3. If (K−1 + 2E) · ω < 0 then there is an even number of
walls in steps 2 and 3.

For symplectic manifolds with metrics of positive scalar curvature, first
notice that such a manifold necessarily has b+

2 = 1 by Taubes’s Theorem 1.
If the wall crossing number for K−1 is n, then since in Taubes’s chamber,
the SW invariant is ±1, the invariant for the psc metric is 0 = pn ± 1 for
some integer p. But this is possible only if n itself is ±1. We have just
proved the following:
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Lemma 2.4. If M is a symplectic four-manifold with psc metric and b+
2 =

1, then the wall crossing number of K−1, for a wall as described in steps
1–3 for any symplectic form, is ±1.

This simple lemma put strong constraints on symplectic canonical class
K for symplectic manifolds with b1 �= 0 if combined with the explicit wall
crossing formula.

Lemma 2.5. Let M be a symplectic four-manifold with psc metric and
b+
2 = 1. If ωpsc is a harmonic self-dual two form associated to a positive

scalar curvature metric and lies in the forward cone, then K−1 · ωpsc > 0.

Proof. By Lemma 2.4, the wall crossing number is nonzero, K−1 ·ωpsc can
not change sign. If K−1 · ωpsc ≤ 0, then since the space of metrics of
positive scalar curvature is open, we can assume that K−1 ·ωpsc < 0. Let ω
be any symplectic form such that K−1 ·ω �= 0 (we can always choose such a
symplectic form, since the space of symplectic forms is open in the space of
closed forms). If K−1 · ω > 0, there is an odd number of metric walls from
any metric compatible with ω to any psc metric, and by Corollary 2.3, there
is an odd number of walls in step 2 and 3, so there is an even number of
walls in step 1-3. If K−1·ω > 0, there is an even metric wall from any metric
compatible with ω to any psc metric, and again by Corollary 2.3, there is
an even number of walls in step 2 and 3, so again there is an even number
of walls in step 1-3. But this contradicts with the fact that the r → ∞
deformed SW equation has exactly one solution, since for positive scalar
curvature metric, there is no solution for the standard SW equation. �

Remark. This lemma can be proved directly for ruled surfaces by explicitly
calculating ωpsc.

We give a simple but quite useful lemma which can be viewed as the
analogue of Hodge index theorem of algebraic surfaces.

Lemma 2.6 (Light cone lemma). For smooth oriented four-manifold
with b+

2 = 1, any two elements a, b in the closure of the forward cone have
a · b ≥ 0. In particular, if a, b are both nonzero, then a · b = 0 if and only
if b = γa for some γ > 0.

Proof. The quadratic form can be diagonalized in a real basis. Call the
coordinate system (x, 'y), then after a rescaling, it is represented as x2 −∑

i y2
i . If a = (x, 'y) and b = (x

′
, 'y

′
) are both in the closure of the forward

cone, then

x2 −
∑

y2
i ≥ 0, x′2 −

∑
y

′2

i ≥ 0, x, x
′ ≥ 0.
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Then Cauchy-Schwartz inequality implies xx
′ ≥

√∑
y2

i

√∑
y

′2
i ≥

∑
yiy

′
i.

So a · b ≥ 0.
If a · b �= 0, then x �= 0 and x

′ �= 0. If a · b = 0, then the Cauchy-
Schwartz inequality becomes equality and x2 =

∑
y2

i , x
′2

=
∑

y
′2

i and 'y is
proportional to 'y

′
. �

Finally, we prove a symplectic −1 curve theorem for symplectic mani-
folds with b+

2 = 1. The idea of the proof comes from Taubes who cleverly
uses reflections along −1 spheres in his proof of Theorem 6. Recall for an
oriented four-manifold M , the norm of a element ξ ∈ H2(M ;Z) is defined
to be N(ξ) = 1

2ξ · ξ. For any η ∈ H2(M ;Z) with η2 = ±1 or ±2, define a
special kind of automorphism of H2(M ;Z), reflection R(η) along η by

R(η) : ξ −→ ξ − 1
N(η)

(ξ · η)η.

