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SMOOTH RIGIDITY OF RANK-1 LATTICE

ACTIONS ON THE SPHERE AT INFINITY

Chengbo Yue

0. Introduction

Let Γ be a cocompact lattice in SO(n, 1). Γ acts naturally on the sphere
Sn−1 preserving the canonical conformal structure. Let us denote this
action by ρ0 : Γ → Conf (Sn−1). Let ρ : Γ → Diff1(Sn−1) be a C1-
action of Γ on Sn−1 which is sufficiently C1-close to ρ0 among a set of
finitely many generators of Γ. Dennis Sullivan [S] proved that there exists
a unique homeomorphism h ∈ Homeo(Sn−1) such that ρ = h−1◦ρ0◦h. This
result also follows from the structural stability theorem for Anosov flows via
a suspension construction (see §1.3). The suspension construction works
equally well for the canonical action of any cocompact lattice in a rank-1
semisimple lie group on the ideal boundary of the corresponding symmetric
space. The purpose of this paper is to prove the following rigidity result.

Theorem 1. Let Γ be a cocompact lattice in a rank-1 noncompact semisim-
ple Lie group. Let ∂H be the sphere at infinity of the corresponding sym-
metric space and ρ0 : Γ → Conf (∂H) be the canonical action conformal
with respect to the Carnot-Carathéodory metric. If ρ : Γ → Diff∞(∂H)
is a smooth action of Γ which is sufficiently C1 close to ρ such that the
conjugacy h exists and is absolutely continuous with respect to the Lebesgue
measure. Then h is C∞.

We suspect that when dim(∂H) > 1, the condition that h is absolutely
continuous is superfluous. What we really need in this paper is a condition
weaker than the absolute continuity of h (see §2.2). Actually the theorem is
true for Ck-actions ρ for some finite number k (see [BFL]). It is reasonable
to make the following
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Conjecture. If dim(∂H) > 1, then all C2-actions ρ : Γ → Diff2(∂H)
which are sufficiently C1-close to ρ0 must be conjugate to ρ0 via a C2

diffeomorphism.

We should point out that the conjecture is false for C1-actions. Indeed
consider a closed Riemannian manifold (M, g0) of constant curvature K ≡
−1. Perturb the metric g0 to a nearly metric g of nonconstant curvature
K(g) which satisfies |K(g) + 1| ≤ ε for a small ε > 0. The ideal boundary
∂M̃ of the universal cover (M, g) carries a C1+α(ε) structure, where α(ε) →
1 (as ε → 0). Γ = π1(M) acts on ∂M̃ as a group of C1+α(ε)-diffeomorphisms
which is never C1-conjugate to the canonical action.

The conjecture is also false if dim ∂H = 1. Deformations corresponding
to the Teichmüller space are non-smoothly conjugate to each other([Mo],
p. 178). However, E. Ghys [G2] proved that for any C∞-action ρ which is
C1-close to ρ0, there exists a C∞-diffeomorphism h ∈ Diff∞(S1) such that
h−1 ◦ρ◦h coincides with the action of a cocompact lattice Γ1 ⊂ PSL(2, R)
(see also [KY] for another treatment and [G3] for a recent global result). In
a different direction, Katok-Spatzier[KS] and M. Kanai[K2] independently
obtained the smooth local rigidity of the projective action of irreducible
lattices in higher rank noncompact semisimple Lie groups on the maximal
boundaries.

To explain our approach, we first recall the notion of contact Anosov
flows. Let X be a C∞ vector field on a C∞ closed manifold M equipped
with a Riemannian metric ‖·‖. The flow ϕt generated by X is called contact
if ϕt preserves a smooth 1-form α such that α∧ (dα)n−1 is everywhere non-
degenerate (2n−1 = dimM). ϕt is said to be Anosov if there exists a flow-
invariant decomposition of the tangent bundle of M : TM = E+⊕RX⊕E−

and constants A > 0, a > 0 such that
(i) ∀ Y ∈ E+, ∀t ≥ 0, ‖Dϕ−t(Y )‖ ≤ A‖Y ‖e−at,
(ii) ∀ Y ∈ E−, ∀t ≥ 0, ‖Dϕt(Y )‖ ≤ A‖Y ‖e−at.
The distributions E+, E−, E+ ⊕ RX, E− ⊕ RX of an Anosov flow are

all integrable with C∞ leaves. The corresponding foliations W su, W ss,
Wu, W s are called strong unstable, strong stable, unstable, stable folia-
tions of ϕt. These Anosov foliations are in general only Hölder continuous.
Benoist, Foulon and Labourie, generalizing previous works of Ghys [G1],
Hurder-Katok [HK], Kanai [K1], Feres-Katok[FK] and Feres [F], obtained
the following result.

