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A VANISHING THEOREM FOR

SEIBERG-WITTEN INVARIANTS

Shuguang Wang

A bstract . It is shown that the quotients of Kähler surfaces under free
anti-holomorphic involutions have vanishing Seiberg-Witten invariants.

Various vanishing theorems have played important roles in gauge theory.
The first among them, due to S. K. Donaldson [2], states that the Donaldson
invariants vanish for any smooth closed oriented 4-manifold X which de-
composes to a connected sum X1#X2 with b+

2 (X1) > 0, b+
2 (X2) > 0. (Here

b+
2 (Xi) is the dimension of a maximal subspace of H2(Xi,Z) on which the

intersection pairing is positive definite.) E. Witten [12] has shown more
recently that such a connected-sum manifold has also vanishing Seiberg-
Witten invariants. Even though its proof is simple, Witten’s vanishing
theorem is equally useful as Donaldson’s vanishing theorem; for example,
it implies that any symplectic 4-manifold cannot be decomposed into the
above connected sum by combining with Taubes’ theorem in [9].

In this note we show that Seiberg-Witten invariants vanish for another
class of 4-manifolds. These manifolds are obtained in connection with
real algebraic geometry, and the construction was originally proposed in
Donaldson [3]. See Remark 4 below. To state our theorem, recall that a
map σ between two almost complex manifolds is called anti-holomorphic
if σ∗J1 = −J2σ∗ on the tangent bundles, where Ji are the almost com-
plex structures of the manifolds. In the following, K denotes the canonical
bundle of an almost complex manifold (underlying a Kähler manifold).

Theorem 1. Let X̃ be a Kähler surface with K2
X̃

> 0 and b+
2 (X̃) > 3.

Suppose that σ : X̃ → X̃ is an anti-holomorphic involution without fixed
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points. Then the quotient manifold X = X̃/σ has vanishing Seiberg-Witten
invariants.

In view of Witten’s vanishing theorem, it is natural to examine whether
the quotient X can be decomposed into a connected sum:

Proposition 2. If X̃ is a simply-connected Kähler surface or more gen-
erally symplectic 4-manifold with b+

2 (X̃) > 1 and σ : X̃ → X̃ is a free
involution, then the quotient manifold X = X̃/σ is not diffeomorphic to
any connected sum X1#X2 with both b+

2 (Xi) > 0.

Proof. Suppose on the contrary, that there is such a decomposition X =
X1#X2. Since π1(X) =Z2, we can assume π1(X1) =Z2 and π1(X2) = 1.
A universal (double) cover X̃1 of X1 yields a universal cover X̃1#X2#X2

of X, which should then be diffeomorphic to X̃. This is however impossible
as X̃, being symplectic, cannot be decomposed into such a connected sum
with b+

2 (X̃1#X2) > 0 and b+
2 (X2) > 0 [9]. (This kind of covering trick was

initially used in [7] in a different context.) �

Proposition 2 therefore indicates that at least in the case where X̃ is
simply-connected, the situation in Theorem 1 is not covered by Witten’s
vanishing theorem. To the author’s knowledge, the quotient manifold X
given here, with b1(X) + b+

2 (X) = b+
2 (X) odd, is the first kind of example

which is known to satisfy the conclusions in Theorem 1 and Proposition 2.

Before proving Theorem 1, we recall briefly the definition of Seiberg-
Witten invariants from [8] and [12], for example. Let Y be a smooth
oriented Riemannian 4-manifold. In this case, a spinc structure λ on Y
consists of a pair of U(2) bundles W± over Y , whose sum W+ ⊕W− is the
usual spinor bundle. Let L denote the determinant (complex line) bundle
of W+. The perturbed Seiberg-Witten equations are the following pair of
equations for a unitary connection A on L and a section φ of W+:

DAφ = 0

ρ(F+
A + iδ) = iθ(φ, φ),

(∗)

Here DA : Γ(W+) → Γ(W−) is the Dirac operator, F+
A is the self-dual

part of the curvature of A, ρ is the Clifford multiplication, and θ is a
pairing defined by matrix multiplication. (See [8] for details.) For a generic
perturbation δ ∈ Ω+(X), the moduli space Mλ,δ of irreducible solutions
(A, φ) is either empty or a smooth manifold of dimension

dλ =
1
4
[c1(L)2 − (2eY + 3sY )],
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where eY , sY are respectively the Euler characteristic and signature of Y .
(The pair (A, φ) is called irreducible if φ �= 0.) The moduli space Mλ,δ

will be compact if the metric on Y is chosen so that (∗) admit no reducible
solutions, which can be achieved in a path-connected subset of metrics
if b+

2 (Y ) > 1. In this situation and if dλ ≥ 0 also, the Seiberg-Witten
invariant SW(Y, λ) of Y with respect to λ is then defined to be the integral
of the maximal power of the Chern class of the circle bundle M0

λ,δ → Mλ,δ,
where M0

λ,δ is the framed moduli space. (The integral makes sense only if
b1(Y )+b+

2 (Y ) is odd; if b1(Y )+b+
2 (Y ) is even, the Seiberg-Witten invariant

is defined to be zero.)
The full details of the definition of Seiberg-Witten invariants will not

be needed in this paper. In fact, for the purpose of proving Theorem 1, it
is enough to note that the perturbation δ will be generic and the Seiberg-
Witten invariant will be zero if there are no reducible and irreducible solu-
tions to (∗). The issue of reducible solutions is dealt with in the following
simple observation.

Lemma 3. Set δ = 0 in (∗). If the smooth 4-manifold Y satisfies 2eY +
3sY > 0, then there is no reducible solution to (∗) for any metric and any
spinc structure λ on Y with dλ ≥ 0.