Proof of Theorem A. Let us first assume that the wall crossing number for
K−1 is odd. The first step is to prove that E is represented by a symplectic
curve. In Taubes’s chamber, the SW invariant of K−1is odd. By Corollary
2.3, if K−1 · ω > 0, the SW invariant of K−1 for the metric compatible
with ω is even, and if K−1 ·ω < 0, the SW invariant of K−1 for the metric
compatible with ω is odd.

Now apply Taubes’s trick: Reflect along E; K−1 goes to K−1 +2E. So,
if (K−1 + 2E) · Re(E)(ω) > 0 (< 0), then the SW invariant of K−1 + 2E
for the metric compatible with Re(E)(ω) is even (odd). Note that Re(E)
preserves the forward cone and the backward cone, so ω and Re(E)(ω) are
in the same cone. Apply Corollary 2.3; we see that no matter whether
(K−1 + 2E) · ω is positive or negative, the SW invariant of K−1 + 2E is
odd in Taubes’s chamber, so E is represented by a symplectic curve.

But it remains to prove that E is indecomposable, i.e., E can not be
represented by disjoint union of symplectic curves. By the adjunction and
dimension formulae, a generic connected, embedded, symplectic curve with
negative square is a symplectic −1 curve. Suppose Fi are components of the
symplectic curve representing E. Then dimGr(Fi) = 0, since dimGr(E) =
0. Since E2 = −1, at least one Fi has negative square, say F1, then F1

is a symplectic −1 curve. Denote it by E
′
. So E is of the form E

′ ∐
i Fi.

Let T =
∐

i Fi. Since E
′

is a symplectic −1 curve, it must be unique, so
the SW invariant of K−1 + 2E

′
is odd in Taubes’s chamber. By Corollary

2.3, if (K−1 + 2E
′
) · ω > 0 (< 0), then the SW invariant of K−1 + 2E

′

for the metric compatible with ω is even (odd). Now apply Taubes’s trick
again: reflect along E

′
, K−1 + 2E

′
goes to K−1 − 2T . Argued as above,
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we get that the SW invariant of K−1 − 2T is odd in Taubes’s chamber. So
−T is represented by a symplectic curve, but T is also represented by a
symplectic curve, a contradiction.

When the wall crossing number of K−1 is even, then for K−1—hence
for K−1 + 2E and K−1 − 2T—the SW invariant is odd in any chamber,
and the result follows from the same argument as above. �

3. Symplectic structures on ruled surfaces

In this section we will prove Theorems B, C and D.

Theorem B. There is a unique symplectic structure on the S2-bundle over
a Riemann surface.

Let M be a S2-bundle, then H2(M ;Z) is a free abelian group of rank
two generated by the base class x and the fiber class y. Let K−1

s be the
standard anticanonical class, then K−1

s = 2x + (2− 2g)y if M is the trivial
bundle, and K−1

s = 2x + (1 − 2g)y if M is the nontrivial bundle.
First we prove that for the standard canonical class, the symplectic

structure is a deformation equivalent to the standard one. For the nontrivial
S2-bundle over S2, we use Theorem A and Taubes’s Theorem 5. For other
S2-bundles, we first show that the r −→ ∞ deformed SW equation has
solutions for the fiber class y, then apply Taubes’s argument of SW =
±Gr to conclude that Gr(y) �= 0. We finally prove that fiber class y is
indecomposable, i.e., can not be represented by disjoint union of embedded
smooth submanifolds, so there exists J-holomorphic rational curve of self-
intersection 0 in the fiber class. The last step is the following theorem of
Mcduff:

Theorem. ([M]) Any minimal symplectic 4-manifold (X, ω) which con-
tains an embedded rational curve Σ with Σ · Σ �= 0 is deformation equiva-
lent to the S2-bundle over a Riemann surface with the standard symplectic
form.

Then we show that exotic canonical classes, i.e., canonical classes which
can not be mapped to the the standard ones by diffeomorphisms, do not
support any symplectic forms.

Proof of Theorem B. We start from the chamber of psc metric, consider
the SW equations for K−1

s + 2y. SW (K−1
s + 2y) = 0 for positive scalar

curvature metric. Now consider the metric g compatible with ω. Do the
deformation; when r >> (a + b)/ab (where [ω] = ax+by), the SW invariant
crosses an odd number of walls. By the wall crossing formula, the wall
crossing number is odd for K−1

s + 2y, hence there is at least one solution
in Taubes’s chamber. �
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Lemma 3.1. Let M be an S2-bundle over Σ, then for any symplectic form
ω whose canonical bundle is isomorphic to Ks, there is an odd number of
walls crossed for det(S+) = K−1

s when going from the psc metric chamber
to Taubes’s chamber for the form ω.