Theorem. [BFL] Let M be a closed manifold of dimension 2n − 1 > 3.
Let ϕt be a contact Anosov flow on M with C∞ Anosov foliations. Then
after a proper reparameterization, ϕt is C∞-time preservingly conjugate to
the geodesic flow of a locally symmetric space of negative curvature.
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The strategy we adopt in the proof of the main theorem involves the
construction of a new Anosov flow from the perturbed action (this is carried
out in §1, §2) and then prove that the new flow is contact with C∞-Anosov
foliations (this is carried out in §3). Theorem 1 is proved in §4.

1. Suspension and holonomy

(1.1) We first recall the notion of a foliated bundle and a related sus-
pension construction. A good reference is [HT]. Let τ = (P, E, M) be a C1

bundle [HT] with bundle projection P : E → M and fibres Vx, x ∈ M , a fo-
liation of τ is a foliation F of E where leaves are transverse to the fibres and
of complementary dimension. Assume that the fibres are compact. For each
u ∈ E the leaf Fu through u has a unique topology making P

∣∣
Fu

: Fu → M

a covering space. For any x, y ∈ M if λ : [0, 1] → M is a path from x to
y, a homeomorphism h(λ) : Vx → Vy is defined by h−1(λ) : w → λw(1)
where λw : [0, 1] → Fw is the unique path in Fw, starting at w ∈ Vy,
which covers λ. Holonomy must be defined backwards, as above, so that
h(λ#µ) = h(λ) ◦ h(µ) where λ#µ means the sum of paths. Setting x = y

we obtain a homomorphism π1(M, x) h−→ Homeo(Vx). Fix the base point
x and identify Vx with the fibre V of the bundle τ = (P, E, M); we call
π1(M) h−→ Homeo(V ) the holonomy homomorphism of the foliated bundle
(τ,F).

Next we consider an inverse construction which is called the suspension
construction. Let V be any space and M a space with universal cover M̃ .
Let h : π(M) → Homeo(V ) be a homomorphism. Then π1(M) acts on
M̃ × V by γ(b, v) = (γb, γv). Let E = (M̃ × Ṽ )/π1(M) be the quotient
space and let P :(M̃ × V )/π1(M) → M̃/π(M) = M be the natural map of
orbits. Then (P, E, M) is a foliated bundle. The leaves of the foliation F
are the images of the set M̃ × v, v ∈ V . The holonomy homomorphism
of this foliated bundle is the homomorphism h we start with. Conversely,
if h : π1(M) → Homeo(V ) is the holonomy homomorphism of a foliated
bundle (τ,F) with compact fibre V , then the foliated bundle obtained
by the suspension construction starting from h is naturally isomorphic to
(τ,F).

If M and V are Ck manifolds and if Γ = h(π1(M)) is contained in
Diffk(V ) then the suspension construction gives a Ck-foliated bundle with
Ck foliation F . Conversely, the holonomy group Γ of a Ck foliated bun-
dle with a Ck foliation is contained in Diffk(V ). Assume h1 : π1(M) →
Diffk(V ) is another homomorphism and M is compact. Then π1(M) is
finitely generated. The foliation F1 corresponding to the suspension of h1

is C1-closed to F (in terms of their tangent distribution) if and only if the
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holonomy h1 is C1-closed to h among a set of finitely many generators.
It is also easy to see that the existence of a Ck-diffeomorphism H which
conjugates the leaves of the two foliation is equivalent to the existence of a
Ck-diffeomorphism h on V which conjugates the actions of h and h1.

