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INTEGRAL GEOMETRY AND D-MODULES

Alexander Goncharov

To Iosif Bernstein for his 50th birthday.

1. Introduction

1.1. The general problem. Let X be a smooth manifold of dimension
n. Any n-form with compact support ω defines a functional on C∞(X) :
< ω, f >=

∫
X

fω.
LetM be a system of linear partial differential equations on one function

on X. Denote by Sol(M, C∞(X)) (or simply SolC∞(M)) the space of
smooth solutions toM.

Any n-form, of course, defines a linear functional on SolC∞(M). How-
ever if the systemM is not empty, the functional dimension of SolC∞(M)
is less then n and so many n-forms represent the same functional.

In this paper I address the following questions:

Question 1. What is a natural realization for the (continuous) functionals
on the space SolC∞(M) ?

Question 2. What is a natural realization for the (continuous) linear maps
from Sol(M, C∞(X)) to Sol(N , C∞(Y )) ?

I assume that a functional should have essentially one natural realization
and it should be given in terms of the manifold X and system M.

1.2. Natural functionals on solutions to M: a very naive ap-
proach. Let Am(X) be the space of smooth m-forms on X. Consider a
linear differential operator

κ : C∞(X) −→ Am(X).

Definition 1.1.

• κ is M-closed if dκ(f) = 0 for any f ∈ SolC∞(M).
• κ is M-exact if there exists a linear differential operator

ν : C∞(X) −→ A(m−1)(X)

such that dν(f) = κ(f) for any f ∈ SolC∞(M).
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• κ1 isM-equivalent to κ2 if κ1(f) = κ2(f) for any f ∈ SolC∞(M).

Consider the vector space

D Sol(M)m :=
M-equivalence classes of M-closed κ′s
M-equivalence classes of M-exact κ′s

.

Example. For the zero system of differential equations this is An(X) when
m = n and zero otherwise (see §2.1 below).

Integrating the closed m-form κ(f) along a cycle γ we get a map

D Sol(M)m ⊗ Sol(M, C∞
0 (X))⊗Hm(X, R) −→ R.(1)

A natural functional is a functional on SolC∞(M) provided by a pair
([κ], [γ]).

This definition was inspired by some examples in integral geometry
([GGS], [GGG]) as well as by the notion of conservation laws for nonlinear
partial differential equations. Unlike for nonlinear equations, there is a
general construction of elements in DSol(M)m (see (10) below).

1.3. Relation with integral geometry. Let B be a manifold of dimen-
sion m and a linear operator given by a kernel K(x, y):

IK : C∞
0 (B) −→ C∞(Γ) f(x) �−→

∫
B

K(x, y)dx(2)

is injective, transforms functions f(x) to solutions of a linear system of
PDEM on Γ, and IK(C∞

0 (B)) is dense in Sol(M, C∞(Γ)).
Such a situation is typical in integral geometry. Namely, let {Bξ} be

a family of submanifolds of a manifold B parametrized by a manifold Γ.
Suppose on {Bξ} densities µξ (depending smoothly on ξ) are given. Then
there is an integral operator

I : C∞
0 (B) −→ C∞(Γ) f(x) �−→

∫
Bξ

f(x)µξ.

So here K(x, y) = µ(x, y) · δ(A) where

A := {(x, ξ) | x ∈ Bξ} ⊂ B × Γ

is the incidence subvariety. Suppose I is injective. If dim Γ > dimB the
image of the integral transformation I often satisfies a certain system of
partial differential equations and, moreover, in many cases is characterized
as the space of all solutions of this system ( see [J], [GGS]).
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Example. Let f(x) be a smooth function in R
m and

I : f(x) �−→ If(y; r) :=
∫
|ω|=1

f(y + ω · r)dω

where If(y; r) is the mean value of a function f over a radius r sphere
centered at y ∈ R

m. Then If(y; r) satisfies the Darboux differential equa-
tion ( ∂2

∂r2
−

m∑
i=1

∂2

∂y2
i

+
m− 1

r

∂

∂r

)
If(y; r) = 0.

For a point x ∈ B the δ-functional f �−→ f(x) can be considered as a
functional on Sol(M, C∞(Γ)). The problem of natural realization for this
functional is just the problem of inversion of the integral transform IK .

1.4. Content of the paper. In §3 a class of natural linear maps between
solution spaces is constructed. This provides a very general method for
solving problems of integral geometry.

In §4 we demonstrate how it works for the family of all spheres in R
m.

Our approach leads to universal inversion formulas which are nonlocal
when m is odd and local when m is even. In particular we show that a
function f in R

m is determined by its mean values over spheres tangent
to a given submanifold and derive explicit inversion formulas. The only
previously known case was the family of all spheres tangent to a plane
(horospheres in the hyperbolic geometry, see [GGV]).

Applying our method to the system of PDE on the Grassmannian and
describing the image of the Radon transform over k-planes, we come to the
“form κ” of Gelfand-Graev-Shapiro ([GGS],[GGGi]). Namely the latter
is the residue of our universal inversion formula on the variety Γx ⊂ Γ
parametrized all submanifolds Bξ passing through a given point x ∈ B
([G2]).

The form κ appeared in [GGS] as a construction “ad hoc” and looks
like a very special phenomenom. In our approach the universal inversion
formula is a very general property of the corresponding system of linear
PDE. Its locality, however, is a rather rare phenomenom, which generalizes
the notion of lacunas for hyperbolic differential equations.

