A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS

SHUGUANG WANG

ABSTRACT. It is shown that the quotients of Kähler surfaces under free anti-holomorphic involutions have vanishing Seiberg-Witten invariants.

Various vanishing theorems have played important roles in gauge theory. The first among them, due to S. K. Donaldson [2], states that the Donaldson invariants vanish for any smooth closed oriented 4-manifold X which decomposes to a connected sum $X_1 \# X_2$ with $b_2^+(X_1) > 0$, $b_2^+(X_2) > 0$. (Here $b_2^+(X_i)$ is the dimension of a maximal subspace of $H_2(X_i, \mathbb{Z})$ on which the intersection pairing is positive definite.) E. Witten [12] has shown more recently that such a connected-sum manifold has also vanishing Seiberg-Witten invariants. Even though its proof is simple, Witten's vanishing theorem is equally useful as Donaldson's vanishing theorem; for example, it implies that any symplectic 4-manifold cannot be decomposed into the above connected sum by combining with Taubes' theorem in [9].

In this note we show that Seiberg-Witten invariants vanish for another class of 4-manifolds. These manifolds are obtained in connection with real algebraic geometry, and the construction was originally proposed in Donaldson [3]. See Remark 4 below. To state our theorem, recall that a map σ between two almost complex manifolds is called anti-holomorphic if $\sigma_* J_1 = -J_2 \sigma_*$ on the tangent bundles, where J_i are the almost complex structures of the manifolds. In the following, K denotes the canonical bundle of an almost complex manifold (underlying a Kähler manifold).

Theorem 1. Let \widetilde{X} be a Kähler surface with $K_X^2 > 0$ and $b_2^+(\widetilde{X}) > 3$. Suppose that $\sigma: \widetilde{X} \to \widetilde{X}$ is an anti-holomorphic involution without fixed

¹⁹⁹¹ Mathematics Subject Classification. Primary 57R55, 57R57, 57N13; Secondary 14P25.

Received April 14, 1995.

Work supported by the Research Board grant of University of Missouri.

points. Then the quotient manifold $X = \widetilde{X}/\sigma$ has vanishing Seiberg-Witten invariants.

In view of Witten's vanishing theorem, it is natural to examine whether the quotient X can be decomposed into a connected sum:

Proposition 2. If \widetilde{X} is a simply-connected Kähler surface or more generally symplectic 4-manifold with $b_2^+(\widetilde{X}) > 1$ and $\sigma : \widetilde{X} \to \widetilde{X}$ is a free involution, then the quotient manifold $X = \widetilde{X}/\sigma$ is not diffeomorphic to any connected sum $X_1 \# X_2$ with both $b_2^+(X_i) > 0$.

Proof. Suppose on the contrary, that there is such a decomposition $X = X_1 \# X_2$. Since $\pi_1(X) = \mathbf{Z}_2$, we can assume $\pi_1(X_1) = \mathbf{Z}_2$ and $\pi_1(X_2) = 1$. A universal (double) cover \widetilde{X}_1 of X_1 yields a universal cover $\widetilde{X}_1 \# X_2 \# X_2$ of X, which should then be diffeomorphic to \widetilde{X} . This is however impossible as \widetilde{X} , being symplectic, cannot be decomposed into such a connected sum with $b_2^+(\widetilde{X}_1 \# X_2) > 0$ and $b_2^+(X_2) > 0$ [9]. (This kind of covering trick was initially used in [7] in a different context.) \square

Proposition 2 therefore indicates that at least in the case where \widetilde{X} is simply-connected, the situation in Theorem 1 is not covered by Witten's vanishing theorem. To the author's knowledge, the quotient manifold X given here, with $b_1(X) + b_2^+(X) = b_2^+(X)$ odd, is the first kind of example which is known to satisfy the conclusions in Theorem 1 and Proposition 2.

Before proving Theorem 1, we recall briefly the definition of Seiberg-Witten invariants from [8] and [12], for example. Let Y be a smooth oriented Riemannian 4-manifold. In this case, a spin^c structure λ on Y consists of a pair of U(2) bundles W^{\pm} over Y, whose sum $W^{+} \oplus W^{-}$ is the usual spinor bundle. Let L denote the determinant (complex line) bundle of W^{+} . The perturbed Seiberg-Witten equations are the following pair of equations for a unitary connection A on L and a section ϕ of W^{+} :

$$D_A \phi = 0$$

$$\rho(F_A^+ + i\delta) = i\theta(\phi, \phi),$$
(*)

