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LIMITS OF COMPLETE

HOLOMORPHIC VECTOR FIELDS

Franc Forstneric

A bstract . Let V be a holomorphic vector field on a Stein manifold M . If
V can be approximated by complete holomorphic vector fields, uniformly
on compacts in M , we prove that the fundamental domain of V is single
sheeted, pseudoconvex, and it has simply connected fibers. Moreover, every
complex orbit of V has connectivity at most one (Theorem 1.1). We then
find several explicit classes of holomorphic vector fields on C2 which are
not limits of complete fields (Corollaries 1.4–1.6).

1. Introduction and results

Recently Buzzard and Fornaess answered the question, raised in [8], as to
whether there exist holomorphic vector fields on Cn for n ≥ 2 which can not
be approximated by complete holomorphic vector fields. They showed for
instance that the quadratic vector field on C2, V (z, w) = z(z−1) ∂

∂z −w ∂
∂w ,

is not a limit of complete holomorphic fields; the same is true for the
field z2 ∂

∂z on C2 (private communication, January 1995). Their method
proves that the set of complete holomorphic vector fields is nowhere dense
in the set of all entire vector fields on Cn, in the topology of uniform
convergence on compact sets. It was clear from the results of [8] that
most Hamiltonian holomorphic vector fields can not be approximated by
complete Hamiltonian fields. This phenomenon is in strong contrast with
the situation for smooth vector fields which can always be made complete
by a modification supported outside a given compact set in M .

In this article we obtain qualitative information on the fundamental
domain in complex time of those holomorphic vector fields V on a Stein
manifold M which are limits of complete fields (Theorem 1.1). We apply
this to show that several specific types of vector fields on C2 are not limits
of complete fields (uniformly on compacts).
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In order to define the fundamental domain we consider the ordinary
differential equation associated to the field V :

Ż = V (Z), Z(0) = z ∈ M. (1)

This equation has a unique local solution t �→ φz(t) = φ(t, z), defined and
jointly holomorphic for (t, z) in an open neighborhood of {0}×M ⊂ C×M ,
satisfying φ(t, φ(s, z)) = φ(t + s, z) where both sides are defined. We call
φ (and also φz) the (local) flow of V .

We fix a point z ∈ M and extend the local solution φz of (1) by analytic
continuation along paths in C, originating at t = 0, to a maximal connected
Riemann surface πz: Ωz → C which is spread as a Riemann domain over C.
πz is the natural base point projection, i.e., points in Ωz lying over t ∈ C
are obtained by analytic continuation of φz along paths in C which begin
at 0 and end at t, and φz separates points on each fiber of πz.

Definition.
(a) The Riemann surface πz: Ωz → C is called the maximal domain

of the flow of V through the point z ∈ M , and its image Cz =
φz(Ωz) ⊂ M is called the complex orbit of V through z.

(b) The fundamental domain of V (and of its flow) is the disjoint union
of the Ωz’s:

Ω = ΩV =
⋃

z∈M

Ωz × {z}. (2)

(c) V is complete (in real time) if Ωz contains the real axis R (i.e., if
φz extends to all t ∈ R) for every z ∈ M .

(d) V is complete in complex time if Ωz = C for every z ∈ M .

In general the Riemann domain πz: Ωz → C may be multiply sheeted,
and it need not be simply connected (see the examples below). Ω has a
natural structure of a complex manifold such that the base point projection

π: Ω → C × M, π(t, z) = (πz(t), z)

is holomorphic and spreads Ω as a Riemann domain over C×M . When π
is single sheeted, we shall identify Ω with the domain π(Ω) ⊂ C × M .

When M is a Stein manifold, we can also define Ω as follows. Let

π: Ω̃ → C × M

be the maximal Riemann domain to which the local flow φ of V can be
extended by joint analytic continuation in the variables (t, z). Such a max-
imal domain always exists and it is a Stein manifold [11]. For each z ∈ M
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let Ωz be the connected component of the fiber Ω̃z containing the origin
t = 0, and define Ω to be the disjoint union of the Ωz’s as above.