Proof. Since y2 = 0, and ωpsc is in the forward cone, y ·ωpsc > 0, hence by
Lemma 2.5, (K−1

s +2y) ·ωpsc > 0. Let ω = ax+by be any symplectic form.
By a small deformation of ω, we can assume that (K−1

s + 2y) · ω �= 0. If
(K−1

s + 2y) · ω > 0, then by Corollary 2.3, there is an odd number of walls
in steps 2 and 3. Similarly, if (K−1

s + 2y) ·ω < 0, by Corollary 2.3, there is
an even number of walls in steps 2 and 3. In both cases, odd numbers of
walls occur. �
Lemma 3.2. y is an indecomposable class.

Proof. Let y = (Ax+By)
∐

(Cx+Dy). If M is the trivial S2-bundle, then

AD + BC = 0, A + C = 0, B + D = 1.

Either A = 0 or 1 = 2B. It is easy to see there is no nontrivial integer
solution.

If M is the nontrivial S2-bundle, then

AC + AD + BC = 0, A + C = 0, B + D = 1.

We get A(1 − A − 2B) = 0. If A = 0, then C = 0. Since By and Cy
are pseudo-holomorphic curves for the same symplecic form, B and C are
all nonnegative, forcing one of them to be zero. If A + 2B = 1, then
C + 2D = 1. The formal dimensions are

dim(Ax + By) = A(3 − 2g) + 1, dim(Cx + Dy) = C(3 − 2g) + 1.

Since the formal dimensions of both curves should be nonnegative, we see
if g �= 1, or 2, A and C must both be zero, and B = D = 1

2 . But y is
a primitive class, so this is impossible. If g = 1 or 2, the only possible
decomposition is y = (y − x)

∐
x. We will rule out this case by proving

that y − x is indecomposable and has too “small” a genus.
If y−x = (Ax+By)

∐
(Cx+Dy), then we get A(−B−A)+B(−1−A) =

0. B is divisible by A provided A �= 0. If A = 0, then C = −1, B = 0
and D = −1: the trivial decomposition. So we assume A �= 0. Write
B = kA to get A = −k/(2k + 1). It has a nonzero integer solution only if
k = −1 ⇒ A = −1, B = 1: the trivial decomposition again. So y − x is
indecomposable.

The genus of y − x is 0 if g = 1, and is −1 if g = 2. �
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The virtual genus of y is zero; since y is indecomposable, the y-curve
must be an embedded symplectic sphere. If M is not the nontrivial S2-
bundle over S2, then M does not have any −1 sphere. By Mcduff’s theorem,
the symplectic structure for K−1

s is unique.
For the twisted S2-bundle over S2, the only anticanonical bundle is

2x+ y, up to diffeomorphism. The class x− y is represented by a −1 curve
and its pairing with K−1 is 1, so by Theorem A, it is a symplectic −1
curve. Blow-down this curve to get a CP 2; by Taubes’s Theorem 4, the
symplectic structures on CP 2 are unique.

Next we want to show the other almost complex structures do not sup-
port any symplectic forms. We need the following result of Wu.

Theorem. ([Wu]) Homotopy classes of almost complex structures on M
are in one-to-one correspondence with cohomology classes K ∈ H2(M ;Z)
which are integral lifts of w2 and satisfy K2 = 3σ + 2χ.

The complex conjugation maps x to −x and y to −y, so we can assume
that the coefficient of x is nonnegative. When the base is a sphere, it is
easy to see that there are no exotic canonical classes. When the genus is
one, if M is the trivial bundle, the exotic canonical classes are K = 2lx,
l ≥ 0 or K = 2ly, l ≥ 0; if M is the nontrivial bundle, the exotic canonical
classes are K = (2l + 1)y, l > 0, or K = l(2x − y), l ≥ 1. When the genus
is greater than 1, if M is the trivial bundle, the exotic canonical classes are
K = 2lx+ 4−4g

2l y, l ≥ 1 and 4−4g
2l is even; if M is the nontrivial bundle, the

exotic canonical classes are K = 2lx + [ 2−2g
l − l]y, 2−2g

l − l odd.
By Corollary 1, wall crossing numbers for these exotic canonical classes

are not equal to ±1; by Lemma 2.4, they do not support any symplectic
structures.