In particular, in these examples, our natural functionals describe the
whole dual to the space of solutions of a linear system of PDE.

The appropriate language for these problems is the language of D-
modules and derived categories. In §3 we present a “naive” version of
the story, where only the first nontrivial Ext-group is in the game. How-
ever, the degree of this “first” group is equal to the codimension of the
characteristic variety of the system. This explains why the theory of PDE
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usually deals with m differential equations on m unknown functions: oth-
erwise we will get Extk for k > 1. A more systematic presentation will
appear in [G2].

In §5 we introduce a bicategory of D-modules, which is an algebraic
model of integral geometry.

The objects of our bicategory are pairs (X,M), where M is a (com-
plex of) D-module(s) on a variety X. A 1-morphism between (X,M) and
(Y,N ) is the algebraic part of the data needed to construct a natural lin-
ear map RHomD(M, C∞(X)) −→ RHomD(N ,D′(Y )). Composition of
1-morphisms corresponds to the composition of natural linear maps. A
2-morphism between two 1-morphisms reflects coincidence of the corre-
sponding natural maps on functions.

2. The Green class of a D-module

2.1. Language of D-modules. Let DX (or D) be the sheaf of rings of
differential operators on a manifold X. Suppose we have a linear system
M of p differential equations on q functions:

f1, ..., fq, M = {
q∑

j=1

dijfj = 0, i = 1, ..., p}.

Then we can assign to M a coherent D-module M given by q generators
e1, ..., eq and p relations:

M =
⊕D · ei

+D(
∑

dijfj)
.

On the other hand a coherent D-moduleM = Coker(Dp −→ Dq) provides
us with a linear system of p differential equations on q functions. In this
language a solution f to the system M in some space of functions F is
nothing else then a morphism of D-modules αf :M−→ F .

The De Rham complex DR(M) of a D-moduleM is defined as follows:

M−→ Ω1 ⊗OM−→ ... −→ Ωn−1 ⊗OM−→ Ωn ⊗OM(3)

where Ωn ⊗OM is sitting in degree 0, d has degree +1 and

d(m⊗ ω) := m⊗ dω +
∑ ∂

∂xi
m⊗ dxi ∧ ω

(it does not depend on coordinates xi), and O is the structural sheaf of X.
Let Ak(X) be the space of C∞ k-forms on X. The C∞-De Rham

complex DR(M⊗O C∞(X)) of a D-module M is

M−→ A1 ⊗OM−→ ... −→ An−1 ⊗OM−→ An ⊗OM.(4)
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One can show that D Sol(M)m = Hm−nDR(M⊗O C∞(X)).
For example using the Koszule complex one can see that D Sol(DX)n =

An(X) and D Sol(DX)m = 0 for m < n.
Notice that DR(C∞(X)) coincides with A•(X)[n], the C∞-de Rham

complex of X shifted by n to the left. Therefore, any f ∈ Sol(M, C∞(X))
defines a homomorphism of complexes

DR(M⊗O C∞(X))
f̃−→ DR(C∞(X)⊗O C∞(X)) m−→ A•(X)[n].

Here m is induced by the homomorphism of D-modules

C∞(X)⊗O C∞(X) −→ C∞(X).

2.2. The duality functor ([Be], [Bo]). ΩX has the canonical structure
of a right DX -module given by the formula ω · f = fω, ω · ξ := −Lξω
where f ∈ OX and ξ is a vector field. Set

DΩ
X := DX ⊗O Ω−1

X = HomOX
(ΩX ,Dr

X)(5)

where Dr
X is DX viewed as a right D-module via right multiplication.

Then (5) carries 2 commuting left DX -modules structures. The first one
is provided by the left multiplication on DX , and the second is given by
the rule ξ ◦ (λ)(ω) = λ(ω · ξ) − λ(ω) · ξ where ξ is a vector field and
λ ∈ HomDX

(ΩX ,Dr
X).

For any coherent DX -module M the second structure provides the
structure of left DX -module on sheaves Exti

DX
(M,DΩ

X).
According to the Roos theorem for a D-module M

if codimS.S.(M) = k then Exti
DX

(M,DΩ
X) = 0 for i < k.(6)

Let Dcoh(DX) be the derived category of bounded complexes of DX -
modules considered modulo quasi-isomorphisms whose cohomology groups
are coherent DX -modules. Objects of Dcoh(DX) will be denotedM•.

Let us define duality ( : Dcoh(DX)0 −→ Dcoh(DX) by

(M• := RHomDX
(M•,DΩ

X)[dimX].(7)

In particular Hi((M•) = Extdim X+i
DX

(M•,DΩ
X). To compute (M• we

should find a bounded complex

P• = {−→ P−2 −→ P−1 −→ P0 −→ ...}
of locally projective coherent D-modules quasi-isomorphic to M• and set
(M• = (P• where ((P)i = ((P− dim X−i) := HomDX

(P− dim X−i,DΩ
X).
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2.3. The Green class ofM•. For any D-modulesM and N the tensor
product N ⊗ON has canonical D-module structure where the vector fields
act by the Leibniz rule.

Theorem 2.1. Let

M• ∈ Db
coh(DX) and N • ∈ Db(DX).

