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MODULARITY OF A FAMILY OF ELLIPTIC CURVES

Fred Diamond and Kenneth Kramer

We shall explain how the following is a corollary of results of Wiles [W]:

Theorem. Suppose that E is an elliptic curve over Q all of whose 2-
division points are rational, i.e., an elliptic curve defined by

y2 = (x − a)(x − b)(x − c)

for some distinct rational numbers a, b and c. Then E is modular.

Recall that Wiles proves that if E is a semistable elliptic curve over Q,
then E is modular [W, Thm. 0.4]. He begins by considering the Galois
representations ρ̄E, 3 (respectively, ρE, 3) on the 3-division points (respec-
tively, 3-adic Tate module) of E. If ρ̄E, 3 is irreducible, then a theorem of
Langlands and Tunnell is used to show that ρ̄E, 3 arises from a modular
form. Wiles deduces that ρE, 3 also arises from a modular form by appeal-
ing to his results in [W, Ch. 3] and those with Taylor in [TW] to identify
certain universal deformation rings as Hecke algebras. This suffices to
prove that E is modular if ρ̄E, 3 is irreducible. When ρ̄E, 3 is reducible,
Wiles gives an argument which allows one to use ρE, 5 instead.

In fact, Wiles’ results apply to a larger class of elliptic curves than those
which are semistable [W, Thm. 0.3], and this was subsequently extended
in [Di] to include all elliptic curves with semistable reduction at 3 and 5.
Rubin and Silverberg noted that an elliptic curve as in the above theorem
necessarily has a twist which is semistable outside 2, and hence, is modular
by [Di, Thm. 1.2]. The purpose of this note is to explain how, by a
refinement of their observation, the above theorem follows directly from
Wiles’ work, without appealing to [Di].

Lemma 1 (Rubin-Silverberg). By at most a quadratic twist, an elliptic
curve as in the theorem may be brought to the form

E : y2 = x(x − A)(x + B)(1)

for some nonzero integers A and B with A and B relatively prime, B even
and A ≡ −1 mod 4. Let C = A + B. For odd primes p, the curve E has
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good reduction at p if p is prime to ABC and multiplicative reduction at p
otherwise.

Proof. Note that a curve as in the theorem is isomorphic to one defined
by equation (1) for some integers A and B with AB(A + B) �= 0. Let
D = gcd(A, B). Twisting by Q(

√
D), we may assume that A and B are

relatively prime. By translating x or exchanging A and B, we may assume
that B is even. Finally, if A ≡ 1 mod 4, we twist again by Q(i).

The reduction type of E for odd primes p may be determined as in [Se2,
§4] and [Si1, Ch. VII].

See [O, §I.1] for discussion of the reduction type and conductor of curves
given by equation (1), but under certain restrictions in the case p = 2. See
also [Da, Lemma 2.1] for a related case. We treat the reduction type at
p = 2 in the following lemma.

Lemma 2. Suppose that E is an elliptic curve over Q2 defined by the
model ( 1), with A ≡ −1 mod 4 and B even. The reduction type, conductor
exponent f2(E) and valuation of the minimal discriminant of E are given
by the following table:

ord 2(B) 1 2 3 4 ν ≥ 5
Kodaira Symbol III I∗1 III∗ I0 I2ν−8

f2(E) 5 3 3 0 1
ord 2(∆min) 6 8 10 0 2ν − 8

Proof. A twist of E by the unramified extension Q2(
√−A) affects neither

reduction type nor conductor exponent, and provides a model of the form

y2 = x(x + 1)(x + s)(2)

with ord 2(s) = ord 2(B) ≥ 1 and discriminant ∆ = 16s2(1 − s)2. For
the convenience of the reader, we indicate the appropriate translations
of model, depending on ord 2(s), so that the explicit criteria of Tate’s
algorithm [T] may be used.

If ord 2(s) = 1, then ord 2(∆) = 6. Put y + x for y in (2) to get

y2 + 2xy = x3 + sx2 + sx.(3)

If ord 2(s) = 2, then ord 2(∆) = 8. Put x + 2 for x in (3), to get

y2 + 2xy + 4y = x3 + (s + 6)x2 + (5s + 12)x + (6s + 8).