We can also get complete constraints on the symplectic forms.

Proposition 3.3. Let ω = ax + by be a symplectic form on an S2 fibre
bundle over a Riemann surface Σ whose symplectic canonical bundle has
nonpositive coefficient on x. If the S2-bundle is a product, then a > 0,
b > 0; if the bundle is not, then a > 0, a + 2b > 0.

Proof. Suppose a < 0. Let e be the trivial class. Step 3 has no wall if e is
trivial. Step 2 has a wall if K−1 ·ω > 0 and does not have a wall if K−1 ·ω <
0. The representative in the forward cone is [−ω] = (−a)x + (−b)y. If step
2 has a wall, then K−1 · [−ω] < 0, so there is a metric wall form ωpsc.
If step 2 does not have any wall, then K−1 · [−ω] > 0, so there are even
numbers of metric walls. This implies in both cases that the deformed SW
equation of K−1 has even solutions, contradicting Taubes’s theorem. �
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Corollary 3.4. If M is CP 2#C̄P 2, then (x − y) · ω > 0; so the possible
symplectic forms ω = ax + by satisfy a > 0, b > 0.

Corollary 3.5. The symplectic cone of the standard canonical class CKs

is the union of ample cones.

Proof. We only have to show symplectic cones are contained in some ample
cones. For S2 bundles with a base curve of genus g, there are Kahler ruled
surface structures with e ≥ −g. In Hartshorne’s notation, H2(M ;Z) has
basis C0 and F with C2

0 = −e , C0 ·F = 1 and F 2 = 0. Let D = αC0 +βF ,
then we have

Proposition 3.6. ([H] Cor 2.18, Prop 2.19 and 2.20) If e ≥ 0, D is ample
if and only if α > 0 and β > αe; if e < 0, then D is ample if and only if
α > 0 and β > 1

2αe.

Our basis is related to Hartshorne’s basis as follows: y is just F , and

x =
{

C + e/2F if e is even,
C + (e + 1)/2F if e is odd.

It is easy to see for trivial bundles that the e = 0 complex structure has
the ample cone a > 0, b > 0, and for nontrivial bundles with base curve of
genus greater that zero, the e = −1 complex structure has the ample cone
a > 0, a + 2b > 0. For CP 2#C̄P

2, the e = 1 complex structure has the
ample cone a > 0, b > 0. �

Now we prove Theorem C. Let Mk be the blow-ups of the S2-bundle with
−1 curves E1, · · · , Ek. The anticanonical bundle of the standard almost
complex structure K−1 is 2x + (2 − 2g)y −

∑
i Ei for the trivial bundle

and is 2x + (1 − 2g)y −
∑

i Ei for the nontrivial bundle. By Theorem A,
for symplectic structures with the standard anticanonical bundle, Ei are
symplectic −1 curves, so we can symplectically blow-down Ei and get back
to S2-bundles. Since the symplectic structures on S2-bundles are unique,
we also get

Proposition 3.7. The symplectic structures with the standard anticanon-
ical bundle on Mk are unique.

Let K−1 = ax+by+
∑k

i=1 ciEi be an anticanonical class on Mk. If M is
irrational, by Wall crossing formula and Lemma 2.4, a = ±2 if K−1 support
some symplectic structures. Then Theorem will follow from Proposition 3.8
and the next Lemma.
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Lemma 3.8. Let M be an irrational ruled surface, and K−1 = 2x + by +∑k
i=1 ciEi be an anticanonical class, then K−1 is mapped to the standard

one by some diffeomorphism.