Then one has canonical isomorphism in the derived category of sheaves on
X functorial with respect to M• and N •

DR((M• ⊗O N •)[−dimX] = RHomDX
(M•,N •).(8)

For the proof see, for example, 9.7 in ch. VII [Bo].
Substituting into (8) N = C∞(X) and using ( (M =M we get

DR(M⊗O C∞(X))[−dimX] = RHomDX
((M, C∞(X)).(9)

One can rewrite (9) as:

D Sol(M)m = RHom(m−dim X)
DX

((M, C∞(X)).(10)

The identity map Id ∈ HomDX
(M•,M•) provides the canonical ele-

ment

GM• ∈ Hdim X
(
DR((M• ⊗OM•)

)
.(11)

I will call it the Green class ofM•. Any solutions

ϕ ∈ RHomD(M•, C∞(X)) and v ∈ RHomD(∗M•, C∞(X))

lead to a morphism

DR
(
∗M• ⊗OM

)
ϕ̄⊗v̄−→ DR

(
C∞(X)⊗O C∞(X)

)
m−→ A•(X).

It sends the Green class of M• to a cohomology class [GM•(ϕ, v)] on X.
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2.4. Relation with the classical Green formula. Let P be a differ-
ential operator. Set

P =
DX

DX · P and P∗ =
DX ⊗ Ω−1

X

P · DX ⊗ Ω−1
X

.

Here DX⊗Ω−1
X is considered as a left D-module with respect to the second

structure. Notice that HomD(DX ⊗ Ω−1
X , C∞(X)) = An(X). Let v ∈

An(X). According to the Green formula there exists an (n − 1)-form
ωn−1(ϕ;P ; v) on X such that

Pϕ · v − ϕ · P ∗v = dωn−1(ϕ; P ; v).

Lemma 2.2.

a) (P is isomorphic to P∗[1].
b) The class [G�P(ϕ, v)] ∈ Hn−1(A•(X)) defined by smooth solutions

ϕ ∈ Sol(P) and v ∈ Sol(P∗) coincides with the cohomology class
of the (n− 1)-form ωn−1(ϕ;P ; v).

Remark. There is canonical involution on (Dr
X ⊗ Ω−1

X ) interchanging the
left DX -structures. It sends P · ω−1 just to P t · ω−1 where P t is the
transpose of P defined using the form ω.

2.5. The Green formula and the Bar construction. (The construc-
tions in this subsection were also considered by M. M. Kapranov). Let
E1 and E2 be vector bundles over an n-dimensional manifold X and
E1 P−→ E2 be a differential operator. Set Vi := Ei∗ ⊗ An. There are
canonical pairings

Γ0(X, Ei)⊗ Γ(X, Vi) −→ R (ϕ, g ⊗ ω) −→
∫

X

(ϕ, g)ω.

So one has the adjoint operator V1
P∗
←− V2. It is a differential operator

of the same order as P uniquely defined by the property (ϕ1, P
∗v2) =

(Pϕ1, v2).
Now suppose we have a sequence (not necessarily a complex) of differ-

ential operators

E0 P1−→ E1 P2−→ ...
Pk−→ Ek.

Consider the sequence of adjoint differential operators

V0
P∗

1←− V1
P∗

2←− ...
P∗

k←− Vk.
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Theorem 2.3. For any k there exists forms ωn−k(ϕ0; P1, ..., Pk; vk) sat-
isfying the conditions

dωn−k(ϕ0;P1, ..., Pk; vk) = ωn−k+1(P1ϕ0; P2, ..., Pk; vk)

+
k−1∑
i=1

(−1)iωn−k+1(ϕ0;P1, ..., Pi ◦ Pi+1, ..., Pk; vk)

+ (−1)kωn−k+1(ϕ0;P1, ..., Pk−1;P ∗
k vk)

where we formally set ωn(ϕ; 1; v) := ϕ · v.

2.6. How to compute the Green class. Let us call a D-moduleM ex-
cellent if the object (M is concentrated in just one degree, i.e., Hi((M) =
0 for all i but one. By the Roos theorem (see (6) or [Be], [Bo]) this de-
gree is necessarily −dM. In this case set (̃M := H−dM((M). Consider a
locally free resolution of a D-module M:

P• = {P−k −→ ... −→ P−2 −→ P−1 −→ P0}.
Let

∗P• = {∗(P0) −→ ∗(P−1) −→ ∗(P−2) −→ ... −→ ∗(P−k)}[dX ]

be the dual complex. Then E• := HomD(P•, C∞(X)) is a complex of
differential operators between vector bundles:

E0 P1−→ E1 P2−→ ...
Pk−→ Ek.

The adjoint complex

V• := {Vk
P∗

k−→ Vk−1

P∗
k−1−→ ...

P∗
1−→ V0}

is canonically isomorphic to HomD(∗P•, C∞(X))[−dX − k].
Let us suppose that the D-moduleM is excellent and moreover admits

a locally free resolution of the minimal possible length k = dM. (This is
usually the case in integral geometry.) Then

Sol(M, C∞(X)) = KerP1 and Sol(∗̃M, C∞(X)) = KerP ∗
k .

Therefore, for any ϕ0 ∈ Ker P1 and vk ∈ Ker P ∗
k , the differential form

ωn−dM(ϕ0;P•; vk) is closed.

