MODULARITY OF A FAMILY OF ELLIPTIC CURVES

FRED DIAMOND AND KENNETH KRAMER

We shall explain how the following is a corollary of results of Wiles [W]:

Theorem. Suppose that E is an elliptic curve over \mathbf{Q} all of whose 2-division points are rational, i.e., an elliptic curve defined by

$$y^2 = (x-a)(x-b)(x-c)$$

for some distinct rational numbers a, b and c. Then E is modular.

Recall that Wiles proves that if E is a semistable elliptic curve over \mathbf{Q} , then E is modular [W, Thm. 0.4]. He begins by considering the Galois representations $\bar{\rho}_{E,3}$ (respectively, $\rho_{E,3}$) on the 3-division points (respectively, 3-adic Tate module) of E. If $\bar{\rho}_{E,3}$ is irreducible, then a theorem of Langlands and Tunnell is used to show that $\bar{\rho}_{E,3}$ arises from a modular form. Wiles deduces that $\rho_{E,3}$ also arises from a modular form by appealing to his results in [W, Ch. 3] and those with Taylor in [TW] to identify certain universal deformation rings as Hecke algebras. This suffices to prove that E is modular if $\bar{\rho}_{E,3}$ is irreducible. When $\bar{\rho}_{E,3}$ is reducible, Wiles gives an argument which allows one to use $\rho_{E,5}$ instead.

In fact, Wiles' results apply to a larger class of elliptic curves than those which are semistable [W, Thm. 0.3], and this was subsequently extended in [Di] to include all elliptic curves with semistable reduction at 3 and 5. Rubin and Silverberg noted that an elliptic curve as in the above theorem necessarily has a twist which is semistable outside 2, and hence, is modular by [Di, Thm. 1.2]. The purpose of this note is to explain how, by a refinement of their observation, the above theorem follows directly from Wiles' work, without appealing to [Di].

Lemma 1 (Rubin-Silverberg). By at most a quadratic twist, an elliptic curve as in the theorem may be brought to the form

(1)
$$E: y^2 = x(x - A)(x + B)$$

for some nonzero integers A and B with A and B relatively prime, B even and $A \equiv -1 \mod 4$. Let C = A + B. For odd primes p, the curve E has

Received March 24, 1995.

good reduction at p if p is prime to ABC and multiplicative reduction at p otherwise.

Proof. Note that a curve as in the theorem is isomorphic to one defined by equation (1) for some integers A and B with $AB(A+B) \neq 0$. Let $D = \gcd(A, B)$. Twisting by $\mathbf{Q}(\sqrt{D})$, we may assume that A and B are relatively prime. By translating x or exchanging A and B, we may assume that B is even. Finally, if $A \equiv 1 \mod 4$, we twist again by $\mathbf{Q}(i)$.

The reduction type of E for odd primes p may be determined as in [Se2, §4] and [Si1, Ch. VII]. \square

See [O, §I.1] for discussion of the reduction type and conductor of curves given by equation (1), but under certain restrictions in the case p = 2. See also [Da, Lemma 2.1] for a related case. We treat the reduction type at p = 2 in the following lemma.

Lemma 2. Suppose that E is an elliptic curve over \mathbb{Q}_2 defined by the model (1), with $A \equiv -1 \mod 4$ and B even. The reduction type, conductor exponent $\mathbf{f}_2(E)$ and valuation of the minimal discriminant of E are given by the following table:

$\operatorname{ord}_{2}(B)$	1	2	3	4	$\nu \geq 5$
Kodaira Symbol	III	I_1^*	III^*	I_0	$I_{2\nu-8}$
$\mathbf{f}_2(E)$	5	3	3	0	1
$\operatorname{ord}_2(\Delta_{min})$	6	8	10	0	$2\nu - 8$

Proof. A twist of E by the unramified extension $\mathbf{Q}_2(\sqrt{-A})$ affects neither reduction type nor conductor exponent, and provides a model of the form

(2)
$$y^2 = x(x+1)(x+s)$$

with $\operatorname{ord}_2(s) = \operatorname{ord}_2(B) \geq 1$ and discriminant $\Delta = 16s^2(1-s)^2$. For the convenience of the reader, we indicate the appropriate translations of model, depending on $\operatorname{ord}_2(s)$, so that the explicit criteria of Tate's algorithm [T] may be used.