Holomorphic vector fields which are conjugate by a holomorphic auto-
morphism clearly have biholomorphically equivalent fundamental domains.

Our main result is

1.1 Theorem. If M is a Stein manifold and V is a holomorphic vector
field on M which is a limit of complete holomorphic vector fields, uniformly
on compacts in M , then for each z ∈ M the maximal domain πz: Ωz → C
of the flow is single sheeted and simply connected, and the complex orbit
Cz = φz(Ωz) ⊂ M is biholomorphic to one of the surfaces C, C∗ = C\{0},
U(=the disc), U∗ = U\{0}, or an annulus. Moreover, the fundamental
domain Ω ⊂ C × M (2) is pseudoconvex.

At this time we do not know whether there are other obstructions to
approximation of holomorphic vector fields by complete fields. Explicitly,
if Theorem 1.1 is satisfied by the fundamental domain of a holomorphic
vector field V , is V a limit of complete holomorphic vector fields ?

Notice that the obstructions to approximation by complete fields, given
by Theorem 1.1, can not be removed by extending V to some larger complex
manifold containing M .

For later reference we recall from [8] (Proposition 2.1) that the funda-
mental domain of an R-complete holomorphic vector field on any complex
manifold M is of the form

Ω = {(t, z): t ∈ C, z ∈ M, −b(z) < �t < a(z)}

for some lower semicontinuous functions a, b:M → (0,∞] which are con-
stant if and only if they are equal to +∞. Every complex orbit of V is
biholomorphic to one of the surfaces listed in Theorem 1.1 or to a com-
plex torus. Clearly V is C-complete if and only if a = b = +∞. If M
is Stein, then the functions −a,−b:M → [−∞, 0) are plurisubharmonic or
identically −∞. If M supports no nonconstant bounded plurisubharmonic
functions, it follows that a = b = ∞, and hence every R-complete holomor-
phic vector field on M is also C-complete ([8], Corollary 2.2). This holds
for instance when M = Cn.

Theorem 1.1 implies that either Ωz = C or else Ωz is conformally equiv-
alent to the disc. If Ωz = C for all points z in a non-pluripolar subset
E ⊂ M , it follows from a classical theorem of Hartogs that Ωz = C for all
z ∈ M [3], and hence V is C-complete.

The proof of Theorem 1.1 is given in section 2. We now give examples
and corollaries.
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Example 1. Every connected Riemann domain π:R → C over C satisfying
0 ∈ π(R) can be realized as a maximal domain of the flow of a holomorphic
vector field V on C3. (Recall from [10] that every open Riemann surface
R admits an immersion π:R → C into C.)

To see this, we pull back the constant vector field ∂
∂t on C by the immer-

sion π to get a holomorphic vector field on R which we shall still denote
by ∂

∂t . Suppose that M is a Stein manifold and f : R → M is a proper
holomorphic embedding. Such an embedding always exists into Cn for
n ≥ 3 [11]. If R is a finitely connected domain in C then such an embed-
ding also exists into C2 (Globevnik and Stensønes [9]). The push forward
V (f(t)) = Df(t) ∂

∂t is a holomorphic vector field on the embedded complex
curve f(R) = C ⊂ M . By Cartan’s Theorem A [11] we can extend V from
C to a holomorphic vector field on all of M . Clearly C is a complex orbit of
the extended field V , with the corresponding maximal domain π:R → C.

If the projection π:R → C is not single sheeted, or if the Riemann
surface R is not simply connected, then the field V is not a limit of complete
fields on M according to Theorem 1.1.

With a more precise argument along these lines we obtain

1.2 Proposition. Let M be a Stein manifold of dimension ≥ 2, W a
holomorphic vector field on M , K a compact subset of M , and z ∈ M\K̂.
Then there exist holomorphic vector fields V on M which are arbitrary
close to W on K and such that the maximal domain πz: Ωz → C of the
flow of V through the point z is not single sheeted.

Here, K̂ denotes the hull of K with respect to the algebra of all holomor-
phic functions on M . One can do the same for a finite number of points
z1, . . . , zk ∈ M\K̂.