Theorem 2.4. The cohomology class of the form ωn−dM(ϕ0;P•; vk) coin-
sides with the Green class GM(ϕ0; vk).
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3. Integral geometry: the general scheme

LetM and N be excellent D-modules on manifolds X and Y (see §2.5),
so ∗̃M := (∗M)[−dM] is a D-module. Let cM be the codimension of the
singular support ofM in T ∗X, so dM + cM = dimX. Then solutions

f ∈ HomD(M, C∞(X)) and g ∈ HomD(∗̃M, C∞(X))

provides a homomorphism

HcMDR
(
∗̃M⊗OM

)
f̄⊗ḡ−→ HcMDR

(
C∞(X)⊗OC∞(X)

)
m−→ HdMA•(X).

The Green class ofM goes under this map to a cohomology class of degree
dM on X. Recall that we put DR(M) in degrees [−dimX, 0], while the
smooth de Rham complex A•(X) is sitting in degrees [0,dimX].

Let us define a natural linear map

I : Sol(M, C∞(X)) −→ Sol(N ,D′(Y ))(12)

by a kernel

KI(x, y) ∈ Sol((̃M�N ,D′(X × Y ))(13)

and a cycle γX of dimension dM in X as follows. Let G̃M(·, ·) be a cocycle
in DR

(
∗̃M⊗OM

)
representing the Green class. Using solutions KI(x, y)

of (̃M (where y is considered as a parameter) and f(x) of M we get a
closed differential form G̃M(KI(x, y), f(x)) of degree dM on X. Set

f(x) �−→
∫

γ

G̃M(KI(x, y), f(x)) ∈ Sol(N ,D′(Y )).(14)

Under certain assumptions on the wave front of the kernel KI(x, y), which
we will assume below, the integral over cycle γ makes sense and the image
of (13) lies in C∞(Y ).

Then a (natural) inverse for I is an integral transformation

J : Sol(N , C∞(Y )) −→ Sol(M, C∞(X))(15)

ϕ(x) �−→
∫

γY

G̃N (KJ(x, y), ϕ(y))(16)

defined by a certain dN -cycle γY in Y and a kernel

KJ(x, y) ∈ Sol(M� (̃N ,D′(X × Y )).(17)

This data defines also a transformation

J t : Sol((̃M, C∞(X)) −→ Sol((̃N , C∞(Y ))(18)
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g(x) �−→
∫

γX

G̃M(g(x), KJ(x, y)).(19)

There is canonical pairing

< ·, · >M : Sol((̃M, C∞(X))⊗ Sol(M, C∞(X))⊗HdM(X, R) −→ R

(20)

< g, f >M :=
∫

γX

G̃M(g(x), f(x))

and a similar one for N .

Theorem 3.1. (The Plancherel formula). Let J be a natural inverse for
I: J ◦ I = idX . Then for f ∈ Sol(M, C∞(X)), g ∈ Sol((̃M, C∞(X)) one
has

< g, f >M = < J tg, If >N .(21)

Proof. < g, f >M = < g, J ◦ If >N . So the theorem follows from

Lemma 3.2. Let ϕ ∈ Sol(N , C∞(Y )) and g ∈ Sol((̃M, C∞(X)). Then

< g, Jϕ >M = < J tg, ϕ >N .(22)

Proof. The Green class is multiplicative with respect to the �-product. So
we can set G̃M�N := G̃M � G̃N . Consider the following solutions

g(x) � ϕ(y) ∈ Sol((̃M� (̃N , C∞(X × Y )),

KJ(x, y) ∈ Sol(M�N ,D′(X × Y )).

They are solutions to the dual systems. So there is a pairing

< g(x) � ϕ(y), KJ(x, y) >M�N(23)

related to the cycle γX × γY . We can evaluate it by computing first the
pairing along X and then along Y . In this case we get the righthand side
of (22). Computing by first pairing along Y and then along X we get the
lefthand side of (22).

The kernel KJ is a much more simple (and fundamental) object than the
actual integral transformation J . The reasons are the following:

1) The kernel KJ is a canonically defined distribution, while the formula
for Jϕ(x) depends on a cocycle G̃N representing the Green class.

2) Explicit calculation of cocycle G̃N can be a nontrivial problem and so
the final formula for the righthand side of (16) could be quite complicated
even for a very simple kernel KJ .

So the problem of inversion of the transformation I splits into 3 steps:
Step 1. Find a distribution (17).
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Step 2. Compute a cocycle G̃N for the Green class.
Step 3. Find a cycle γY .
The distribution (17) should be uniquely defined if it exists. However,

it may not exist.
The Green class always exists. Different cocycles representing it to-

gether with different choices of cycles γY provides the diversity of concrete
inversion formulas.

4. Integral geometry on families of spheres and intertwiners

4.1. Integral transformation. Let

Sm = {x2
1 + ... + x2

m+1 − x2
m+2 = 0}/R

∗

be a sphere in RPm+1. The stereographic projection identifies the set of
its hyperplane sections with the family of all spheres in R

m.
Let Qm+1 := {x2

1 + ... + x2
m+1 − x2

m+2 = 0} be a cone in R
m+2\0. It

has two connected components: Q+
m+1 in the half space xm+2 > 0 and its

opposite Q−
m+1. Denote by Φλ(Sm) the space of all homogeneous functions

of degree λ on the cone Q+
m+1.

