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MODULARITY OF A FAMILY OF ELLIPTIC CURVES

FrRED DIAMOND AND KENNETH KRAMER

We shall explain how the following is a corollary of results of Wiles [W]:

Theorem. Suppose that E is an elliptic curve over Q all of whose 2-
division points are rational, i.e., an elliptic curve defined by

v =(z—a)(z—b)(z —¢)
for some distinct rational numbers a, b and c. Then E is modular.

Recall that Wiles proves that if E is a semistable elliptic curve over Q,
then E is modular [W, Thm. 0.4]. He begins by considering the Galois
representations pg 3 (respectively, pg 3) on the 3-division points (respec-
tively, 3-adic Tate module) of E. If pg 3 is irreducible, then a theorem of
Langlands and Tunnell is used to show that pg 3 arises from a modular
form. Wiles deduces that pg, 3 also arises from a modular form by appeal-
ing to his results in [W, Ch. 3] and those with Taylor in [TW] to identify
certain universal deformation rings as Hecke algebras. This suffices to
prove that £ is modular if pg 3 is irreducible. When pg 3 is reducible,
Wiles gives an argument which allows one to use pg, 5 instead.

In fact, Wiles’ results apply to a larger class of elliptic curves than those
which are semistable [W, Thm. 0.3], and this was subsequently extended
in [Di] to include all elliptic curves with semistable reduction at 3 and 5.
Rubin and Silverberg noted that an elliptic curve as in the above theorem
necessarily has a twist which is semistable outside 2, and hence, is modular
by [Di, Thm. 1.2]. The purpose of this note is to explain how, by a
refinement of their observation, the above theorem follows directly from
Wiles” work, without appealing to [Di].

Lemma 1 (Rubin-Silverberg). By at most a quadratic twist, an elliptic
curve as in the theorem may be brought to the form

(1) E: y*=x(x—A)(z+ B)

for some nonzero integers A and B with A and B relatively prime, B even
and A = —1mod 4. Let C = A+ B. For odd primes p, the curve E has
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good reduction at p if p is prime to ABC and multiplicative reduction at p
otherwise.

Proof. Note that a curve as in the theorem is isomorphic to one defined
by equation (1) for some integers A and B with AB(A + B) # 0. Let
D = gcd(A, B). Twisting by Q(v/D), we may assume that A and B are
relatively prime. By translating x or exchanging A and B, we may assume
that B is even. Finally, if A =1 mod 4, we twist again by Q(%).

The reduction type of E for odd primes p may be determined as in [Se2,
§4] and [Sil, Ch. VII]. O

See [0, §1.1] for discussion of the reduction type and conductor of curves
given by equation (1), but under certain restrictions in the case p = 2. See
also [Da, Lemma 2.1] for a related case. We treat the reduction type at
p = 2 in the following lemma.

Lemma 2. Suppose that E is an elliptic curve over Qo defined by the
model (1), with A = —1 mod 4 and B even. The reduction type, conductor
exponent f2(F) and valuation of the minimal discriminant of E are given
by the following table:

ord 2(B) 1 ]2 3 4 | v>5

Kodaira Symbol | II1 | I7 | 11T* | Iy | Iay—_g
fo(E) 5 13 3 0 1

OI‘dQ(Amin) 6 8 10 0 2v—8

Proof. A twist of E by the unramified extension Qz(v/—A) affects neither
reduction type nor conductor exponent, and provides a model of the form

(2) y* =z(x+ 1)(z + )
with ords(s) = ordo(B) > 1 and discriminant A = 16s?(1 — s)2. For

the convenience of the reader, we indicate the appropriate translations
of model, depending on ords(s), so that the explicit criteria of Tate’s
algorithm [T] may be used.
If ord o(s) = 1, then ord o(A) = 6. Put y + z for y in (2) to get
(3) y? 4 2zy = 23 + s2? + sz
If ord 2(s) = 2, then ord 3(A) = 8. Put z + 2 for x in (3), to get
y? 4+ 22y + 4y = 23 + (s + 6)z? + (5s 4+ 12)x + (65 + 8).