(1.2) If M is a closed Riemannian manifold of negative curvature,
then the unit tangent bundle SM carries two foliated bundle structures
corresponding to the stable foliation W s and unstable foliation Wu of the
geodesic flow. To describe the holonomy map of these foliations, let us
fix a point x in the universal cover M̃ . For any vector v ∈ SM̃ , denote
by v(t) the geodesic with initial velocity v : v̇(0) = v. Denote by v(∞)
the point in the ideal boundary ∂M̃ represented by the geodesic ray v(t),
t ≥ 0. The map Px : SxM̃ → ∂M̃ : v �→ v(∞) induces a homeomorphism.
The holonomy hs : Γ = π1(M) → Homeo(SxM̃) of the stable foliation W s

is given by hs(γ)(v) = P−1
x ◦ ρ0(γ) ◦ Px(v) for v ∈ SxM̃ where ρ0 : Γ →

Homeo(∂M̃) represents the canonical action of Γ on ∂M̃ . On the other
hand, there exists a geodesic reflection σx : ∂M̃ → ∂M̃ which is defined by
σx(Px(v)) = Px(−v), ∀ v ∈ SxM̃ . The holonomy hu : Γ → Homeo(SxM̃) of
the unstable foliation Wu is given by hu(γ)(v) = P−1

x ◦σx◦ρ0(γ)◦σx◦Px(v).
In summary, after identifying ∂M̃ with SxM via Px, the holonomy of W s is
isomorphic to ρ0(Γ) and the holonomy of Wu is isomorphic to σx ◦ ρ0 ◦ σx.
In this model, the space of geodesics in SM̃ is canonically identified with
∂M̃ × ∂M̃ � D where D = {(ξ, σx(ξ))|ξ ∈ ∂M̃}. The group Γ acts on this
space via γ(ξ, η) = (ρ0(γ)ξ, σx ◦ ρ0(γ) ◦ σxη).

(1.3) From now on, we assume M̃ is a symmetric space of negative
curvature (so M̃ = Hn

R
, Hn

C
, Hn

H
, the real, complex, quaternionic, hyper-

bolic space, or H2
O
, the hyperbolic Cayley plane). Then ∂M̃ carries a C∞

structure such that the holonomy hs, hu are contained in Diff∞(∂M̃).

Lemma 1. (Compare [S]) Let ρ : Γ → Diff1(∂M̃) be a C1-action of
Γ on ∂M̃ which is sufficiently close to ρ0 in the C1-topology. Then there
exists a Hölder continuous homeomorphism h : ∂M̃ → ∂M̃(unique in the
transversal direction) which is close to the identity and conjugates the two
actions: ρ = h−1 ◦ ρ0 ◦ h.

Proof. By the suspension construction, the new action ρ gives rise to a
C1 foliation V s on SM which is C1-close to the foliation W s. The un-
stable foliation Wu is transversal to W s. Wu must also be transversal to
V s if the perturbation ρ is sufficiently close to ρ0 and consequently, the
1-dimensional foliation Wu ∩ V s is C1 close to the 1-dimensional folia-
tion Wu ∩ W s (which is the orbit foliation of the geodesic flow). By the
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structural stability theorem of Anosov flows, there exists a homeomorphism
H : SM → SM(unique in the transversal direction) which is Hölder , close
to identity, and conjugates the two 1-dimensional foliations and in conse-
quence, conjugates the foliations W s and V s. This gives rise to a Hölder
homeomorphism h : ∂M̃ → ∂M̃ which conjugates the two actions ρ0 and
ρ. �

(1.4) In what follows we continue to use the notations in the last three
sections. The perturbation ρ induces an action of Γ on ∂M̃×∂M̃ �D given
by γ̂(ξ, η) = (ρ(γ)ξ, σx ◦ ρ(γ) ◦ σxη). For the sake of simplicity we denote
this action by Γ̂ and denote the canonical action γ(ξ, η) = (ρ0(γ)ξ, σx ◦
ρ0(γ) ◦ σxη) by Γ. The two actions are conjugate via the homeomorphism
H ∈ Homeo(∂M̃ × ∂M̃ � D) : (ξ, η) → (hξ, σx ◦ h ◦ σxη). So we have
Γ̂ = H−1 ◦ Γ ◦ H. We should remind the reader that both actions are
equivariant under the flip map σ : σ(ξ, η) = (σxη, σxξ).