Let βm be a hyperplane section of Q+
m+1 isomorphic to a sphere. The

orientation of R
m+2 provides canonical orientation of βm. Namely, βm

inside of the cone is cooriented out of the origin, and the cone itself has
canonical coorientation (outside of the convex component) in R

m+2. Let
β+

m be a cycle oriented this way. Its homology class is a generator of
Hm(Q+

m+1, Z). Set

σm+2(x, dx) :=
m+2∑
i=1

(−1)i−1xidx1 ∧ ...d̂xi... ∧ dxm+2.

There is canonical nondegenerate pairing

< ·, · >Sm : Φ1−m(Sm)⊗ Φ−1(Sm)→ R,(24)

< f, g >Sm=
∫

β+
m

δ(x2
1 + ... + x2

m+1 − x2
m+2)f(x)g(x)σm+2(x, dx).

(25)

Here we integrate the closed m-form on Q+
m+1. By definition it is the

restriction to Q+
m+1 of any form αm satisfying the condition

d(x2
1 + ... + x2

m+1 − x2
m+2) ∧ αm = f(x)g(x)σm+2(x, dx).

The restriction is well defined on Q+
m+1.
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Let ξ1, ..., ξm+2 be coordinates in (Rm+2)′ dual to xi and < ξ, x >=∑
ξixi. For f ∈ Φ1−m(Sm) set

(If)(ξ) =
∫

β+
m

δ(x2
1 + ... + x2

m+1 − x2
m+2)f(x)δ(< ξ, x >)σm+2(x, dx).

(26)

Consider the following kernel:

K−(m−1)(ξ, x) :=

{
δ(m−2)(< ξ, x >) for odd m,

< ξ, x >−(m−1) for even m.

It defines an integral transformation acting on g ∈ Φ−1(Sm) as follows:

(27) (J t)g(ξ) =∫
β+

m

δ(x2
1 + ... + x2

m+1 − x2
m+2)g(x)K−(m−1)(< ξ, x >)σm+2(x, dx).

Set

∆ := ∂2
ξ1

+ ... + ∂2
ξm+1

− ∂2
ξm+2

; La :=
m+2∑
i=1

ξi∂ξi − a.

Let Na be the following system of differential equations

Na : Laϕ = 0, ∆ϕ = 0.

Lemma 4.1.

a) If(ξ) is an even function satisfying the system N−1.
b) (J t)ϕ(ξ) is an odd function satisfying the system N−(m−1).

4.2. The Green class. Now let us make the crucial step. Consider the
following m-form:

(28) ωm(v;ϕ) :=∑
1≤i<j≤m+2

(−1)i+j−1
(
ξi · εj(v · ϕ′

ξj
− v

′
ξj
· ϕ)− ξj · εi(v · ϕ′

ξi
− v

′
ξi
· ϕ)

)

dξ1 ∧ ...d̂ξi...d̂ξj ... ∧ dξm+2.

Here εm+2 = −1 and εj = 1 if j �= m + 2.
Let ωm+1(v; ∆; ϕ) be the Green form of the Laplacian ∆:

(29) ωm+1(v; ∆; ϕ) =∑
1≤j≤m+2

(−1)j−1εj(ϕξj · v − ϕ · vξj )dξ1 ∧ ...d̂ξj ... ∧ dξm+2.
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Then (28) is the contraction of the Green form (29) with the Euler vector
field L.

ωm(v;ϕ) = −1
2
iLωm+1(v; ∆; ϕ).

Theorem 4.2.

a) ∗̃Na = Nb where a + b + m = 0.
b) The form ωm(ϕ; v) represents the Green class GNa(ϕ; v) of the

system Na.

In particular, the form ωm(ϕ; v) is closed if the functions v and ϕ are
solutions of the systems Na and Nb where a + b + m = 0.

Sketch of the proof. Consider a complex of D-modules D d−→ D2 d−→ D
sitting in degrees [-2,0] (d has degree +1) that we will visualize as follows:

D
∆ ↗ ↘La

D D
−La−2 ↘ ↗∆

D

One can prove that it is a resolution of the D-module Na and a) follows
easily. To calculate the Green class we use theorem (2.4) for this resolu-
tion.

Remark. More generally, for any homogeneous differential operator P with
constant coefficients in R

n the Green form for the system Pf = 0,Laf = 0
is equal to − 1

2 iLωn−1(v;P ;ϕ).

4.3. Construction of the inverse operator. The function If(ξ) is
defined in the domain Γ̃ := {ξ | ξ2

1 + ... + ξ2
m+1 > ξ2

m+2}. Let Γ = Γ̃/R
∗
+

be the manifold of all oriented rays inside Γ̃. Its closure Γ̄ parametrizes
oriented hyperplane sections of the sphere Sm.

Γ = Sm+1\D+∪D− where D+ is a ball {ξ2
1 + ...+ ξ2

m+1 < ξ2
m+2}/(R∗)+

and D− = −D+. Therefore, Hm(Γ, Z) = Z. Consider the cycle γm of
rays in the hyperplane ξm+2 = 0. It is cooriented in the direction to the
ball D+. So an orientation of R

m+2 provides an orientation of this cycle.
Denote by γ+

m the oriented cycle. Its homology class is a generator of
Hm(Γ, Z).

