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A VANISHING THEOREM FOR
SEIBERG-WITTEN INVARIANTS

SHUGUANG WANG

ABstrAacT. It is shown that the quotients of Kéahler surfaces under free
anti-holomorphic involutions have vanishing Seiberg-Witten invariants.

Various vanishing theorems have played important roles in gauge theory.
The first among them, due to S. K. Donaldson [2], states that the Donaldson
invariants vanish for any smooth closed oriented 4-manifold X which de-
composes to a connected sum X;# X, with b3 (X;) > 0, b3 (X3) > 0. (Here
by (X;) is the dimension of a maximal subspace of Hy(X;,Z) on which the
intersection pairing is positive definite.) E. Witten [12] has shown more
recently that such a connected-sum manifold has also vanishing Seiberg-
Witten invariants. Even though its proof is simple, Witten’s vanishing
theorem is equally useful as Donaldson’s vanishing theorem; for example,
it implies that any symplectic 4-manifold cannot be decomposed into the
above connected sum by combining with Taubes’ theorem in [9].

In this note we show that Seiberg-Witten invariants vanish for another
class of 4-manifolds. These manifolds are obtained in connection with
real algebraic geometry, and the construction was originally proposed in
Donaldson [3]. See Remark 4 below. To state our theorem, recall that a
map o between two almost complex manifolds is called anti-holomorphic
if o,J1 = —Js0, on the tangent bundles, where J; are the almost com-
plex structures of the manifolds. In the following, K denotes the canonical
bundle of an almost complex manifold (underlying a Kéhler manifold).

Theorem 1. Let X be a Kihler surface with K; > 0 and b;()};) > 3.
Suppose that o : X — X is an anti-holomorphic involution without fixed
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points. Then the quotient manifold X = )A(i/a has vanishing Seiberg- Witten
mvartants.

In view of Witten’s vanishing theorem, it is natural to examine whether
the quotient X can be decomposed into a connected sum:

Proposition 2. If)~( is a simply-connected Kdhler surface or more gen-
erally symplectic 4-manifold with b;()?) >lando: X — X isa free
tnwolution, then the quotient manifold X = )Z'/J 1s not diffeomorphic to
any connected sum X1# Xo with both by (X;) > 0.

Proof. Suppose on the contrary, that there is such a decomposition X =
X1#X5. Since 71(X) =Zo, we can assume 71(X1) =Zo and m1(X3) = 1.
A universal (double) cover X 1 of X1 yields a universal cover X 1#Xo# X5
of X, which should then be diffeomorphic to X. This is however impossible
as X , being symplectic, cannot be decomposed into such a connected sum
with b3 (X;#X5) > 0 and b (X3) > 0 [9]. (This kind of covering trick was
initially used in [7] in a different context.) O

Proposition 2 therefore indicates that at least in the case where X is
simply-connected, the situation in Theorem 1 is not covered by Witten’s
vanishing theorem. To the author’s knowledge, the quotient manifold X
given here, with b;(X) + b3 (X) = b3 (X) odd, is the first kind of example
which is known to satisfy the conclusions in Theorem 1 and Proposition 2.

Before proving Theorem 1, we recall briefly the definition of Seiberg-
Witten invariants from [8] and [12], for example. Let Y be a smooth
oriented Riemannian 4-manifold. In this case, a spin® structure A on Y
consists of a pair of U(2) bundles W over Y, whose sum W+ @ W™ is the
usual spinor bundle. Let L denote the determinant (complex line) bundle
of WT. The perturbed Seiberg-Witten equations are the following pair of
equations for a unitary connection A on L and a section ¢ of W:

Dap=0
p(F{ +i6) = i0(¢,9),

Here Dy : D(W*) — T(W™) is the Dirac operator, Ff is the self-dual
part of the curvature of A, p is the Clifford multiplication, and 6 is a
pairing defined by matrix multiplication. (See [8] for details.) For a generic
perturbation 6 € Q1 (X), the moduli space M, s of irreducible solutions
(A, ¢) is either empty or a smooth manifold of dimension

(%)

dy = i[c1 (L)? — (2ey + 3sy)],
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where ey, sy are respectively the Euler characteristic and signature of Y.
(The pair (A, ¢) is called irreducible if ¢ # 0.) The moduli space M) s
will be compact if the metric on Y is chosen so that (*) admit no reducible
solutions, which can be achieved in a path-connected subset of metrics
if b3 (Y) > 1. In this situation and if dyx > 0 also, the Seiberg-Witten
invariant SW(Y, A) of Y with respect to A is then defined to be the integral
of the maximal power of the Chern class of the circle bundle M g’ s — Mys,
where Mf\{ s is the framed moduli space. (The integral makes sense only if
bi(Y)+b5 (V) is odd; if by (Y)+b5 (V) is even, the Seiberg-Witten invariant
is defined to be zero.)

The full details of the definition of Seiberg-Witten invariants will not
be needed in this paper. In fact, for the purpose of proving Theorem 1, it
is enough to note that the perturbation § will be generic and the Seiberg-
Witten invariant will be zero if there are no reducible and irreducible solu-
tions to (x). The issue of reducible solutions is dealt with in the following
simple observation.