(1.5) In the proof of lemma 1, we constructed an Anosov flow using
the foliations Wu and V s. Next we describe a more symmetric construc-
tion. Namely, let ρ : Γ → Diff1(∂M̃) be a C1-perturbation of ρ0. Consider
the representation ρ′ : Γ → Diff1(∂M̃), ρ′ = σx ◦ ρ ◦ σx. By the sus-
pension construction, ρ′ gives rise to a C1 foliation V u on SM which is
C1-close to the unstable foliation Wu. Since W s is transversal to Wu, V s

must also be transversal to V u if the perturbation ρ of ρ0 is small enough.
The intersection V s ∩ V u is a 1-dimensional foliation C1-close to the or-
bit foliation of the geodesic flow W s ∩ Wu. Any smooth parameterization
of the 1-dimensional foliation V s ∩ V u gives rise to an Anosov flow ϕt

which is orbit equivalent to the geodesic flow gt via a Hölder homeomor-
phism H : SM → SM . The space of orbits of ϕt is canonically identified
with ∂M̃ × ∂M̃ � D. The fundamental group Γ acts on this space via
γ̂ (ξ, η) = (ρ(γ)ξ, σx ◦ ρ(γ) ◦ σxη). The homeomorphism H induces the
homeomorphism H ∈ Homeo(∂M̃ × ∂M̃ � D) which conjugates the action
Γ̂ and Γ (see §1.4).

Lemma 2. If h is absolutely continuous, then ϕt preserves an absolutely
continuous invariant measure.

Proof. If h is absolutely continuous, then the conjugacy H(see §1.4) is also
absolutely continuous. Since the geodesic glow gt preserves the Liouville
measure ν, the measure H∗(ν) is an absolutely continuous measure invari-
ant under a time change of ϕt. �

2. Synchronization of the new flow

(2.1) From now on, we assume that ρ is a C1 perturbation of ρ0 and
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ρ(Γ) ⊂ Diff∞(∂M̃). Starting from the perturbed action, we performed a
pair of suspension constructions in §1.5. The result is a new Anosov flow ϕt.
The flow ϕt has C∞ weak stable and weak unstable foliations V s and V u.
However, the smoothness of the strong stable and strong unstable foliations
V ss and V su obviously depend on time parameterization. We will prove in
this section that if h is absolutely continuous, then there exists a unique
parameterization such that the strong stable and strong unstable foliations
are smooth simultaneously.

(2.2) Recall that any smooth codimension-q foliation F is uniquely
determined by a locally decomposable q-form w (up to the multiplication
by a scalar function). The tangent bundle of F is exactly the kernel of w.
The q-form w satisfies the Frobenius condition dw = α∧w, where α is a 1-
form. Let n = dimM . Then V u is a codimension-(n− 1) smooth foliation.
Let w be a locally decomposable C∞ (n−1)-form defining V u. Since ϕ∗

t w is
also locally decomposable and also defines V u, we have ϕ∗

t w = ftw, where
ft is a C∞ positive function. It is easy to see that ft → 0 (as t → ∞). Now
consider

wT =
∫ T

0

ϕ∗
t w dt =

(∫ T

0

ftdt

)
w.

We have LY wT = (fT − 1)w = fT −1∫ T
0 ftdt

wT , where Y is the vector field

generating ϕt. Let X = 1−fT∫ T
0 ftdt

Y for some large number T such that 1−fT

is positive. It follows that LXwT = −wT .

Lemma 3. Under the new parameterization X, the strong unstable folia-
tion V su is C∞.

Proof. For the sake of simplicity, we denote wT by wu and denote the
flow of X by ϕt. Let α be a C∞ 1-form such that dwu = α ∧ wu. Then
−wu = LXwu = iXdwu + diXwu = iX(α ∧ wu) = α(X)wu(∵ iXwu ≡ 0).
Hence α(X) ≡ −1.

Since LXwu = −wu, we also have ϕ∗
t w

u = e−twu. Taking exterior
derivative, we get

d(ϕ∗
t w

u) = ϕ∗
t (d wu) = ϕ∗

t (α ∧ wu) = ϕ∗
t α ∧ ϕ∗

t w
u = ϕ∗

t α ∧ e−twu,

d(ϕ∗
t w

u) = d(e−twu) = e−tdwu = e−tα ∧ wu.

It follows that (ϕ∗
t α − α) ∧ wu = 0. Thus, for any vector Y ∈ TV su,

we have [α(Dϕt(Y )) − α(Y )]wu = iY [(ϕ∗
t α − α) ∧ wu] = 0. Therefore,

α(Y ) = α(Dϕt(Y )) → 0(ast → −∞). Consequently, we have V su =
ker(α) ∩ ker(wu) (recall that the kernel of a differential form σ is defined
by ker(σ) = {Y |iY (σ) = 0}). Hence V su is smooth. �
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Lemma 4. If h is absolutely continuous, then under the parameterization
X, the strong stable foliation V ss is also C∞.