Proof. Since z ∈ M\K̂, there exist holomorphic functions f on M such
that f(z) = 0 and f has no zeros on K̂. For a generic choice of an (n− 1)-
tuple of such functions f1, . . . , fn−1 (where n = dimM), the map F =
(f1, f2, . . . , fn−1):M → Cn−1 has no critical points on F−1(0). Let C
be the connected component of F−1(0) containing z. Then C is a closed,
smooth complex curve in M .

There exists a holomorphic immersion π: C → C into C such that π(z) =
0 [10]. Replacing π by the immersion eλπ−1 for a sufficiently large λ > 0 we
may assume that π is not single sheeted. Let X be the unique holomorphic
vector field on M , defined along C and tangent to C, such that Dπ·X =
∂
∂t is the coordinate vector field on π(C) ⊂ C. We can extend X to a
holomorphic vector field on all of M by the standard techniques, using
Cartan’s theorems A and B [11]. By construction the immersion π: C → C
is precisely the maximal domain of the flow of X through the point z.
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It remains to modify X outside C to obtain a holomorphic vector field
V which approximates a given field W in a neighborhood of K̂. We seek
V in the form

V = X +
n−1∑

j=1

fjXj

for suitably chosen holomorphic vector fields Xj (1 ≤ j ≤ n − 1). Since
at each point of K̂ at least one of the functions fj is nonzero, a standard
application of Cartan’s theorem B gives holomorphic vector fields X̃j (1 ≤
j ≤ n − 1) in a neighborhood of K̂ such that X +

∑
fjX̃j = W there.

Approximating the X̃j ’s close enough near K̂ by globally defined fields Xj

for 1 ≤ j ≤ n − 1 finishes the job. �
The following proposition is likely not original, but we nevertheless in-

clude a simple proof in section 2.

1.3 Proposition. If V is an entire vector field on C such that, for some
z ∈ C, V (z) �= 0 and the maximal domain πz: Ωz �→ C of the flow of V
through z is simply connected and single sheeted, then the vector field V
is affine linear: V (z) = (λz + c) ∂

∂z .

1.4 Corollary. Let V be a decoupled entire vector field on C2:

V (z, w) = P (z)
∂

∂z
+ Q(w)

∂

∂w
.

If V is not affine linear and if at least one of the components P , Q has a
zero in C, then V is not a limit of complete holomorphic vector fields on
C2.

Proof. We may assume that Q has a zero, w0. Assume first that P is
not affine linear. Choose a point z0 such that P (z0) �= 0. The maximal
domain Ωp �→ C of V through the point p = (z0, w0) then coincides with
the maximal domain of the one variable field P (z) ∂

∂z through z0. Since P is
not affine linear, Ωp is not single sheeted and simply connected according
to Proposition 1.3. Hence Theorem 1.1 implies that V is not a limit of
complete fields.

If P is affine linear, then Q is not. If P has a zero, z0, then the previous
proof applies with the reversed roles of P and Q. In the remaining case
when P (z) = c is a constant, its flow is (t, z) → z + ct. Hence the maximal
domain of V through any point (z, w) ∈ C2 is equal to the maximal domain
of the one variable field Q(w) ∂

∂w through w. Since Q is not affine linear,
Proposition 1.3 and Theorem 1.1 apply as before. Hence, Corollary 1.4 is
proven. �

The same argument gives
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1.5 Corollary. Let V be a holomorphic vector field on C2 of the form

V (z, w) = P (z)
∂

∂z
+ (w − w0)Q(z, w)

∂

∂w
,

where P (resp. Q) are entire functions on C (resp. C2) and P is not affine
linear. Then V is not a limit of complete holomorphic vector fields on C2.

In another direction we consider Hamiltonian holomorphic vector fields
on C2,

XH =
∂H

∂w

∂

∂z
− ∂H

∂z

∂

∂w
, (3)

where H is an entire function on C2 (the Hamiltonian). The local flow
φt = φ(t, · ) of XH remains in the level sets of H and its Jacobian Jφt is
identically one. Denote by Σ ⊂ C2 the set of critical points of H (i.e., the
zeros of XH). Then for each p = (z0, w0) ∈ C2\Σ, the complex orbit Cp of
XH equals the connected component of the set {(z, w) ∈ C2\Σ : H(z, w) =
H(z0, w0)} (see [8]). Such components will be called the primary surfaces
of H.