Lemma 4.3. The form ωm(ϕ; v) can be pushed down to Γ.
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Let K be a a compact hypersurface in Γ. Its homology class [K] ∈
Hn(Γ) is equal to d(K) · [γ+

M ]. The integer d(K) is the intersection number
of the class [K] with the “Euler” class consisting of spheres passing through
a given point x ∈ Sm and tangent to a given hyperplane in TxSm.

Let C be a submanifold in Sm. Consider the family ΓC of oriented
hyperplane sections of the sphere Sm tangent to C. For example when C
is a point d(ΓC) = 1.

Theorem 4.4.

a) For any m-cycle K ∈ Γ one has

d(K)· < f, g >Sm= cm ·
∫

K

ωm

(
If ;J tg

)
where

−cm =




(−1)(m−1)/2

(2π)m−1 for odd m,
(−1)m/2(m−1)!

(2π)m for even m.

b) In particular,

d(K) · f(x) = cm ·
∫

K

ωm

(
If ;K−(m−1)(ξ, x)

)
.(30)

So the inversion formula is local for odd m and nonlocal for even
m.

Proof. Let n = (0 : .. : 0 : 1 : 1) be the “North pole”in Sm. The variety Γn

parametrizing the hyperplane sections of the sphere Sm passing through
the point n is a hyperplane given by equation ξm+1 + ξm+2 = 0.

It is sufficient to prove these formulas for one cycle K. The following
lemma shows that for K = Γn they reduce to the Plancherel theorem and
the inversion formula for the classical Radon transform (see [GGG]). Set
ξ′ = (ξ1, ..., ξm+1).

Lemma 4.5. The restriction of the form ωm(ϕ; v) to Γn is equal to

ωm(ϕ; v)|Γn =

(−1)m+1
(
v · (∂ξm+1 − ∂ξm+2)ϕ− ϕ · (∂ξm+1 − ∂ξm+2)v

)
σm(ξ′, dξ′).

Integrating by parts we get

2 · (−1)m
(
ϕ · (∂ξm+1 − ∂ξm+2)v

)
σm(ξ′, dξ′).
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4.4. Admissible families of spheres. Restricting our integral opera-
tor I to a family K of spheres we get an integral transformation IK :
Φ1−m(Sm) −→ Ψ+

−1(K). Here Ψ+
λ (ΓC) is the space of even homogeneous

degree λ functions on K̃ ⊂ R
m+2.

A priori the restriction of the form ωm(ϕ; v) to a hypersurface K de-
pends not only on the restriction of the functions ϕ and v on K but on
their first derivatives in the normal direction to K. Therefore, for general
K the righthand side of (30) can not be computed if only IK(f) is known.
So it does not give an inversion formula for the integral transformation
IK .

Definition 4.6. A hypersurface K ⊂ Γ is called admissible if the coho-
mology class of the restriction of the form ωm(ϕ; v) to K depends only on
the restrictions of smooth solutions ϕ ∈ SolC∞(N−1), v ∈ SolC∞(N−1)
to K.

More precisely, this means that there exists a bidifferential operator

ν : C∞(K)⊗2 −→ Am(K)

such that for any ϕ, v as above

[ωm(ϕ; v)|K ] = [ν(ϕ|K , v|K)].

Theorem 4.7.

a) For any C ⊂ Sm the hypersurface ΓC is admissible.
b) Any admissible hypersurface in Γ is a piece of a hypersurface ΓC

for a certain C ⊂ Sm.

Proof of a). For C = n this follows from the lemma (4.5). Indeed, the
vector field (∂ξm+1 − ∂ξm+2) is tangent to the hyperplane Γn.

In general we proceed as follows. The form ωm(ϕ; v) is given by a
bidifferential operator of first order (see (28), so its restriction to K is
determined by the restriction of the functions ϕ and v to the first infinites-
imal neighborhood of K. Let η ∈ ΓC and t(η) be the tangency point of
the hyperplane < η, x >= 0 with C. Then one can see that the tangent
space to ΓK at a point t(η) coinsides with Γt(η).

4.5. Inversion of the integral transform related to an admissible
family. The restriction of the form ωm(If ; K−(m−1)(ξ, x)) to ΓC depends
only IΓC

f . So one can expect the inversion formula

d(ΓC)f(x) = cm ·
∫

ΓC

ωm

(
IΓC

f ;K−(m−1)(ξ, x)
)

(31)
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similar to (30). However the cycle ΓC lies in the closure Γ̄, while the form
ωm(ϕ; v) was well defined only inside Γ, so it is a priori unclear whether
the formula makes sense and whether it is possible to use Stokes theorem.

To avoid this trouble we consider the integral transformation IC only
on the subspace of functions vanishing in a small neighborhood of the
subvariety C in Sm. Assuming this let us perturbate the cycle ΓC near
the boundary of Γ by moving it a little bit inside of Γ.

Geometrically this means that we replace small spheres tangent to C by
small spheres close to them which are not tangent to C. This perturbation
does not affect the integral (31). Indeed, if a function f(x) vanishes in a
small neighborhood of C its integrals over the spheres in this neighborhood
are equal to zero.

Remark. The cycle K becomes homologous to 0 in the sphere Sm+1 para-
metrizing all oriented hyperplanes.

4.6. The general intertwiners. Let Φ+
λ (Sm) (resp. Φ−

λ (Sm)) be the set
of all even (odd) homogeneous functions of degree λ on the cone Qm+1.