Proof. Since dλ = 1
4 [c1(L)2 − (2eY + 3sY )], its nonnegativeness yields

c1(L)2 > 0. If there is a reducible Seiberg-Witten solution for some met-
ric, that is, a connection A on L with i

2π FA being anti-self dual, then
c1(L)2 =

∫
Y

( i
2π FA)2 ≤ 0. This is a contradiction. �

It is interesting to observe that the situation in Lemma 3 is different from
the Donaldson theory. There the inequality c1(L)2 ≤ 0 (from a reducible
anti-self dual connection on an SU(2) bundle E) does not contradict the
nonnegativity of the (virtual) dimension dE = 8c2(E) − 3(eY + sY )/2 of
the moduli space of ASD connections, as c2(E) = −c1(L)2 ≥ 0. Thus a
condition such as eY + sY > 0 is not helpful to rule out the existence of
reducible ASD connections.

Proof of Theorem 1. Let h be the Kähler metric on X̃ and ω the associated
Kähler form. As σ is anti-holomorphic, one sees easily that g̃ = h + σ∗h is
an equivariant Kähler metric on X̃ with Kähler form ω̃ = ω−σ∗ω. Through
the double cover p : X̃ → X, g̃ pushes down to a metric g on X. Both g̃ and
g will be fixed for the rest of the proof. The standard Euler characteristic
and signature formulae applied to p also yield b+

2 (X) = 1
2 [b+

2 (X̃) − 1] > 1.
Consider an arbitrary spinc structure λ on X. It pulls back to a spinc

structure λ̃ on X̃ through the double covering p. Without much difficulty
one verifies that the associated bundles W± and L of λ pull back to the
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corresponding associated bundles W̃± and L̃ of λ̃. Assume the dimension
dλ ≥ 0 from now on.

Suppose there is a solution pair (A, φ) to the Seiberg-Witten equations:

DAφ = 0

ρ(F+
A ) = iθ(φ, φ),

(∗∗)

where A and φ are respectively a connection on L and a section on W+ .
Then the pull-back (Ã, φ̃) is a solution pair to the Seiberg-Witten equations
on X̃ with spinc structure λ̃ and Kähler metric g̃. Since 2eX +3sX = (2eX̃ +
3sX̃)/2 = K2

X̃
/2 > 0, there are no reducible Seiberg-Witten solutions for λ

from Lemma 3; thus (A, φ) and hence (Ã, φ̃) are both irreducible. It follows
easily from the irreducibility of (Ã, φ̃) that ω̃ · L̃ �= 0 (see [12] for example).
This is however not possible; σ∗L̃ = L̃ and σ∗ω̃ = −ω̃ have already forced
ω̃ · L̃ = 0. (Note that σ preserves the orientation of X̃.)

Thus the argument above shows that there is no reducible or irreducible
solution to (∗∗). As noted before Lemma 3, this means that in the per-
turbed Seiberg-Witten equations of (∗∗), the perturbation δ = 0 is generic
and the Seiberg-Witten invariant of X with respect to λ is zero. Since
λ is an arbitrary spinc structure, the Seiberg-Witten invariants of X all
vanish. �

Note that all minimal complex surfaces of general type satisfy the condi-
tion K2

X̃
> 0 in Theorem 1 [1; page 208]. (Moreover a necessary condition

for K2
X̃

> 0 is that X̃ be projective by using Grauert’s ampleness criterion
[1; Page 127].)

Therefore the conditions in both Theorem 1 and Proposition 2 are satis-
fied by all simply-connected minimal complex surfaces of general type with
b+
2 > 3, and these include lots of examples. For one set of examples, one can

take X̃ to be algebraic surfaces in CPn defined by real polynomials and σ
to be the complex conjugation. These include hypersurfaces

∑4
j=1 x2n

j = 0
in CP3, where n > 2. For another set of examples, consider a Kähler
surface Y with anti-holomorphic involution τ . Suppose that there exits a
complex curve C ⊂ Y such that 2|[C] ∈ H2(Y,Z), and that C is invariant
under τ , disjoint from Fix τ . Then τ lifts to two anti-holomorphic involu-
tions on the double cover X̃ of Y branched over C, and one of the lifting
involutions has no fixed point. As a special case, one can take Y =CP2,
C = {

∑3
j=1 x2n

j = 0} (n > 3) and τ to be the complex conjugation on
CP2.
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Remark 4.

(i) Since the Seiberg-Witten invariants vanish, it follows from [9] that
the quotient X in Theorem 1 does not admit any symplectic struc-
ture.

Moreover it is possible to give examples of X̃ (e.g., degree 4m+2
hypersurfaces in CP3), from which b+

2 (X), b−2 (X) are both even.
Thus X does not even have an almost complex structure with either
of its orientations in this case.

(ii) Fix a complex surface X̃ but vary free anti-holomorphic involutions
σ. It is an open problem whether the quotients X are diffeomorphic
to each other. (It is not difficult to see that the quotients are
homeomorphic to each other for most cases using [6].) Perhaps
the d-complex structures introduced in [11] are a useful tool.

(iii) It is also interesting to investigate the quotient X when σ is not
free. By using the generalized adjunction inequality [4], one can
show easily that the Seiberg-Witten invariants of X vanish again
for many cases. (Furthermore, combining with the rational blow-
down formula [5] as well as a surgery formula [10], one can recover
the vanishing result in Theorem 1 for hypersurfaces in CP3.) It
remains unknown [3] whether there exits such an X which cannot
be decomposed into a sum X1#X2 with both b+

2 (Xi) > 0 (other
than a couple of trivial cases with b+

2 (X) = 0).
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