By connectivity of a Riemann surface R we mean the number of gener-
ators of the first homology group H1(R;C).

1.6 Corollary. If H is an entire function on C2 which has a primary
surface of connectivity at least two, then the Hamiltonian vector field XH

(3) is not a limit of complete holomorphic vector fields on C2.

Proof. The condition on H implies that XH has a complex orbit of con-
nectivity at least two, and hence this orbit is not one of the surfaces listed
in Theorem 1.1. �
Example 2. Let H = w2/2 + Q(z), where Q is entire. The corresponding
Hamiltonian vector field is

XH(z, w) = w
∂

∂z
+ F (z)

∂

∂w
, F = −Q′. (4)

This field arises by considering the second order conservative ODE in one
complex variable:

z̈ = F (z), z(0) = z0, ż(0) = ż0,

by introducing the new variable ż = w. If F is affine linear, then XH is
affine linear and hence complete. If on the other hand F is not affine linear,
then H has primary surfaces of connectivity at least two (see the proof of
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Proposition 7.3 in [8]). Therefore no nonlinear Hamiltonian vector field of
type (4) is approximable by complete holomorphic vector fields on C2.

Recall that the complete Hamiltonian holomorphic vector fields on C2

have been classified in [8] (Theorem 6.1); up to conjugation in AutC2 there
are only two types of such fields.

2. Proof of Theorem 1.1 and Proposition 1.3

Suppose that V is a locally uniform limit of complete holomorphic vector
fields on a Stein manifold M . We shall first prove that the maximal domain
πz: Ωz → C is single sheeted for each point z ∈ M .

We can embed M as a closed complex submanifold of a Euclidean space
CN [11]. Via this embedding we can think of the flow φ(t, z) of V as a
holomorphic map into CN , and all the usual arguments for holomorphic
functions on a Stein manifold apply to φ. Any analytic continuation of the
local flow (as a map into CN ) will remain in the manifold M .

Fix z ∈ M and choose two curves γ0, γ1 ⊂ C, beginning at 0 and ending
at some point t0 ∈ C, such that the local solution φz of (1) admits a
holomorphic continuation φz

j along γj for j = 0, 1. If we approximate V
in a neighborhood of the compact set K = φz

0(γ0) ∪ φz
1(γ1) ⊂ M close

enough by a complete holomorphic vector field W , then the flow ψz of W
(satisfying ψz(0) = z) will exist along γ0 ∪ γ1, and it will approximate
the flow φz there. Since W is complete, ψz extends to a well defined
holomorphic map on a strip R = {t ∈ C:−b < �t < a} which contains
γ0 ∪ γ1 ([8], Proposition 2.1). Hence ψz(t0) approximates both φz

0(t0) and
φz

1(t0). Since the approximation of V by W can be made arbitrarly close,
it follows that φz

0(t0) = φz
1(t0). This proves that Ωz is single sheeted, and

hence a domain in C.
To prove that Ωz is simply connected it suffices to show that for every

simple closed curve γ ⊂ Ωz bounding a disc D ⊂ C we have D ⊂ Ω. We
connect γ to 0 by an arc λ ⊂ Ωz. If W is a complete holomorphic vector
field which approximates V in a neighborhood of the compact set

K = φz(λ ∪ γ) ⊂ M

then its flow ψz (satisfying ψz(0) = z) exists and approximates φz on
γ ∪λ. Since W is complete, the flow ψz extends holomorphically to a strip
R = {t ∈ C:−b < �t < a} ⊂ C which contains γ and hence D. Thus φz|γ
is a uniform limit of mappings which are holomorphic on D. Any sequence
converging to φz on γ also converges on D by the maximum principle, and
it provides a holomorphic extension of φz to the disc D. Therefore D ⊂ Ωz.