Proof. If h is absolutely continuous, by lemma 2, ϕt preserves an absolutely
continuous measure which is represented by a volume form Ω. There exists
a unique (n − 1) form ws defining V ss which satisfies ws ∧ wu = iXΩ.
Suppose that dws = β ∧ ws. Then we have

0 = LXΩ = iX(dΩ) + d(iXΩ)

= d(ws ∧ wu) = (−1)n−1ws ∧ dwu + dws ∧ wu

= (α + β) ∧ ws ∧ wu

Hence [α(X)+β(X)]ws∧wu = iX [(α+β)∧ws∧wu] = 0. Therefore β(X) ≡
1. It follows that LXws = iXdws + d iXws = iX(β ∧ ws) = β(X)ws = ws.
From the argument for lemma 3, we have that V ss = ker(β) ∩ ker(ws);
hence, it is C∞. �

3. The new flow is contact

(3.1) In what follows we assume that ρ is a sufficiently small C1 per-
turbation of ρ0 with ρ(Γ) ⊂ Diff∞(∂M̃) and moreover, the map h (see
lemma 1) is absolutely continuous. We keep the notations of section 2.
In particular, by lemma 4, there exists a time parameterization ϕt of the
perturbed 1-dimensional foliation such that the strong stable and strong
unstable foliations V ss and V su of ϕt are C∞ foliations. Hence the 1-form
σ defined by σ(X) = 1, σ

∣∣
Ess⊕Esu = 0 is a C∞ form invariant under the

flow ϕt and dσ is a C∞ flow-invariant 2-form.

Lemma 5.
(1) For local vector fields Y , Z ∈ Ess ⊕ Esu, we have

dσ(Y, Z) = −σ([Y, Z]);

(2) X ⊂ ker(dσ);
(3) σ ∧ dσ �≡ 0;
(4) dσ

∣∣
Es = dσ

∣∣
Eu = 0.

Proof. (1) Let Y, Z ∈ Ess ⊕ Esu be local C∞ vector fields Y, Z. Then we
have

dσ(Y, Z) = Y (σ(Z)) − Z(σ(Y )) − σ([Y, Z]) = −σ([Y, Z]).

(2) For any local vector field Y ⊂ Ess or Esu, we have dσ(X, Y ) =
dσ(Dgt(X), Dgt(Y )) = dσ(X, Dgt(Y )) → 0 (as t → ∞ or t → −∞).



334 CHENGBO YUE

(3) If σ∧dσ ≡ 0, then Ess ⊕Euu is integrable. This is impossible (see [P],
theorem 3.1).
(4) This follows from the same argument as in (2).

Consider the distribution F
def= {Y ∈ Ess ⊕ Esu

∣∣iY (dσ) = 0}. Denote
F s = F ∩ Ess and Fu = F ∩ Esu. Then we have F = F s ⊕ Fu. �
Definition. For each point v ∈ SM , we define the index of v by I(v) =
dimF . The stable (resp. unstable) index of v is defined to be Is(v) =
dimF s (resp. Iu(v) = dimFu). We also define the rank r(v) of v to be the
smallest number p > 0 such that (dσ)p �= 0 but (dσ)p+1 = 0 at v.

Lemma 6. There exists a dense open subset U ⊂ SM such that for all
v ∈ U , I(v) = ns+nu, Is(v) = ns, Iu(v) = nu, r(v) = n0 for some integers
0 ≤ ns, nu, n0 ≤ n − 1.

Proof. Clearly, the functions I(v), Is(v), Iu(v) are lower semi-continuous
and the function r(v) is upper semi-continuous. Hence the sets

U1 = {v ∈ SM
∣∣I(v) is minimal},

U2 = {v ∈ SM
∣∣Is(v) is minimal},

U3 = {v ∈ SM
∣∣Iu(v) is minimal},

U4 = {v ∈ SM
∣∣r(v) is maximal}

are nonempty and open. Since the functions I(v), Is(v), Iu(v) and r(v)
are all ϕt-invariant, the sets U1, U2, U3, U4 are also ϕt-invariant. By the
ergodicity of ϕt with respect to the Lebesgue measure, each Ui must also
be dense in SM . Hence U

def= U1 ∩ U2 ∩ U3 ∩ U4 is open, dense and ϕt-
invariant. �
Lemma 7.

(1) The distributions F , F s, Fu are C∞ on U .
(2) ns = nu = (n − 1) − n0.