Proof. A result of Friedman and Morgan [FM] is that an automorphism Ψ
of H2(Mk;Z) comes from a diffeomorphism if and only if Ψy = ±y. It is
easy to see that such automorphisms have the form

Ψy = ±y, ΨEi = Ei + αiEi, i = 1, · · · , k,

Ψx = x −
∑k

i=1 α2
i

2
y +

k∑
i=1

αiEi

with 1/2
∑k

i=1 α2
i being an integer. Again it is easy to see that any K−1 =

2x + by +
∑k

i=1 ciEi is mapped to the standard K−1 by such an automor-
phism. �

The second statement of Theorem D follows from Proposition 3.7. To
prove the first statement, we need to study the diffeomorphism group of
P 2

k . Let Autr(P 2
k ) be the group of automorphisms of H2(M ;Z) preserving

the real characteristic classes w2 and p1. Since the manifolds are simply
connected, an automorphism is just an automorphism of its quadratic form.
The obvious automorphisms arise by multiplying some basis element by −1
and by permuting basis elements. Such automorphisms are called trivial.
Reflections along classes with square −1 and −2 (for precise definition, see
the paragraph before the proof of Theorem A) are also important as shown
by the following theorem of Wall,

Theorem. [Wall]
(1) Autr(P 2

2 ) is generated by trivial automorphisms and R(H − E1 −
E2).

(2) Autr(P 2
k ) is generated by trivial automorphisms and R(H − E1 −

E2 − E3) when 3 ≤ k ≤ 9.
(3) Every element of Autr(P 2

k ) can be realized by a diffeomorphism.

Theorem D will be finished by the following proposition.

Proposition 3.9. Diffeomorphisms act transtively on the canonical classes
of P 2

k for 2 ≤ k ≤ 9.

Proof. By Wall’s theorem, it suffices to show that Autr(P 2
k ) acts transtively

on all the characteristic elements ξ with ξ2 = 9−k. This is proved by Wall
implicitly in [W] for 1 ≤ k ≤ 8. We adapt his argument to prove the case
k = 9. Let ξ = aH +

∑9
i=1 biEi be a characteristic element with norm zero.
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Using trivial automorphisms, we can assume that a, bi ≥ 0 for i = 1, · · · , 9
and that the bi are arranged in decreasing order. Note

R(H + E1 + E2 + E3)(Ei) = Ei − (H + E1 + E2 + E3), i = 1, 2, 3,

R(H + E1 + E2 + E3)(Ei) = Ei, 4 ≤ i ≤ 9,

R(H + E1 + E2 + E3)(H) = 2H + E1 + E2 + E3.

This replaces a by 2a− b1 − b2 − b3. Hence we can decrease a if |2a− b2 −
b2 − b3| < a. We decrease a until this is no longer satisfied. It is easy to
see that it is impossible to have 3a ≤ b1 + b2 + b3, so a ≥ b1 + b2 + b3.
Hence 0 ≥ 2(b1b2 + b1b3 + b2b3) ≥

∑
4≤i≤9 b2

i . Since the bi are in decreasing
order, this implies that all the bi are the same. Since ξ is the characteristic,
and this is preserved by automorphisms in Autr(P 2

k ), it is easy to see that
3H +

∑
1≤i≤9 Ei is the only class. �

4. Symplectic canonical classes and
generalized adjunction inequality

In this section, we prove Theorems E and F.

Theorem E (Generalized adjunction inequality). Suppose M is a
symplectic four-manifold with b+

2 = 1 and ω is the symplectic form. Let C
be a smooth connected embedded surface with nonnegative self-intersection.
If [C] · ω > 0, then 2g(C) − 2 ≥ K · [C] + [C]2.

As a corollary, we get the generalized Thom conjecture for symplectic
four-manifolds with b+

2 = 1.

Corollary 4.1. Suppose M is a symplectic manifold with b+
2 = 1 and ω

is a symplectic form in the forward cone. Let C be a smooth, connected
embedded surface with nonnegative self intersection. If the class [C] is also
represented by a connected, embedded symplectic surface Σ, then g(C) ≥
g(Σ).

The following theorem of Kronheimer and Mrowka is crucial in our proof.

Theorem. ([KM]) If the SW equation of L on a cylinder Σ× S1 ×R has
translation invariant solutions, then if g(Σ) ≥ 1,

|c1(L) · [Σ]| ≤ 2g − 2.

Proof of Theorem E. First blow-up symplectically, until [C] · [C] = 0. It is
important that we still have [C] · ω > 0, but [C] is in the boundary of the
forward cone.
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If K · [C] < 0, then K · [C] ≤ −2 since K is characteristic and the
adjunction inequality is trivially true.