The statement in Theorem 1.1 concerning the holomorphic type of the
complex orbits Cz now follows from the following more general result.



408 FRANC FORSTNERIC

2.1 Proposition. Let V be a holomorphic vector field on a complex
manifold M , let πz: Ωz → C be the maximal domain of the flow φz of V
through a point z ∈ M , and let Cz = φz(Ωz) be the complex orbit of z.
Denote by Γz ⊂ AutΩz the group of deck transformations of the covering
projection φz: Ωz → Cz. Then the projection πz induces an isomorphism
of Γz onto a discrete subgroup Gz ⊂ (C,+). If Ωz is simply connected,
then the orbit Cz is biholomorphic to one of the surfaces C, C∗, U(=the
disc), U∗ = U\{0}, an annulus, or a torus.

Remark. The group Gz ⊂ (C,+) described above is called in the literature
the ‘period group’ associated to the orbit Cz of the vector field V . Denote
by ωz the holomorphic one form on Cz which is dual to the vector field
V |Cz . In the local coordinate t on Cz provided by the map φz we have
ωz = dt. Then Gz ⊂ (C,+) is the group of all periods of ωz along closed
loops in Cz.

The first part of the proposition is likely known (and rather trivial); our
main purpose is to establish the second part when Ωz is simply connected.

Proof of Proposition 2.1. We shall first prove the statement about the deck
group Γz. We consider first the case when the projection πz: Ωz → C is
single sheeted, so Ωz is a domain in C. Fix a g ∈ Γz and set a = g(0) ∈ Ωz.
We claim that g is the translation g(t) = t + a. To see this, observe that
both maps t → φz(g(t)) = φz(t) and t → φz(t+a) are local solutions of (1)
which pass through the point z at time t = 0. By uniqueness of the local
solution we conclude that φz(g(t)) = φz(t + a) for all t near 0. Since φz is
a covering map, it follows that g(t) = t + a as claimed.

In the general case when πz: Ωz → C is not single sheeted, we fix a
g ∈ Γz and consider the holomorphic function ρ(t) = πz(g(t)) − πz(t) for
t ∈ Ωz. The same local argument as above shows that this function is
locally constant on Ωz, and hence constant since Ωz is connected. Thus

πz(g(t)) = πz(t) + α(g), t ∈ Ωz

for some constant α(g) ∈ C. Clearly g → α(g) defines a group homomor-
phism α: Γz → (C,+). If α(g) = 0 for some g ∈ Γz, then g preserves each
fiber of πz. Since the map φz: Ωz → Cz (which is the maximal solution of
(1)) separates points on each fiber of πz, it follows that g is the identity.

Thus α is an isomorphism of Γz onto the subgroup Gz = α(Γz) ⊂ (C, +).
It follows that the deck group Γz is abelian. Since Γz is discrete, so is Gz.

Assume from now on that the Riemann surface Ωz is simply connected
and hence biholomorphic either to C or to the disc U . Then Cz is biholo-
morphic to the quotient Ωz/Γz.
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If Ωz is biholomorphic to C, then Γz (being a discrete subgroup of
(C,+)) has zero, one, or two generators. The quotient Cz is biholomorphic
to, respectively, C, C∗, or a torus.

Suppose now that Ωz is conformally equivalent to the disc U . If Γz

is trivial then Cz is also the disc. Assume now that Γz is nontrivial. It
is known that, if g0 and g1 are any two automorphisms of the disc which
commute, and if g0 is not the identity, then g1 belongs to the one parameter
subgroup generated by g0 [4, p.76]. It follows that Γz is a cyclic group with
one generator g which is either hyperbolic or parabolic. (The elliptic case is
excluded since Γz has no fixed points in Ωz.) In the first case g is conjugate
to a dilation ζ → λζ on the upper half plane �ζ > 0 for some λ > 0, λ �= 1,
and the quotient Ωz/Γz is an annulus. In the second case g is conjugate to
a translation ζ → ζ + λ on the upper half plane for some λ ∈ R, λ �= 0,
and the quotient Ωz/Γz is the punctured disc.