Let ε(1) be the 1-dimensional O(m + 1, 1)-module where the connected
component of unity acts trivially and elements −Id and diag(−1, 1, ..., 1)
acts as (−1). Formula (24) defines canonical nondegenerate pairing

< ·, · >Sm : Φ+
−λ−m(Sm)⊗ Φ−

λ (Sm) −→ ε(1).(32)

Further, there is nondegenerate pairing

< ·, · >Nλ
: SolC∞(Nλ)+ ⊗ SolC∞(N−λ−m)− −→ ε(1),

< ϕ, v >Nλ
:=

∫
γ+

m

ωm(ϕ, v).

Indeed, the involution ξ �−→ −ξ multiplies the form ωm(ϕ, v) by (−1)m+2

and the cycle γ+
m by (−1)m+1. The involution diag(−1, 1, ..., 1) multiplies

by (−1) the orientation of the space, cycle γ+ and the form ωm(ϕ, v).
This provides the extra factor ε(1) in the above formulas. Notice that
Φ−

λ (Sm)⊗ ε(1) = Φ+
λ (Sm).

Consider the kernels

K̄−
λ (ξ, x) :=

| < ξ, x > |λ · sgn(< ξ, x >)
Γ(λ+2

2 )
, K̄+

λ (ξ, x) :=
| < ξ, x > |λ

Γ(λ+1
2 )

.

(33)

Let us denote byMλ the D-module on R
m+2 corresponding to the system

{L−λf = 0, (x2
1 + ... + x2

m+1 − x2
m+2)f = 0}. Then

K̄±
λ (ξ, x) ∈ Sol

(
Mλ �Nλ,D′(Rm+2 × (Rm+2)′)

)
,
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K̄+
λ (ξ, x) is an even solution and K̄−

λ (ξ, x) is an odd one. Notice that
Mλ = ∗̃M−λ−m and Nλ = ∗̃N−λ−m. So they define integral operators

I+
λ : Φ+

−λ−m(Sm) −→ SolC∞(Nλ)+,

J−
λ : SolC∞(N−λ−m)+ −→ Φ−

λ (Sm)⊗ ε(1),
(34)

(I+
λ f)(ξ) =

∫
βm

δ(x2
1 + ... + x2

m+1 − x2
m+2)f(x)K̄+

λ (ξ, x)σm+2(x, dx),

(35)

(Jλϕ)(ξ) =
1
2

∫
K

ωm(ϕ; K̄−
λ (ξ, x)).(36)

Theorem 4.8.

a) These operators are intertwiners for the group O(m + 1, 1) and
one has

d(K) · J−
−λ−m ◦ I+

λ =
πm+1

Γ(−λ
2 )Γ(λ+m+2

2 )
Id.

b) For an admissible family ΓC the operator J−
λ provides an operator

J−
λ,C : Ψ+

λ (ΓC) −→ Φ−λ−m(Sm) which is the inversion of the
integral operator I+

λ,C : Φ−λ−m(Sm) −→ Ψ+
λ (ΓC).

Remark. Interchanging odd and even kernels one can similarly define an-
other pair of intertwiners.

The operator J−
λ is an intertwiner thanks to the following reasons.

1. A group element g ∈ SO(m + 1, 1)0 sends form ωm(ϕ, v) to the form
ωm(g · ϕ, g · v). Indeed, the form ωm is a cocyle representing the Green
class for the system Nλ. This system as well as the volume form in R

m+2

is invariant under the action of the group SO(m + 1, 1)0.
2. A connected Lie group acts trivially on the homology.
3. One can show that J−

λ commutes with −Id and diag(−1, 1, ..., 1).
In the definition of the inverse operator J−

λ we can integrate over an
m-cycle K̃ ⊂ (Rm+2)′ projecting to K. So J−

λ is a priori defined for any
smooth function ϕ(ξ). However it commutes with the group action only
on the subspace Sol(Nλ, C∞(Rm+2)). Indeed, g moves the cycle K̃ to a
different cycle gK̃ homologous to the initial one. To compare the integrals
we use Stokes formula for the form ωm(ϕ;Kλ(ξ, x)). The integrals will be
the same only if the form is closed. This happens only if ϕ(ξ) ∈ SolC∞(Nλ).
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The generalized functions (33) has no poles on λ. One has

K̄+
λ (ξ, x)|λ=−(2k+1) =

(−1)kk!
(2k)!

· δ(2k)(< ξ, x >),

K̄−
λ (ξ, x)|λ=−2k =

(−1)k(k − 1)!
(2k − 1)!

· δ(2k−1)(< ξ, x >).

So theorem (4.4) is a special case of theorem (4.8).

5. The bicategory of D-modules

5.1. Motivations. How to compute the composition of natural linear
maps between solution spaces? A closely related problem is the inversion
of a given natural linear map.

Usually the natural kernels are distributions satisfying holonomic system
of differential equations. This means that the image of the homomorphism

(̃M1 �M2 −→ D′(X1 ×X2)(37)

provided by the kernel K12(x1, x2) ∈ HomD
(
(̃M1�M2,D′(X1×X2)

)
is a

holonomic D-module. Let us denote it by K12 and by (̃M1 �M2
α12−→ K12

the corresponding morphism of D-modules. So (37) is a composition

(̃M1 �M2
α12−→ K12 ↪→ D′(X1 ×X2).

We will keep only the first arrow and call it a holonomic kernel.