If ord 2(s) = 3, use the model (3) with ord2(A) = 10. If ord 2(s) > 4, the
model (3) is not minimal and may be reduced to

4 2 _ 3,52 5
(4) Y-+ ay x+4x+16x
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with discriminant s2(1—s)?/256. Thus, (4) has good reduction if ord »(s) =
4 and multiplicative reduction if ord 5(s) > 5. O

To show that an elliptic curve over Q is modular, we may replace it
with one to which it is isomorphic over Q. We may therefore assume that
E is defined by equation (1) with A and B as in Lemma 1. If E has good
or multiplicative reduction at p = 2, then E is semistable and we can
conclude from [W, Thm. 0.4] that E is modular. In view of Lemma 2, we
may therefore also assume, henceforth, that ord o(B) = 1,2 or 3.

Let ¢ be an odd prime. Choose a basis for E[/], the kernel of multipli-
cation by ¢ on F, and let pg, , denote the representation

GQ — GLQ(F[)

defined by the action of Gq = Gal (Q/Q) on E[¢]. For each prime p, we fix
an embedding Q — Q,, and regard G, = Gal (Q,/Q,) as a decomposition
subgroup of Gq at a place over p. Thus, pg ¢|G, is equivalent to the
representation of G, defined by its action on E[¢](Q,). Let I, C G,
denote the inertia group.

Recall the special role played by the prime £ = 3 in Wiles’ approach.
We simply write p for pg 3. If p is irreducible, then p is modular by the
theorem of Langlands and Tunnell (see [W, Ch. 5]). Since F has good or
multiplicative reduction at 3, we need only verify certain hypotheses on
p in order to apply [W, Thm. 0.3] to conclude that E is modular. We
shall see that if £ has additive reduction at p = 2, then those hypotheses
are satisfied, the crucial point being the verification of a local condition at
p = 2. The irreducibility of p in this case is a byproduct of our verification.
In fact, we have the following stronger result:

Lemma 3. Ifords(B) = 1,2 or 3 and £ is an odd prime, then pg, ¢|l2 is
absolutely irreducible.

Proof. For the moment, consider the more general case of a representation
¥ : I — SLy(Fy), where I is the inertia group of a finite Galois extension
of p-adic fields and ¢ # p is a prime. Let b(¢)) denote the wild conductor
exponent [Se2, §4.9]. If b(¢) is odd, then 9 is irreducible. Indeed, were 1
to be reducible, it would be equivalent to a representation of the form

(65 )

But then, because b is integer-valued and additive on short exact se-
quences, b(¢) = 2b(x) would be even.
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Under the hypotheses of this lemma, the elliptic curve E has additive
reduction at 2 and odd conductor exponent f3(E) = 2+ b(pg, ¢|I2), inde-
pendent of the choice of odd prime ¢. Since det pg, ¢|G2 is an unramified
character associated to Qz(p,), the image of Iy under pg ¢ is contained in
SLa(Fy). It follows that pg, ¢|I2 is absolutely irreducible. [

Remark. When Lemma 3 applies, an analysis of the group structure of
SLy(F'3) shows that the image of wild ramification at p = 2 under p, and
hence, pg, ¢, for any odd ¢, is isomorphic to the quaternion group of order
8.

Under the hypotheses of Lemma 3, we see that even the restriction of
p = pe.3 to Gal (Q/Q(ps)) is absolutely irreducible. Using Lemma 3, one
can also easily check the local conditions on p appearing as hypotheses in
[W, Thm. 0.3]. Since it is left to the reader of [W] to verify that those
local conditions are sufficient to apply the central result [W, Thm. 3.3],
we shall explain directly how this is done in the case with which we are
concerned. Again, we consider, more generally, pg, ¢ for odd primes /.

First recall that pg , is unramified at p if p # ¢ is a prime of good
reduction, i.e., if p does not divide ,ABC.