If ord 2(s) = 1, then ord $2(\Delta) = 6$. Put y + x for y in (2) to get

(3)
$$y^2 + 2xy = x^3 + sx^2 + sx.$$

If ord $_2(s) = 2$, then ord $_2(\Delta) = 8$. Put x + 2 for x in (3), to get

$$y^{2} + 2xy + 4y = x^{3} + (s+6)x^{2} + (5s+12)x + (6s+8).$$

If ord $_2(s) = 3$, use the model (3) with ord $_2(\Delta) = 10$. If ord $_2(s) \ge 4$, the model (3) is not minimal and may be reduced to

(4)
$$y^2 + xy = x^3 + \frac{s}{4}x^2 + \frac{s}{16}x$$

with discriminant $s^2(1-s)^2/256$. Thus, (4) has good reduction if ord $_2(s)=4$ and multiplicative reduction if ord $_2(s)\geq 5$. \square

To show that an elliptic curve over \mathbf{Q} is modular, we may replace it with one to which it is isomorphic over $\mathbf{\bar{Q}}$. We may therefore assume that E is defined by equation (1) with A and B as in Lemma 1. If E has good or multiplicative reduction at p=2, then E is semistable and we can conclude from [W, Thm. 0.4] that E is modular. In view of Lemma 2, we may therefore also assume, henceforth, that $\operatorname{ord}_2(B)=1,2$ or 3.

Let ℓ be an odd prime. Choose a basis for $E[\ell]$, the kernel of multiplication by ℓ on E, and let $\bar{\rho}_{E,\ell}$ denote the representation

$$G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathbf{F}_\ell)$$

defined by the action of $G_{\mathbf{Q}} = \operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ on $E[\ell]$. For each prime p, we fix an embedding $\bar{\mathbf{Q}} \hookrightarrow \bar{\mathbf{Q}}_p$ and regard $G_p = \operatorname{Gal}(\bar{\mathbf{Q}}_p/\mathbf{Q}_p)$ as a decomposition subgroup of $G_{\mathbf{Q}}$ at a place over p. Thus, $\bar{\rho}_{E,\ell}|G_p$ is equivalent to the representation of G_p defined by its action on $E[\ell](\bar{\mathbf{Q}}_p)$. Let $I_p \subset G_p$ denote the inertia group.

Recall the special role played by the prime $\ell=3$ in Wiles' approach. We simply write ρ for $\bar{\rho}_{E,3}$. If ρ is irreducible, then ρ is modular by the theorem of Langlands and Tunnell (see [W, Ch. 5]). Since E has good or multiplicative reduction at 3, we need only verify certain hypotheses on ρ in order to apply [W, Thm. 0.3] to conclude that E is modular. We shall see that if E has additive reduction at p=2, then those hypotheses are satisfied, the crucial point being the verification of a local condition at p=2. The irreducibility of ρ in this case is a byproduct of our verification. In fact, we have the following stronger result:

Lemma 3. If ord $_2(B) = 1, 2$ or 3 and ℓ is an odd prime, then $\bar{\rho}_{E,\ell}|I_2$ is absolutely irreducible.

Proof. For the moment, consider the more general case of a representation $\psi: I \to \operatorname{SL}_2(\bar{\mathbf{F}}_{\ell})$, where I is the inertia group of a finite Galois extension of p-adic fields and $\ell \neq p$ is a prime. Let $\mathbf{b}(\psi)$ denote the wild conductor exponent [Se2, §4.9]. If $\mathbf{b}(\psi)$ is odd, then ψ is irreducible. Indeed, were ψ to be reducible, it would be equivalent to a representation of the form

$$\left(\begin{array}{cc} \chi & * \\ 0 & \chi^{-1} \end{array}\right).$$

But then, because **b** is integer-valued and additive on short exact sequences, $\mathbf{b}(\psi) = 2\mathbf{b}(\chi)$ would be even.

Under the hypotheses of this lemma, the elliptic curve E has additive reduction at 2 and odd conductor exponent $\mathbf{f}_2(E) = 2 + \mathbf{b}(\bar{\rho}_{E,\ell}|I_2)$, independent of the choice of odd prime ℓ . Since $\det \bar{\rho}_{E,\ell}|G_2$ is an unramified character associated to $\mathbf{Q}_2(\boldsymbol{\mu}_{\ell})$, the image of I_2 under $\bar{\rho}_{E,\ell}$ is contained in $\mathrm{SL}_2(\mathbf{F}_{\ell})$. It follows that $\bar{\rho}_{E,\ell}|I_2$ is absolutely irreducible. \square

Remark. When Lemma 3 applies, an analysis of the group structure of $\mathrm{SL}_2(\mathbf{F}_3)$ shows that the image of wild ramification at p=2 under ρ , and hence, $\bar{\rho}_{E,\,\ell}$, for any odd ℓ , is isomorphic to the quaternion group of order 8.

Under the hypotheses of Lemma 3, we see that even the restriction of $\rho = \bar{\rho}_{E,3}$ to $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q}(\boldsymbol{\mu}_3))$ is absolutely irreducible. Using Lemma 3, one can also easily check the local conditions on ρ appearing as hypotheses in [W, Thm. 0.3]. Since it is left to the reader of [W] to verify that those local conditions are sufficient to apply the central result [W, Thm. 3.3], we shall explain directly how this is done in the case with which we are concerned. Again, we consider, more generally, $\bar{\rho}_{E,\ell}$ for odd primes ℓ .