Proof. (1) This is because F + RX is the kernel of the C∞ 2-form dα
which has constant rank on U .
(2) By the Darboux theorem, around each point in U , there exists local
coordinates (x1, x2, . . . , xn−1, y1, y2, · · · , yn−1, s) such that dσ = dx1∧dy1+
· · ·+dxn0 ∧dyn0 and moreover, (i) if σ∧ (dσ)n0 ≡ 0 in the local coordinate
chart, then σ = x1dy1 + · · · + xn0dyn0 ; (ii) if σ ∧ (dσ)n0 �= 0, then σ =
x1dy1 + · · · + xn0dyn0 + ds. We claim that the first case (i) is impossible.
This is because if σ ∧ (dσ)n0 ≡ 0 in a small neighborhood in U , then
iX(σ ∧ (dσ)n0) = (dσ)n0 ≡ 0 which is a contradiction. �



SMOOTH RIGIDITY OF RANK-1 LATTICE ACTIONS 335

Lemma 8. The distributions F s, Fu and F ⊕ RX are integrable on U .

Proof. For arbitrary vector fields Y1, Y2, Z such that Y1, Y2 ⊂ ker(dσ), we
have, by the Jacobi identity,

0 = d2σ(Y1, Y2, Z) = Y1(dσ(Y2, Z)) + Y2(dσ(Z, Y1)) + Z(dσ(Y1, Y2))

− dσ([Y1, Y2], Z) − dσ([Y2, Z], Y1) − dσ([Z, Y1], Y2)

= −dσ([Y1, Y2], Z).

Hence [Y1, Y2] ⊂ ker(σ). It follows from the Frobenius theorem that F ⊕
RX = ker(dσ) is integrable. Since F s = (F ⊕ Rx) ∩ Ess, Fu = (F ⊕
RX) ∩ Esu and both Ess and Esu are integrable, F s, Fu must also be
integrable. �

Consider the set R = {v ∈ U
∣∣ There exist two sequences Tk → ∞ and

tk → −∞ such that lim
k→∞

ϕtk
(v) = lim

k→∞
ϕTk

(v) = v}. Clearly R contains

all periodic points in U . By the closing lemma ([Ma]), the set of periodic
points in U is dense. Hence R is dense in U .

Lemma 9. For each v ∈ R, we have V ss(v) ⊂ U , V su(v) ⊂ U .

Proof. This follows directly from the definition of R and the contracting
property of V ss (as t → ∞) and V su (as t → −∞). �

For each v ∈ R, the restriction of Fu to V su(v) generates a C∞-foliation
Fu(v) along V su(v). Next, we lift everything to the universal covering SM̃
and keep the same notations. Recall that there exists a canonical identifica-
tion between the orbit space SM̃

/
V u (resp. SM̃

/
V s) and ∂M̃ via the sus-

pension construction: SM̃
/
V u P u

−→ ∂M̃ (resp. SM̃/V s P s

−→ ∂M̃). The map
Pu (resp. P s) induces a projection πu : SM̃ → ∂M̃ (resp. πs : SM̃ → ∂M̃)
defined by πu(v) = Pu(V u(v)) (resp. πs(v) = P s(V s(v))). The restriction
of πu to V su(v) defines a diffeomorphism πu

v : V su(v) → ∂M̃ �{σx(πs(v))}
(see §1.2). The foliation Fu(v) projects to a foliation Lu(v) on ∂M̃ �

{σx(πs(v))} under the diffeomorphism πu
v . Given any other point v1 ∈ R,

v1 �= v, the stable foliation V s induces a canonical holonomy map fs :
V su(v) → V su(v1) such that for all w ∈ V su(v), fs(w) = V su(v1)∩V s(w).
Thus there exists T0 ∈ R such that lim

t→∞
d(ϕt+T0(w), ϕt(fs(w))) = 0 for any

Riemannian metric d on SM̃ lifted from SM . By lemma 8, the distribution
F s⊕Fu⊕RX is integrable on U . Hence the foliation Fsu is invariant under
the local holonomy along V s (by ‘local’ we mean that the holonomy between
nearby leaves in U such that the holonomy process stays in U). It follows
that there exists t0 > 0 such that the foliation Fu(ϕt0+T0(w)) is mapped to
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Fu(ϕt0(f
s(w))) by the holonomy fs : V su(ϕt0+T0(w)) → V su(ϕt0(f

s(w))).
Since the foliation Fu and the holonomy fs is flow-invariant, it follows that
fs : V su(v) → V su(v1) preserves the foliation Fu. Hence we obtain the
following lemma.