This concludes the proof of Proposition 2.1. �
We continue with the proof of Theorem 1.1. It remains to show that

the fundamental domain Ω ⊂ C × M is pseudoconvex. Choose a smooth
strongly plurisubharmonic exhaustion function ψ:M → R and define

ρ : Ω → R by ρ(t, z) = |t|2 + ψ(z) + ψ(φ(t, z))

ρ is a smooth strongly plurisubharmonic function on Ω satisfying

lim
t→bΩz

ρ(t, z) = ∞

for each fixed z ∈ M . The reason is that, as t approaches a finite boundary
point of Ωz, the flow φz(t) leaves every compact subset of M according to
the general properties of flows.

Unfortunately ρ need not be an exhaustion function on Ω, and we need
more work to conclude that Ω is pseudoconvex. It seems worthwhile to
state this result independently.

2.2 Proposition. Let M be a Stein manifold and π:M × C → M the
projection π(z, t) = z. Suppose that Ω ⊂ M × C is a domain satisfying

(i) π(Ω) = M ,
(ii) for each z ∈ M the fiber Ωz = {t ∈ C: (z, t) ∈ Ω} is a connected

and simply connected domain containing the origin, and
(iii) there is a plurisubharmonic function ρ: Ω → R such that for each

fixed z ∈ M and C ∈ R the set Ωz(C) = {t ∈ Ωz: ρ(z, t) ≤ C} is
compact.

Then Ω is pseudoconvex.
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Remarks. 1. Results of this kind have been proved by Hartogs for several
types of geometrically simple fibers Ωz, such as discs and strips in C (see
[3]). In the classical case when Ω is a Hartogs domain with disc fibers
Ωz = {t ∈ C: |t| < r(z)}, the pseudoconvexity of Ω is equivalent to the
plurisubharmonicity of − log r on the base M .
2. Without the hypothesis (ii) it can still be shown easily that Ω is pseu-
doconvex if the base M is one dimensional. We don’t know what is the
answer in general if we delete (ii).

Proof of Proposition 2.2. Let U ⊂ C be the open unit disc. We are going
to prove the following stronger property of Ω: For every analytic disc F =
(f, g):U → M ×C satisfying F (bU) ⊂ Ω we have F (U) ⊂ Ω. Here f : U →
M and g:U → C are holomorphic in a neighborhood of the closed disc U .
Once this is proved, the Kontinuitätssatz implies that Ω is pseudoconvex.
Moreover, in the case dimC Ω = 2, this also implies the Runge property of
Ω in M × C.

Fix a disc F as above and define the pull-back domain D ⊂ U × C by

D = {(ζ, w) ∈ C2: |ζ| ≤ 1, w ∈ Ωf(ζ)}.

Hence Dζ = Ωf(ζ) for ζ ∈ U . The function ψ:D → R, defined by ψ(ζ, w) =
ρ(f(ζ), w), is plurisubharmonic on D. For each fixed ζ ∈ U the function
ψ(ζ, · ) exhausts the fiber Dζ , i.e., every sublevel set is compactly contained
in Dζ . We have g(ζ) ∈ Dζ for every |ζ| = 1, and we must prove that this
implies g(ζ) ∈ Dζ for every ζ ∈ U .

There are several ways to see this. We can use the main result of [6]
(Theorem 3) as follows. Choose ε > 0 sufficiently small such that the disc
U(0, ε) = {w: |w| ≤ ε} is contained in every fiber Dζ , ζ ∈ U . Since the
fibers Dζ are simply connected, we can choose a smooth, one parameter
family of manifolds with boundary Yτ ⊂ bU × C (0 ≤ τ ≤ 1), with fibers
Yτ,ζ which are diffeomorphic to the closed disc, satisfying

(i) Yτ ⊂ Yτ ′ ⊂⊂ D if 0 ≤ τ ≤ τ ′ ≤ 1,
(ii) Y0,ζ = U(0, ε) and g(ζ) ∈ Y1,ζ for all |ζ| = 1,
(iii) the boundaries Tτ = {(ζ, w): |ζ| = 1, w ∈ bYτ,ζ} are smooth, totally

real, and depend smoothly on τ .
Note that Tτ is a two-dimensional torus which is totally real in C2 if and
only if the coordinate projection Tτ → bU is a submersion.