Here $D_A: \Gamma(W^+) \to \Gamma(W^-)$ is the Dirac operator, F_A^+ is the self-dual part of the curvature of A, ρ is the Clifford multiplication, and θ is a pairing defined by matrix multiplication. (See [8] for details.) For a generic perturbation $\delta \in \Omega^+(X)$, the moduli space $M_{\lambda,\delta}$ of irreducible solutions (A, ϕ) is either empty or a smooth manifold of dimension

$$d_{\lambda} = \frac{1}{4} [c_1(L)^2 - (2e_Y + 3s_Y)],$$

where e_Y, s_Y are respectively the Euler characteristic and signature of Y. (The pair (A, ϕ) is called irreducible if $\phi \neq 0$.) The moduli space $M_{\lambda, \delta}$ will be compact if the metric on Y is chosen so that (*) admit no reducible solutions, which can be achieved in a path-connected subset of metrics if $b_2^+(Y) > 1$. In this situation and if $d_\lambda \geq 0$ also, the Seiberg-Witten invariant $\mathrm{SW}(Y,\lambda)$ of Y with respect to λ is then defined to be the integral of the maximal power of the Chern class of the circle bundle $M_{\lambda,\delta}^0 \to M_{\lambda,\delta}$, where $M_{\lambda,\delta}^0$ is the framed moduli space. (The integral makes sense only if $b_1(Y) + b_2^+(Y)$ is odd; if $b_1(Y) + b_2^+(Y)$ is even, the Seiberg-Witten invariant is defined to be zero.)

The full details of the definition of Seiberg-Witten invariants will not be needed in this paper. In fact, for the purpose of proving Theorem 1, it is enough to note that the perturbation δ will be generic and the Seiberg-Witten invariant will be zero if there are no reducible and irreducible solutions to (*). The issue of reducible solutions is dealt with in the following simple observation.

Lemma 3. Set $\delta = 0$ in (*). If the smooth 4-manifold Y satisfies $2e_Y + 3s_Y > 0$, then there is no reducible solution to (*) for any metric and any $spin^c$ structure λ on Y with $d_{\lambda} \geq 0$.

Proof. Since $d_{\lambda} = \frac{1}{4}[c_1(L)^2 - (2e_Y + 3s_Y)]$, its nonnegativeness yields $c_1(L)^2 > 0$. If there is a reducible Seiberg-Witten solution for some metric, that is, a connection A on L with $\frac{i}{2\pi}F_A$ being anti-self dual, then $c_1(L)^2 = \int_V (\frac{i}{2\pi}F_A)^2 \leq 0$. This is a contradiction. \square

It is interesting to observe that the situation in Lemma 3 is different from the Donaldson theory. There the inequality $c_1(L)^2 \leq 0$ (from a reducible anti-self dual connection on an SU(2) bundle E) does not contradict the nonnegativity of the (virtual) dimension $d_E = 8c_2(E) - 3(e_Y + s_Y)/2$ of the moduli space of ASD connections, as $c_2(E) = -c_1(L)^2 \geq 0$. Thus a condition such as $e_Y + s_Y > 0$ is not helpful to rule out the existence of reducible ASD connections.

Proof of Theorem 1. Let h be the Kähler metric on \widetilde{X} and ω the associated Kähler form. As σ is anti-holomorphic, one sees easily that $\widetilde{g} = h + \sigma^* h$ is an equivariant Kähler metric on \widetilde{X} with Kähler form $\widetilde{\omega} = \omega - \sigma^* \omega$. Through the double cover $p: \widetilde{X} \to X$, \widetilde{g} pushes down to a metric g on X. Both \widetilde{g} and g will be fixed for the rest of the proof. The standard Euler characteristic and signature formulae applied to p also yield $b_2^+(X) = \frac{1}{2}[b_2^+(\widetilde{X}) - 1] > 1$.

Consider an arbitrary spin^c structure λ on X. It pulls back to a spin^c structure $\widetilde{\lambda}$ on \widetilde{X} through the double covering p. Without much difficulty one verifies that the associated bundles W^{\pm} and L of λ pull back to the

corresponding associated bundles \widetilde{W}^{\pm} and \widetilde{L} of $\widetilde{\lambda}$. Assume the dimension $d_{\lambda} \geq 0$ from now on.

Suppose there is a solution pair (A, ϕ) to the Seiberg-Witten equations:

$$D_A \phi = 0$$

$$\rho(F_A^+) = i\theta(\phi, \phi), \tag{**}$$

where A and ϕ are respectively a connection on L and a section on W^+ . Then the pull-back $(\widetilde{A},\widetilde{\phi})$ is a solution pair to the Seiberg-Witten equations on \widetilde{X} with spin^c structure $\widetilde{\lambda}$ and Kähler metric \widetilde{g} . Since $2e_X+3s_X=(2e_X+3s_X)/2=K_X^2/2>0$, there are no reducible Seiberg-Witten solutions for λ from Lemma 3; thus (A,ϕ) and hence $(\widetilde{A},\widetilde{\phi})$ are both irreducible. It follows easily from the irreducibility of $(\widetilde{A},\widetilde{\phi})$ that $\widetilde{\omega}\cdot\widetilde{L}\neq 0$ (see [12] for example). This is however not possible; $\sigma^*\widetilde{L}=\widetilde{L}$ and $\sigma^*\widetilde{\omega}=-\widetilde{\omega}$ have already forced $\widetilde{\omega}\cdot\widetilde{L}=0$. (Note that σ preserves the orientation of \widetilde{X} .)