If K · [C] = 0 only when C is a sphere, the adjunction inequality does
not hold. Blow-up symplectically once more, then C − E is represented
by a sphere with square −1 and has pairing 1 with K

′
= K + E. By

Theorem A, E −C can be represented by a symplectic −1 curve C
′
. Note

that [E] = [C
′
] + [C] and [C]2 = 0; apply a reflection along E: K−1′ goes

to K−1
′
− 2[C]. Argued as in the proof of Theorem A, −[C] is represented

by a symplectic curve, but [C] · ω > 0, a contradiction.

The remaining case is K · [C] > 0. If the wall crossing number of K−1

is even, one can directly generate a SW solution for the long neck metric.
Let ωLN be the unique self-dual harmonic form for the long neck metric
(ωLN may not be symplectic). If the wall crossing number of K−1 is odd,
assume first that K−1 · ωLN < 0 where now the neck is taken with respect
to the smooth surface C. Now K−1 · [C] < 0. Start from Taubes’s chamber;
the invariant of K−1 is ±1. If K−1 · ω > 0, then in the symplectic metric
chamber, the invariant is 0 modulo 2 by Corollary 2.3; if K−1 · ω < 0, in
the symplectic metric chamber, the invariant is 1 modulo 2 by Corollary
2.3. In either case, the invariant is 1 modulo 2 in the long neck chamber, so
a solution exists there. If C is a sphere, then the cylinder has psc metric,
but this implies that there is no solution. Therefore, we can assume that
g(C) ≥ 1. By KM’s argument, there exists a time-independent solution of
SW for K−1, so 2g(C) − 2 ≥ K · [C] by KM’s theorem.

It remains to prove K−1 · ωLN < 0, or equivalently, K · ωLN > 0; we
need the light cone lemma. By stretching the neck to infinite length and
normalizing ωLN by

∫
M

ω2
LN = 1, we get ωLN · [C] goes to zero, as argued

by Kronheimer and Mrowka. Since the the closure of the forward cone is
closed but noncompact, ωLN can either converge to some finite point ω∞

LN

with
∫

M
ω∞2

LN = 1, or goes to infinity along the hyperbola. The first case
can not happen. Since

∫
M

ω∞2

LN = 1, ω∞
LN is in the interior of the forward

cone. So ωLN can not stay inside finite regions of the forward cone because
ω∞

LN · [C] = 0 and [C] · [C] = 0 (light cone lemma again). Therefore, written
in terms of the basis in the light cone lemma, the x-coordinate of ωLN also
goes to infinity. Let us do another normalization by fixing its x-coordinate
to be 1. Under this new normalization, ωLN ·[C] still goes to zero. Now ωLN

must converge to a finite point, since the set of points with x-coordinate
equal to 1 is compact. Still denote the accumulation point by ω∞

LN . Since
ω∞

LN · [C] = 0 and [C] · [C] = 0, by the light cone lemma, ω∞
LN = γ[C] for

some γ > 0. So K ·ω∞
LN = γ(K · [C]) > 0. But this implies that K ·ωLN > 0

if we choose a long enough neck. �
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Remark. We largely follow KM’s proof of the Thom conjecture for CP 2.
Our key observation is that it is sometimes better to work in the symplectic
category than in the Kahler category with the powerful results of Taubes
and the general wall crossing formula.

Remark. Let M, ω be as in Theorem E. For an immersed surface C with
q positive intersection points and no negative intersection points such that
[C]·ω > 0 and [C]2−2q ≥ 0, we still can prove 2g(C)−2 ≥ K ·[C]+[C]2−2q.

Theorem F. For a symplectic four-manifold with b+
2 = 1, let ω1 and ω2

be two symplectic forms with ω1 in the forward cone. Let K1 and K2 be
the two symplectic canonical classes for ω1 and ω2. If ω1 · ω2 > 0, then
K1 · ω1 ≥ K2 · ω1, where equality holds if and only if K1 = K2 modulo
torsion. If ω1 · ω2 < 0, then K1 · ω1 ≥ −K2 · ω1.

To prove the Theorem, we need the following important theorem of
Donaldson.

Theorem. (Donaldson [D]) Let M be a four-manifold with ω an integral
symplectic form. Then for k large, there is an irreducible embedded sym-
plectic curve Σ dual to kω.