The main result of [6] is that, in this setting, the polynomial hulls Kτ =
Ŷτ = T̂τ also increases continuously (even smoothly) as τ increases from 0
to 1. (In fact, the boundary of Kτ is piecewise smooth and consists of two
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Levi flat surfaces, one of them foliated over the base disc U ×{0}. We shall
not need this precise description of the hull.)

Note that Kτ ⊂ D for small values of τ . Since ψ is uniformly bounded
on the family of sets Yτ , the maximum principle implies that ψ remains
uniformly bounded on Kτ = Ŷτ as long as Kτ ⊂ D. Since the fibers Kτ,ζ

increase continuously with τ for each fixed ζ ∈ U , and since ψ(ζ, · ) exhausts
the fiber Dζ , it follows that Kτ remains in D for all τ ∈ [0, 1]. Since K1

contains the graph of g, we are done.
An alternative (but essentially equivalent) way to prove that the graph

of g is contained in D is as follows. After a small perturbation we may
assume that g(ζ) �= 0 for |ζ| = 1. Choose a smooth family of arcs γζ ⊂ Dζ ,
|ζ| = 1, connecting 0 to g(ζ) within Dζ , and then ‘slide’ the disc g along
a one parameter family of discs gτ :U → C (0 ≤ τ ≤ 1) such that g0 = 0,
g1 = g, and gτ (ζ) ∈ γζ for all |ζ| = 1 and 0 ≤ τ ≤ 1. Once this is done, the
maximum principle applies as above. The required ‘sliding’ of discs can be
done by methods in [6] or in Slodkowski’s paper [13].

This concludes the proof of Proposition 2.2 and of Theorem 1.1. �

Proof of Proposition 1.3. We may assume that V (0) �= 0 and that its
maximal domain Ω = Ω0 ⊂ C is simply connected. Let φ: Ω → C = φ(Ω) ⊂
C be the integral curve of V satisfying φ(0) = 0. Then φ is a holomorphic
covering map, and since Ω is simply connected, φ is the universal covering
onto C.

We claim that

C = {z ∈ C:V (z) �= 0}. (5)

Indeed, C is an open subset of the set where V �= 0, and it suffices to show
that C has no boundary in that set.

If p is a boundary point of C where V (p) �= 0, there is a neighborhood
U of 0 and a solution t → φp(t) of the equation (1) for t ∈ U , satisfying
φp(0) = p. The image φp(U) is a neighborhood of p and so it contains
a point q ∈ C ∩ φp(U). Let q = φ(t0) = φp(t1), where φ is as above and
t1 ∈ U . Set a = t1−t0. Then the maps t → φ(t) and t → φp(t+a) are both
solutions of (1), defined for t near t0, whose values coincide at t = t0. By
uniqueness of the local solution they coincide, and we can use the second
map to analytically continue φ to the value t = t0 − t1 = −a at which we
obtain φ(t) = φp(t + a) = φp(0) = q. This shows that the only boundary
points of orbit C are those where V = 0, and (5) is established.

Since Ω is assumed to be simply connected, Proposition 2.1 shows that
C has connectivity at most one. Hence (5) implies that V has at most one
zero in C and C is equal to either C or C minus a point.
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If V has no zeros, then C = C and hence φ: Ω → C is biholomorphic.
Thus Ω = C, φ is linear (φ(t) = ct), and therefore V (z) = c ∂

∂z .
If V has one zero, say V (c) = 0 for c ∈ C∗, then C = C\{c}. In this

case we conclude that Ω = C and φ is of the form φ(t) = c(1 − eλt) for
some constant λ ∈ C∗. The field V is then affine linear: V (z) = λ(z−c) ∂