Lemma 3. Set 6 =0 in (x). If the smooth 4-manifold Y satisfies 2ey +
3sy > 0, then there is no reducible solution to (%) for any metric and any
spin® structure A on Y with dy > 0.

Proof. Since dy = %[c1(L)? — (2ey + 3sy)], its nonnegativeness yields

c1(L)? > 0. If there is a reducible Seiberg—Witten solution for some met-

ric, that is, a connectlon A on L with 5=Fa being anti-self dual, then
= [, (5 Fa)*> <0. This is a contradlctlon O

It is interesting to observe that the situation in Lemma 3 is different from
the Donaldson theory. There the inequality ¢1(L)? < 0 (from a reducible
anti-self dual connection on an SU(2) bundle E) does not contradict the
nonnegativity of the (virtual) dimension dg = 8ca(E) — 3(ey + sy')/2 of
the moduli space of ASD connections, as c3(E) = —c1(L)? > 0. Thus a
condition such as ey + sy > 0 is not helpful to rule out the existence of
reducible ASD connections.

Proof of Theorem 1. Let h be the Kéhler metric on X and w the associated
Kahler form. As o is anti-holomorphic, one sees easily that g = h + o*h is
an equivariant Kahler metric on X with Kihler form & = w—o*w. Through
the double cover p : XX , g pushes down to a metric g on X. Both g and
g will be fixed for the rest of the proof. The standard Euler characteristic
and signature formulae applied to p also yield b3 (X) = 1[b (X)—1] > 1.
Consider an arbitrary spin® structure A on X It pulls back to a spin®

structure A on X through the double covering p. Without much difficulty
one verifies that the associated bundles W+ and L of A pull back to the
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corresponding associated bundles W+ and L of A\. Assume the dimension
dy > 0 from now on.
Suppose there is a solution pair (4, ¢) to the Seiberg-Witten equations:

Dad=0

. (4)

p(Fy) = i0(, ),
where A and ¢ are respectively a connection on L and a section on w+ .
Then the pull-back (A, ¢) is a solution pair to the Seiberg-Witten equations
on X with spin® structure A and Kéhler metric g. Since 2ex+3sx = (2 +
35¢)/2= K?,( /2 > 0, there are no reducible Seiberg-Witten solutions for A

from Lemma 3; thus (A, ¢) and hence (A, ¢) are both irreducible. It follows
casily from the irreducibility of (4, ¢) that &- L # 0 (see [12] for example).
This is however not possible; o*L = L and ¢*& = —& have already forced
&-L =0. (Note that ¢ preserves the orientation of X.)

Thus the argument above shows that there is no reducible or irreducible
solution to (#*). As noted before Lemma 3, this means that in the per-
turbed Seiberg-Witten equations of (), the perturbation 6 = 0 is generic
and the Seiberg-Witten invariant of X with respect to A is zero. Since
A is an arbitrary spin® structure, the Seiberg-Witten invariants of X all
vanish. [J

Note that all minimal complex surfaces of general type satisfy the condi-
tion K?,( > 0 in Theorem 1 [1; page 208]. (Moreover a necessary condition

for K; > 0 is that X be projective by using Grauert’s ampleness criterion
[1; Page 127].)

Therefore the conditions in both Theorem 1 and Proposition 2 are satis-
fied by all simply-connected minimal complex surfaces of general type with
by > 3, and these include lots of examples. For one set of examples, one can
take X to be algebraic surfaces in CP” defined by real polynomials and o
to be the complex conjugation. These include hypersurfaces Z?Zl x?” =0
in CP3, where n > 2. For another set of examples, consider a Kihler
surface Y with anti-holomorphic involution 7. Suppose that there exits a
complex curve C' C Y such that 2|[C] € Hy(Y,Z), and that C is invariant
under 7, disjoint from Fix7. Then 7 lifts to two anti-holomorphic involu-
tions on the double cover X of Y branched over C, and one of the lifting
involutions has no fixed point. As a special case, one can take Y =CP?,
gP:2 {2?21 13?" = 0} (n > 3) and 7 to be the complex conjugation on
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Remark 4.

(i) Since the Seiberg-Witten invariants vanish, it follows from [9] that
the quotient X in Theorem 1 does not admit any symplectic struc-
ture. B

Moreover it is possible to give examples of X (e.g., degree 4m+2
hypersurfaces in CP?), from which b5 (X), b, (X) are both even.
Thus X does not even have an almost complex structure with either
of its orientations in this case.

(ii) Fix a complex surface X but vary free anti-holomorphic involutions
o. It is an open problem whether the quotients X are diffeomorphic
to each other. (It is not difficult to see that the quotients are
homeomorphic to each other for most cases using [6].) Perhaps
the d-complex structures introduced in [11] are a useful tool.

(iii) It is also interesting to investigate the quotient X when o is not
free. By using the generalized adjunction inequality [4], one can
show easily that the Seiberg-Witten invariants of X vanish again
for many cases. (Furthermore, combining with the rational blow-
down formula [5] as well as a surgery formula [10], one can recover
the vanishing result in Theorem 1 for hypersurfaces in CP3.) It
remains unknown [3] whether there exits such an X which cannot
be decomposed into a sum X;# X, with both b5 (X;) > 0 (other
than a couple of trivial cases with b3 (X) = 0).
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