Example. Suppose that Mi = DXi for i = 1, 2. Then (̃DX1 = DX1 and
DX1 × DX2 = DX1×X2 . Morphisms of D-modules DX1×X2 −→ K are
defined by their value on the generating section 1 and correspond just to
the sections of K.

For instance, if X1 = X2 = A
1 and K12 is the D-module of delta

functions on the diagonal, the morphisms above correspond to sections
f(x)δ(k)(x− y).

So the holonomic kernel is a finer algebraic version of a holonomic dis-
tribution on X1 ×X2 than the D-module which this distribution satisfies.
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5.2. A bicategory of D-modules. For a definition of (lax) bicategory
see, for example, p.200 in [KV].

In this section we work in the derived category. In particular all mor-
phisms are morphisms in the derived category. So we will write f∗ instead
of Rf∗ etc.

The objects of the bicategory are pairs (X,M) where X is an algebraic
variety over a field k (char k = 0) andM∈ Db

coh(DX).
A 1-morphism between the 2 objects (X,M) and (Y,N ) is a holonomic

complex of D-modules K ∈ Db
hol(DX×Y ) on X × Y together with a mor-

phism
(M�N α−→ K.

A 2-morphism between 1-morphisms

(M�N α1−→ K1 and (M�N α2−→ K2

is a morphism ϕ12 : K1 −→ K2 making the following diagram commuta-
tive:

(M1 �M3

α1 ↙ ↘ α2

K1
ϕ12−→ K2

The composition of 2-morphisms is defined in an obvious way.
It is the composition of 1-morphismes which makes the whole story

interesting and relevant to integral geometry. To define it consider the
objects (Xi,Mi) where i = 1, 2, 3 and 1-morphisms

(M1 �M2
α12−→ K12, (M2 �M3

α23−→ K23.(38)

Let ∆2 : X1×X2×X3 ↪→ X1×X2×X2×X3 be the diagonal embedding
of X2 and π2 : X1 ×X2 ×X3 → X1 ×X3 be the projection. Set

K13 = K12 ◦ K23 := π2∗∆
!
2

(
K12 �K23

)
and define the morphism (M1 �M3

α13−→ K13 as the composition of the
morphisms id � G � id and α12 � α23:

(M1 �M3
id�G�id−→ π2∗∆

!
2

(
(M1 �M2 � (M2 �M3

)
α12�α23−→ π2∗∆

!
2

(
K12 �K23

)
.

Example. The identity 1-morphism IdM. Let δ∆ be the D-module of delta
functions on the diagonal ∆ ⊂ X×X. Then for anyM∈ Db

coh(DX) there
is a canonical morphism

IM : (M�M[−dX ] −→ δ∆.
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Replacing M by a locally free resolution we reduce this statement to the
case M = DX . The DX -mod-DX bimodule DX is canonically isomorphic
to the bimodule δ∆ ⊗ ΩX . The section 1X of DX corresponds to the
canonical section δ(∆)dx providing the canonical morphism IDX

: DΩ
X �

DX −→ δ∆.
We will say that the 1-morphism α23 is weakly inverse to the 1-morphism

α12 (see (38)) if there is a 2-morphism from the identity 1-morphism IdM
to the composition of 1-morphisms α23◦α12. This means that the following
diagram is commutative:

(M1 �M1
id�G�id−→ Rπ2∗∆!

2

(
(M1 �M2 � (M2 �M1

)

IM1


Rπ2∗∆!
2(α12 � α23)

δ∆
ϕ−→ Rπ2∗∆!

2

(
K12 �K23

)
.

Remark. These definitions make sense for any (not necessarily holonomic)
Kij ∈ Db

coh(DX).

5.3. An example: the Radon transform on the plane. Set

X1 = {(x, y)} = R
2, X2 = {(a, b)} = R

2, X3 = {(x′, y′)} = R
2

andMXi = DXi . Notice that (DXi �DXi+1 = DXi×Xi+1 [dXi ]. Set

δ(A) = δ(y − ax− b),
K12 : = DX1×X2 · δ(A),

α12[−2] : 1X1×X2 �−→ δ(A),

δ(A′) = δ(y′ − ax′ − b),

K23 : = DX2×X3 · δ(A′),

α12[−2] : 1X2×X3 �−→ δ(1)(A′).

Proposition 5.1. The formula

δ(x− x′)δ(y − y′) �−→ δ(y − ax− b)⊗ δ(1)(y′ − ax′ − b)dadb(39)

defines a homomorphism of D-modules δ∆13 −→ K13 and hence a 2-
morphism IdDX1

=> (α13,K13).

Proof. We have to show that applying to the righthand side of (39) any
differential operator which annihilates the left hand side, we will get an
exact 2-form in the de Rham complex with respect to (a, b) variables. This
follows from the formulas

(x− x′) · δ(A)⊗ δ(1)(A′)dadb = d
(
δ(A)⊗ δ(A′)(xda + db)

)
(y − y′) · δ(A)⊗ δ(1)(A′)dadb = d

(
δ(A)⊗ δ(A′)a(xda + db)

)
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(∂x + ∂x′)δ(A)⊗ δ(1)(A′)dadb = d
(
δ(A)⊗ δ(1)(A′)ada

)
(∂y + ∂y′)δ(A)⊗ δ(1)(A′)dadb = d

(
δ(A)⊗ δ(1)(A)da

)
.
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