Next we recall how the Tate parametrization is used to describe pg ¢|G)
for primes p at which E has multiplicative reduction (see [Se2, §2.9]). Let
F denote the unramified quadratic extension of Q, in Q,. Then F has
split multiplicative reduction over F' and the Tate parametrization (see
[Si2, §V.3]) provides an isomorphism

Q) /d* = B(Q,)
of Gal (Q,/F)-modules for some ¢ € Q, with ord ,(¢) > 0. From this it
follows that for each prime ¢, there is a filtration of Gal (Q,/F)-modules
0—Z(1) = To(E) — Z¢ — 0,
where Ty (FE) is the f-adic Tate module and Z,(1) = 1iin tyn (Qyp). One then

checks that the representation of G, on T;(F) is equivalent to one of the

form
% € x
X€ o 1

where x is either trivial or the unramified quadratic character of G, and e
is the cyclotomic character given by the action of G, on Z,(1). It follows
that the representation of G, on E[/] is of this form as well, but with e
now defined by the action of G, on p,.

Suppose now that p # £ is an odd prime dividing ABC. Then the
above analysis of multiplicative reduction applies to pg, ¢|G), and shows
that pg, ¢ is either unramified or type (A) at p in the terminology of [W,
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Ch. 1]. (The first possibility occurs precisely when ord ,(ABC) is divisible
by ¢; see [Se2, §4].)

Suppose next that p = £. If p divides ABC, then the above analysis
of multiplicative reduction shows that pg ¢|G) is ordinary at p in the
terminology of [W, Ch. 1]. If on the other hand p does not divide ABC,
then the elliptic curve E has good reduction at p. In fact, the equation (1)
defines an elliptic curve &€ over Z, such that £q, is isomorphic to Eq, (see
[Si2, §IV.5]). The kernel of multiplication by ¢ on & is a finite flat group
scheme £[¢] over Z,. The representation pg (|G, is given by the action
of G, on E[{](Q,), which we may identify with £[(](Q,). In this sense,
pE,¢|Gp arises from a finite flat group scheme over Z,. Now pg ¢|G) is
reducible if and only if E has ordinary reduction at p, i.e., if and only if
&r, is ordinary. In that case pg ¢ is ordinary at p in the sense of [W]. On
the other hand, pg, (|G, is irreducible if and only if £, is supersingular,
in which case pg ¢ is flat at p in the sense of [W, Ch. 1].

Finally, suppose that p = 2 and E has additive reduction at 2. Then
ord2(B) = 1,2 or 3, and pg ¢|l2 is absolutely irreducible by Lemma 3.
We claim that pg, ¢|G2 is of type (C) at 2 in the terminology of Wiles [W,
Ch. 1]. Recall that this means that H!(Gg, W) = 0, where W is the G»-
module of endomorphisms of E[¢](Qs) of trace zero. From the triviality of
the local Euler characteristic ([Sel, Thm. I1.5]), we have

HHY (Go, W) = #H(Go, W) - #H?*(Go, W).
By local Tate duality ([Sel, Thm. II.1]), we have
HH*(Go, W) = #H(Go, W)

where W* = Hom(W, p,). Therefore, we wish to prove that H°(Gy, W)
and H°(Go, W*) both vanish. But in fact H(Iy, W) and H(Iy, W*)
already vanish. Indeed, I acts trivially on p,, from which we deduce that
there is a (noncanonical) isomorphism W* = W of Io-modules; hence, it
suffices to show that HY(I,, W) = 0. Since Iy acts absolutely irreducibly
on F%, Schur’s lemma implies that the only I>-invariant endomorphisms
of F? are scalars. But the only scalar in W is zero.

Specializing to the case £ = 3, we now conclude that the representation
pE,3 of Gq on T3(E) arises from a modular form. Indeed, Wiles [W, Thm.
3.3] establishes an isomorphism between the universal deformation ring of
type D and the Hecke algebra Tp, where D = (-, %, Z3, () with

e - as flat or Selmer according to whether or not E has supersingular
reduction at 3;
e 3 as the set of primes dividing 3ABC.
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Since pg, 3 defines a deformation of p of type D, the universal property of
the deformation ring thus provides a homomorphism Tp — Zj3 with the
following property: for all p not dividing 3ABC, the Hecke operator T},
is sent to a, = p +1 — N, where N, is the number of F,-points on the
reduction of E mod p.

The definition of Tp ensures that this homomorphism arises from a
normalized eigenform of weight two whose p'" Fourier coefficient is a, for
all such p. Hence E' is modular.
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