∂z .
This proves Proposition 1.3. �

3. Further examples

One way to construct holomorphic vector fields on Cn (n ≥ 2) which
are limits of complete fields, but not necessarily complete, is as follows.
Let F :Cn → D ⊂ Cn be a Fatou-Bieberbach map, that is, a biholomor-
phic map of Cn onto a proper subdomain of Cn. Such maps exist in great
abundance, see [3] and [12]. In all known constructions of such maps, F
arises as a limit of a sequence of holomorphic automorphisms Fj ∈ AutCn.
Conversely, if F :Cn → D ⊂ Cn is a Fatou-Bieberbach map onto a Runge
domain D, then F is a limit of automorphisms of Cn [1], [7]. Moreover, if
JF = 1 (where J denotes the complex Jacobian), then there is an approx-
imating sequence satisfying JFk = 1.

For every complete holomorphic vector field W on Cn, the pull-back field
V (z) = DF−1(w)·W (w), where w = F (z), is the limit of the sequence of
complete fields Vj = DF−1

j ·W . However, V itself is in general not complete
since the complex orbits of the field W do not remain inside D. In fact we
do not know any example of a Fatou-Bieberbach domain which is invariant
under the flow of a complete holomorphic vector field.

The earliest and best known construction of such maps is due to Fa-
tou and Bieberbach. We start with an automorphism Φ of Cn with an
attracting fixed point a, and we let D = D(a) be the attracting basin

D = {z ∈ Cn: lim
k→∞

Φk(z) = a}.

Then there exists a biholomorphic map F :Cn → D which conjugates Φ|D
to an automorphism of Cn which is globally attracting to the origin; see
[12]. (In most cases this automorphism is linear.)

Bedford and Smillie [2] proved that, when D is an attracting basin of
a polynomial automorphism of Cn, then every algebraic curve Λ ⊂ Cn

intersects D in a nonempty bounded set. For more general results in this
direction we refer the reader to Fornaess and Sibony [5]. If Λ is a complex
line, then each connected component of D ∩Λ is simply connected since D
is Runge in C2. In this case the conjugating map F :Cn → D has Jacobian
one. This gives rise to a number of interesting examples.
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Example 3. There exists a holomorphic vector field V on C2 without critical
points such that V is a limit of complete fields, each complex orbit Cz

(z ∈ C2) is conformally a disc, and the maximal domain Ωz ⊂ C is bounded
for each z ∈ C2.

Indeed, with F as above, it suffices to take V = DF−1·X for any con-
stant vector field X �= 0 on C2 (for example, take X = ∂

∂z1
). The stated

properties of V follows from the result of Bedford and Smillie.
Since JF = 1, the field V is as well Hamiltonian, and it is a limit of

complete Hamiltonian fields.

Example 4. There exists a holomorphic vector field V on C2 which is a
limit of complete fields, it has an attracting critical point at the origin 0,
and the basin of attraction of 0 is not all of C2.

To construct such a field, we take D ⊂ C2 as above to be the attract-
ing basin at 0 of a polynomial automorphism of C2, with the additional
property that Λ ∩ D is disconnected for at least one complex line Λ ⊂ C2

passing through the origin. Such domains can be constructed by using the
methods developed in [7] (see in particular Corollary 2.4 in [7]). Indeed, if
D ⊂ Cn is any F-B domain and if Λ is any complex line in Cn such that
E = Λ∩D is nonempty and bounded, then there is a polynomial automor-
phism Φ ∈ AutCn such that Φ is close to the identity near E, and Φ(z) ∈ Λ
for some point z ∈ D\Λ. Then the F-B domain D′ = Φ(D) intersects Λ in
at least two connected components.

Let X = λ ∂
∂z1

+ λ ∂
∂z2

for any constant λ ∈ C with �λ < 0. The flow of
X, (t, z) → eλtz, remains in the complex line through z and 0, and 0 is a
globally attracting point. The field V = DF−1·X on C2 has the required
properties. In fact, 0 is an attracting critical point whose basin B consists
of all points z ∈ C2 such that F (z) is connected to 0 in Λ ∩ D, where Λ is
the complex line through 0 and F (z). Since Λ ∩ D is not connected for all
Λ, B is not all of C2.
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