If ord 2(s) = 3, use the model (3) with ord 2(∆) = 10. If ord 2(s) ≥ 4, the
model (3) is not minimal and may be reduced to

y2 + xy = x3 +
s

4
x2 +

s

16
x(4)
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with discriminant s2(1−s)2/256. Thus, (4) has good reduction if ord 2(s) =
4 and multiplicative reduction if ord 2(s) ≥ 5.

To show that an elliptic curve over Q is modular, we may replace it
with one to which it is isomorphic over Q̄. We may therefore assume that
E is defined by equation (1) with A and B as in Lemma 1. If E has good
or multiplicative reduction at p = 2, then E is semistable and we can
conclude from [W, Thm. 0.4] that E is modular. In view of Lemma 2, we
may therefore also assume, henceforth, that ord 2(B) = 1, 2 or 3.

Let � be an odd prime. Choose a basis for E[�], the kernel of multipli-
cation by � on E, and let ρ̄E, � denote the representation

GQ → GL2(F�)

defined by the action of GQ = Gal (Q̄/Q) on E[�]. For each prime p, we fix
an embedding Q̄ ↪→ Q̄p and regard Gp = Gal (Q̄p/Qp) as a decomposition
subgroup of GQ at a place over p. Thus, ρ̄E, �|Gp is equivalent to the
representation of Gp defined by its action on E[�](Q̄p). Let Ip ⊂ Gp

denote the inertia group.
Recall the special role played by the prime � = 3 in Wiles’ approach.

We simply write ρ for ρ̄E, 3. If ρ is irreducible, then ρ is modular by the
theorem of Langlands and Tunnell (see [W, Ch. 5]). Since E has good or
multiplicative reduction at 3, we need only verify certain hypotheses on
ρ in order to apply [W, Thm. 0.3] to conclude that E is modular. We
shall see that if E has additive reduction at p = 2, then those hypotheses
are satisfied, the crucial point being the verification of a local condition at
p = 2. The irreducibility of ρ in this case is a byproduct of our verification.
In fact, we have the following stronger result:

Lemma 3. If ord 2(B) = 1, 2 or 3 and � is an odd prime, then ρ̄E, �|I2 is
absolutely irreducible.

Proof. For the moment, consider the more general case of a representation
ψ : I → SL2(F̄�), where I is the inertia group of a finite Galois extension
of p-adic fields and � �= p is a prime. Let b(ψ) denote the wild conductor
exponent [Se2, §4.9]. If b(ψ) is odd, then ψ is irreducible. Indeed, were ψ
to be reducible, it would be equivalent to a representation of the form

(
χ ∗
0 χ−1

)
.

But then, because b is integer-valued and additive on short exact se-
quences, b(ψ) = 2b(χ) would be even.
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Under the hypotheses of this lemma, the elliptic curve E has additive
reduction at 2 and odd conductor exponent f2(E) = 2 + b(ρ̄E, �|I2), inde-
pendent of the choice of odd prime �. Since det ρ̄E, �|G2 is an unramified
character associated to Q2(µ�), the image of I2 under ρ̄E, � is contained in
SL2(F�). It follows that ρ̄E, �|I2 is absolutely irreducible.

Remark. When Lemma 3 applies, an analysis of the group structure of
SL2(F3) shows that the image of wild ramification at p = 2 under ρ, and
hence, ρ̄E, �, for any odd �, is isomorphic to the quaternion group of order
8.

Under the hypotheses of Lemma 3, we see that even the restriction of
ρ = ρ̄E, 3 to Gal (Q̄/Q(µ3)) is absolutely irreducible. Using Lemma 3, one
can also easily check the local conditions on ρ appearing as hypotheses in
[W, Thm. 0.3]. Since it is left to the reader of [W] to verify that those
local conditions are sufficient to apply the central result [W, Thm. 3.3],
we shall explain directly how this is done in the case with which we are
concerned. Again, we consider, more generally, ρ̄E, � for odd primes �.

First recall that ρ̄E, � is unramified at p if p �= � is a prime of good
reduction, i.e., if p does not divide �ABC.