Thus the argument above shows that there is no reducible or irreducible solution to (**). As noted before Lemma 3, this means that in the perturbed Seiberg-Witten equations of (**), the perturbation $\delta = 0$ is generic and the Seiberg-Witten invariant of X with respect to λ is zero. Since λ is an arbitrary spin^c structure, the Seiberg-Witten invariants of X all vanish. \square

Note that all minimal complex surfaces of general type satisfy the condition $K_X^2 > 0$ in Theorem 1 [1; page 208]. (Moreover a necessary condition for $K_{\widetilde{X}}^2 > 0$ is that \widetilde{X} be projective by using Grauert's ampleness criterion [1; Page 127].)

Therefore the conditions in both Theorem 1 and Proposition 2 are satisfied by all simply-connected minimal complex surfaces of general type with $b_2^+ > 3$, and these include lots of examples. For one set of examples, one can take \widetilde{X} to be algebraic surfaces in \mathbb{CP}^n defined by real polynomials and σ to be the complex conjugation. These include hypersurfaces $\sum_{j=1}^4 x_j^{2n} = 0$ in \mathbb{CP}^3 , where n > 2. For another set of examples, consider a Kähler surface Y with anti-holomorphic involution τ . Suppose that there exits a complex curve $C \subset Y$ such that $2|[C] \in H_2(Y,\mathbb{Z})$, and that C is invariant under τ , disjoint from Fix τ . Then τ lifts to two anti-holomorphic involutions on the double cover \widetilde{X} of Y branched over C, and one of the lifting involutions has no fixed point. As a special case, one can take $Y = \mathbb{CP}^2$, $C = \{\sum_{j=1}^3 x_j^{2n} = 0\}$ (n > 3) and τ to be the complex conjugation on \mathbb{CP}^2 .

Remark 4.

(i) Since the Seiberg-Witten invariants vanish, it follows from [9] that the quotient X in Theorem 1 does not admit any symplectic structure.

Moreover it is possible to give examples of \widetilde{X} (e.g., degree 4m+2 hypersurfaces in \mathbb{CP}^3), from which $b_2^+(X), b_2^-(X)$ are both even. Thus X does not even have an almost complex structure with either of its orientations in this case.

- (ii) Fix a complex surface X but vary free anti-holomorphic involutions σ . It is an open problem whether the quotients X are diffeomorphic to each other. (It is not difficult to see that the quotients are homeomorphic to each other for most cases using [6].) Perhaps the d-complex structures introduced in [11] are a useful tool.
- (iii) It is also interesting to investigate the quotient X when σ is not free. By using the generalized adjunction inequality [4], one can show easily that the Seiberg-Witten invariants of X vanish again for many cases. (Furthermore, combining with the rational blowdown formula [5] as well as a surgery formula [10], one can recover the vanishing result in Theorem 1 for hypersurfaces in \mathbb{CP}^3 .) It remains unknown [3] whether there exits such an X which cannot be decomposed into a sum $X_1 \# X_2$ with both $b_2^+(X_i) > 0$ (other than a couple of trivial cases with $b_2^+(X) = 0$).

Acknowledgements

The author wishes to thank Ron Fintushel for pointing out the incompleteness of a version of the paper, and Ron Stern for valuable encouragement. In addition, he thanks Jan Segert for sharing the enthusiasm about the new theory.

References

- W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Springer-Verlag, Berlin-Heidelberg, 1984.
- S. Donaldson, Polynomial invariants for smooth 4-manifolds, Topology 29 (1990), 257–315.
- 3. ______, Yang-Mills invariants of 4-manifolds, in Geometry of low-dimensional manifolds (S. K. Donaldson and C. B. Thomas Eds, eds.), vol. 1, Cambridge University Press, 1990, pp. 5–41.
- 4. R. Fintushel, P. Kronheimer, T. Mrowka, R. Stern and C. Taubes, in preparation.
- 5. R. Fintushel and R. Stern, in preparation.
- I. Hambleton and M. Kreck, Smooth structures on algebraic surfaces with cyclic fundamental group, Invt. Math. 91 (1988), 53-59.

- 7. D. Kotschick, On connected sum decompositions of algebraic surfaces and their fundamental groups, Intern. Math. Research Notices (1993), 179–182.
- 8. P. Kronheimer and T. Mrowka, *The genus of embedded surfaces in the projective plane*, Math. Research Letters **1** (1994), 797–808.
- 9. C. Taubes, *The Seiberg-Witten invariants and symplectic forms*, Math. Research Letters **1** (1994), 809–822.
- 10. S. Wang, On quotients of real algebraic surfaces in \mathbb{CP}^3 , Topology and Its Applications (to appear).
- 11. ______, A Narasimhan-Seshadri-Donaldson correspondence on non-orientable surfaces, Forum Mathematicae (to appear).
- 12. E. Witten, Monopoles and 4-manifolds, Math. Research Letters 1 (1994), 769–796.

M athematics Department, University of Missouri, Columbia, MO 65211 $E\text{-}mail\ address:}$ sw@wang.cs.missouri.edu