Lemma 10. For any two points v, w ∈ R, we have fs(Fu(v)) = Fu(w).

Proposition 11. The flow ϕt is contact.

Proof. By lemma 10, the holonomy invariant foliations Fu(v), v ∈ R
project to a C∞-foliation Lu on ∂M̃ which is clearly invariant under the ac-
tion ρ(Γ) on ∂M̃ . Such a foliation is necessarily trivial ([F]). Hence ns = 0
or n−1. If ns = n−1, then dσ ≡ 0 on U which is obviously a contradiction
(see [P]). Thus ns = 0 and (dσ)n−1 �= 0 everywhere on U . From the argu-
ment for lemma 7, we see that the zero set of σ∧ (dσ)n−1 is nowhere dense
in U . Hence σ ∧ (dσ)n−1 �= 0 everywhere on an open dense subset U1 ⊂ U .
But then σ∧(dσ)n−1 defines an invariant volume for ϕt. It follows from the
Livshitz theorem that σ ∧ (dσ)n−1 �= 0 everywhere on SM . Consequently,
σ is a ϕt-invariant contact form on SM . �

4. Proof of theorem 1 and other comments

(4.1) We finish the proof of theorem 1. If dim(∂M̃) = 1, then theorem
1 follows from Ghys [G2]. This is because by [G2], there exists a Fuchsian
group Γ1 ⊂ PSL(2, R) and a C∞ map h1 ∈ Diff∞(S1) such that h−1

1 ◦
ρ(Γ) ◦ h1 = ρ0(Γ1), where ρ0 : Γ1 → Proj (S1) is the canonical projective
representation. Hence, we have ρ0(Γ1) = (h ◦ h1)−1 ◦ ρ0(Γ) ◦ (h ◦ h1).
Since the map h ◦h1 is absolutely continuous with respect to the Lebesgue
measure, by Mostow’s rigidity theorem [Mo, pp. 178], h ◦ h1 ∈ PSL(2, R),
it follows that h ∈ Diff∞(S1).

If dim(∂M̃) > 1, by Benoist, Foulon and Labourie’s theorem, there exists
a locally symmetric space N , such that after a proper reparameterization,
ϕt is C∞-time preservingly conjugate to the geodesic flow gt of N via a
diffeomorphism H1 : SM → SN . The map H1 ◦ H (see §1.5 for the map
H) defines a C∞ orbit equivalence between the geodesic flows gt on N and
gt on M . By the Mostow rigidity theorem, H1 ◦H must be induced by the
tangent map of an isometry between M , N up to a time shift. It follows
that H ∈ C∞ and consequently, h ∈ C∞.

(4.2) We conclude this paper with a few comments. We would like to
point out that the flow ϕt we constructed in §1.5 is more symmetric than
the quasi-Fuchsian construction of Ghys [G2]. Namely, there exists a C∞

diffeomorphism Σ : SM → SM which flips the orbits of ϕt : ϕt(Σ(v)) =
Σϕ−s(v) (Σ might not preserve the time). Does the existence of such a
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flip map imply that ϕt preserves a volume? If this was true, than our
assumption that h is absolutely continuous in theorem 1 is superfluous.

R. Zimmer proved that if the action of a lattice in a semi-simple Lie group
with Kazhdan property T preserves a Riemannian metric, then any nearby
perturbed action also preserves a Riemannian metric. In our situation, the
action ρ0 preserves a canonical conformal structure. One can easily prove
that for any action ρ : Γ → Diff∞(Sn−1) which is sufficiently C1 close to
ρ0 among a set of finitely map g generators, the following statements are
equivalent (for the sake of simplicity, we consider only Γ ⊂ SO(n, 1), n ≥
3):

(1) ρ is smoothly conjugate to ρ0;
(2) ρ preserves a conformal structure;
(3) ρ is uniformly quasi-conformal.
However, although the quasi-conformal distortion of the generators of

ρ(Γ) is small, long compositions of these generators might create arbi-
trarily large quasi-conformal distortion. Theorem 1 says that this could
not happen if h is absolutely continuous, or if the product action Γ̂ on
(Sn−1 × Sn−1) � D (see §1.4) preserves a locally finite absolutely continu-
ous measure.
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