Next we recall how the Tate parametrization is used to describe ρ̄E, �|Gp

for primes p at which E has multiplicative reduction (see [Se2, §2.9]). Let
F denote the unramified quadratic extension of Qp in Q̄p. Then E has
split multiplicative reduction over F and the Tate parametrization (see
[Si2, §V.3]) provides an isomorphism

Q̄×p /qZ ∼= E(Q̄p)

of Gal (Q̄p/F )-modules for some q ∈ Qp with ord p(q) > 0. From this it
follows that for each prime �, there is a filtration of Gal (Q̄p/F )-modules

0 → Z�(1) → T�(E) → Z� → 0,

where T�(E) is the �-adic Tate module and Z�(1) = lim← µ�n(Q̄p). One then

checks that the representation of Gp on T�(E) is equivalent to one of the
form

χ ⊗
(

ε ∗
0 1

)

where χ is either trivial or the unramified quadratic character of Gp and ε
is the cyclotomic character given by the action of Gp on Z�(1). It follows
that the representation of Gp on E[�] is of this form as well, but with ε
now defined by the action of Gp on µ�.

Suppose now that p �= � is an odd prime dividing ABC. Then the
above analysis of multiplicative reduction applies to ρ̄E, �|Gp and shows
that ρ̄E, � is either unramified or type (A) at p in the terminology of [W,
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Ch. 1]. (The first possibility occurs precisely when ord p(ABC) is divisible
by �; see [Se2, §4].)

Suppose next that p = �. If p divides ABC, then the above analysis
of multiplicative reduction shows that ρ̄E, �|Gp is ordinary at p in the
terminology of [W, Ch. 1]. If on the other hand p does not divide ABC,
then the elliptic curve E has good reduction at p. In fact, the equation (1)
defines an elliptic curve E over Zp such that EQp is isomorphic to EQp (see
[Si2, §IV.5]). The kernel of multiplication by � on E is a finite flat group
scheme E [�] over Zp. The representation ρ̄E, �|Gp is given by the action
of Gp on E[�](Q̄p), which we may identify with E [�](Q̄p). In this sense,
ρ̄E, �|Gp arises from a finite flat group scheme over Zp. Now ρ̄E, �|Gp is
reducible if and only if E has ordinary reduction at p, i.e., if and only if
EFp is ordinary. In that case ρ̄E, � is ordinary at p in the sense of [W]. On
the other hand, ρ̄E, �|Gp is irreducible if and only if EFp is supersingular,
in which case ρ̄E, � is flat at p in the sense of [W, Ch. 1].

Finally, suppose that p = 2 and E has additive reduction at 2. Then
ord 2(B) = 1, 2 or 3, and ρ̄E, �|I2 is absolutely irreducible by Lemma 3.
We claim that ρ̄E, �|G2 is of type (C) at 2 in the terminology of Wiles [W,
Ch. 1]. Recall that this means that H1(G2, W ) = 0, where W is the G2-
module of endomorphisms of E[�](Q̄2) of trace zero. From the triviality of
the local Euler characteristic ([Se1, Thm. II.5]), we have

#H1(G2, W ) = #H0(G2, W ) · #H2(G2, W ).

By local Tate duality ([Se1, Thm. II.1]), we have

#H2(G2, W ) = #H0(G2, W
∗)

where W ∗ = Hom(W, µ�). Therefore, we wish to prove that H0(G2, W )
and H0(G2, W

∗) both vanish. But in fact H0(I2, W ) and H0(I2, W
∗)

already vanish. Indeed, I2 acts trivially on µ�, from which we deduce that
there is a (noncanonical) isomorphism W ∗ ∼= W of I2-modules; hence, it
suffices to show that H0(I2, W ) = 0. Since I2 acts absolutely irreducibly
on F̄2

� , Schur’s lemma implies that the only I2-invariant endomorphisms
of F̄2

� are scalars. But the only scalar in W is zero.
Specializing to the case � = 3, we now conclude that the representation

ρE, 3 of GQ on T3(E) arises from a modular form. Indeed, Wiles [W, Thm.
3.3] establishes an isomorphism between the universal deformation ring of
type D and the Hecke algebra TD, where D = (·,Σ,Z3, ∅) with

• · as flat or Selmer according to whether or not E has supersingular
reduction at 3;

• Σ as the set of primes dividing 3ABC.
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Since ρE, 3 defines a deformation of ρ of type D, the universal property of
the deformation ring thus provides a homomorphism TD → Z3 with the
following property: for all p not dividing 3ABC, the Hecke operator Tp

is sent to ap = p + 1 − Np where Np is the number of Fp-points on the
reduction of E mod p.

The definition of TD ensures that this homomorphism arises from a
normalized eigenform of weight two whose pth Fourier coefficient is ap for
all such p. Hence E is modular.
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