Proof of Theorem F. After perturbing ω1 if necessary, we can assume that
ω ∈ H2(M ;Q). Multiply ω by some integer N ; we can further assume ω1 ∈
H2(M ;Z). Apply Donaldson’s theorem; we get an irreducible embedded
curve Σ dual to kω1. Take k large enough, then K1 · [Σ] + [Σ]2 > 0 and
K2 · [Σ]+[Σ]2 > 0, so Σ is not a sphere. To apply Theorem E to Σ, K2 and
ω2, we only have to check that ω2·[Σ] > 0, but this follows from the fact that
ω1·ω2 > 0. By Theorem E, we get K1·[Σ]+[Σ]2 = 2g(Σ)−2 ≥ K2·[Σ]+[Σ]2.
Therefore, K1 · [Σ] ≥ K2 · [Σ], but [Σ] = kω1. Hence,

K1 · ω1 ≥ K2 · ω1.

Since rational symplectic forms are dense, we have K1 ·ω1 ≥ K2 ·ω1 for all
possible ω1. If K1−K2 is not torsion, the equality holds for some symplectic
form ω0. Then K1 − K2 can take both signs for symplectic forms near ω0,
violating the above inequality. �
Remark.

(1) Taubes’s original argument can go through directly under the as-
sumption that either M has psc metric or the wall crossing number
for K−1

2 is even.
(2) The above argument is very general; in the case of b+

2 > 1, by
replacing K−1

2 with a basic SW class, one can give another proof of
Taubes’s more constraint on basic classes [T2].
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Corollary 4.3. If K1 and K2 are two distinct symplectic canonical classes,
then the symplectic cones do not intersect.

Corollary 4.4. If f is a diffeomorphism such that f∗K1 �= K1 modulo
torsion, then the symplectic cone does not intersect with its image under
f∗.

This gives constraints on the symplectic cones and diffeomorphisms.

Acknowledgement

The authors are deeply grateful to Prof. Yau for introducing us into this
field and his constant encouragement. The authors thank Prof. Taubes
for carefully reading this paper and pointing out numerous mistakes, and
above all, for sharing his important ideas with us.

References

[B] R. Brussee, Some C∞-properties of Kahler surfaces, preprint.
[BT] R. Bott and L. Tu, Differential forms in algebraic topology, Springer, 1982.
[D] S. K. Donaldson, talks given at M.I.T.
[DK] S. K. Donaldson and P. Kronheimer, The geometry of four-manifolds, Clar-

endon Press, Oxford, 1990.
[FKMST] R. Fintushel, P. Kronheimer, T. Mrowka, R. Stern and C. H. Taubes, (to

appear).
[FM1] R. Friedman and J. Morgan, Algebraic surfaces and Seiberg-Witten invari-

ants, preprint.
[FM2] , Smooth four-manifolds and complex surfaces, Springer, 1994.
[G] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent.

Math. 82 (1985), 307–347.
[KM] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the pro-

jective plane, Math. Res. Letters 1 (1994), 797–808.
[LL] T. J. Li and A. Liu, General wall crossing formula, preprint.
[M] D. Mcduff, The structure of rational and ruled symplectic 4-manifold, J. AMS

1 (1990), 679–710.
[MST] J. Morgan, Z. Szabo and C. H. Taubes, The generalized Thom conjecture, in

preparation.
[R] Y. Ruan, Topological sigma model and Donaldson type invariants in Gromov

theory, preprint.
[RT] Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, pre-

print.
[SW] N. Seiberg and E. Witten, Electric-magnetic duality, monople condensation,

and confinement in N = 2 supersymmetric Yang-Mills theory, Nuclear Phy-
sics B 426 (1994), 19–52.

[T1] C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math.
Res. Letters 1 (1994), 809–822.

[T2] , More constraints on symplectic manifolds from Seiberg-Witten equa-
tions, Math. Res. Letters 2 (1995), 9–14.

[T3] , The Seiberg-Witten invariants and Gromov invariants, preprint.



SYMPLECTIC STRUCTURE ON RULED SURFACES 471

[T4] , talks given at Harvard.
[Wa] C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms, II,

J. Reine and Angew. Math. 213 (1963), 323–338.
[Wi] E. Witten, Monoples and 4-manifolds, Math. Res. Letters 1 (1994), 769–796.
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