First recall that $\bar{\rho}_{E,\ell}$ is unramified at p if $p \neq \ell$ is a prime of good reduction, i.e., if p does not divide ℓABC .

Next we recall how the Tate parametrization is used to describe $\bar{\rho}_{E,\ell}|G_p$ for primes p at which E has multiplicative reduction (see [Se2, §2.9]). Let F denote the unramified quadratic extension of \mathbf{Q}_p in $\bar{\mathbf{Q}}_p$. Then E has split multiplicative reduction over F and the Tate parametrization (see [Si2, §V.3]) provides an isomorphism

$$\bar{\mathbf{Q}}_p^{\times}/q^{\mathbf{Z}} \cong E(\bar{\mathbf{Q}}_p)$$

of Gal $(\bar{\mathbf{Q}}_p/F)$ -modules for some $q \in \mathbf{Q}_p$ with ord p(q) > 0. From this it follows that for each prime ℓ , there is a filtration of Gal $(\bar{\mathbf{Q}}_p/F)$ -modules

$$0 \to \mathbf{Z}_{\ell}(1) \to T_{\ell}(E) \to \mathbf{Z}_{\ell} \to 0$$
,

where $T_{\ell}(E)$ is the ℓ -adic Tate module and $\mathbf{Z}_{\ell}(1) = \lim_{\leftarrow} \boldsymbol{\mu}_{\ell^n}(\bar{\mathbf{Q}}_p)$. One then checks that the representation of G_p on $T_{\ell}(E)$ is equivalent to one of the form

$$\chi \otimes \left(\begin{array}{cc} \epsilon & * \\ 0 & 1 \end{array} \right)$$

where χ is either trivial or the unramified quadratic character of G_p and ϵ is the cyclotomic character given by the action of G_p on $\mathbf{Z}_{\ell}(1)$. It follows that the representation of G_p on $E[\ell]$ is of this form as well, but with ϵ now defined by the action of G_p on μ_{ℓ} .

Suppose now that $p \neq \ell$ is an odd prime dividing ABC. Then the above analysis of multiplicative reduction applies to $\bar{\rho}_{E,\ell}|G_p$ and shows that $\bar{\rho}_{E,\ell}$ is either unramified or type (A) at p in the terminology of [W,

Ch. 1]. (The first possibility occurs precisely when ord $_p(ABC)$ is divisible by ℓ ; see [Se2, §4].)

Suppose next that $p = \ell$. If p divides ABC, then the above analysis of multiplicative reduction shows that $\bar{\rho}_{E,\ell}|G_p$ is ordinary at p in the terminology of [W, Ch. 1]. If on the other hand p does not divide ABC, then the elliptic curve E has good reduction at p. In fact, the equation (1) defines an elliptic curve \mathcal{E} over \mathbf{Z}_p such that $\mathcal{E}_{\mathbf{Q}_p}$ is isomorphic to $E_{\mathbf{Q}_p}$ (see [Si2, §IV.5]). The kernel of multiplication by ℓ on \mathcal{E} is a finite flat group scheme $\mathcal{E}[\ell]$ over \mathbf{Z}_p . The representation $\bar{\rho}_{E,\ell}|G_p$ is given by the action of G_p on $E[\ell](\bar{\mathbf{Q}}_p)$, which we may identify with $\mathcal{E}[\ell](\bar{\mathbf{Q}}_p)$. In this sense, $\bar{\rho}_{E,\ell}|G_p$ arises from a finite flat group scheme over \mathbf{Z}_p . Now $\bar{\rho}_{E,\ell}|G_p$ is reducible if and only if E has ordinary reduction at p, i.e., if and only if $\mathcal{E}_{\mathbf{F}_p}$ is ordinary. In that case $\bar{\rho}_{E,\ell}$ is ordinary at p in the sense of [W]. On the other hand, $\bar{\rho}_{E,\ell}|G_p$ is irreducible if and only if $\mathcal{E}_{\mathbf{F}_p}$ is supersingular, in which case $\bar{\rho}_{E,\ell}$ is flat at p in the sense of [W, Ch. 1].

Finally, suppose that p=2 and E has additive reduction at 2. Then ord $_2(B)=1,2$ or 3, and $\bar{\rho}_{E,\,\ell}|I_2$ is absolutely irreducible by Lemma 3. We claim that $\bar{\rho}_{E,\,\ell}|G_2$ is of type (C) at 2 in the terminology of Wiles [W, Ch. 1]. Recall that this means that $H^1(G_2,W)=0$, where W is the G_2 -module of endomorphisms of $E[\ell](\bar{\mathbf{Q}}_2)$ of trace zero. From the triviality of the local Euler characteristic ([Se1, Thm. II.5]), we have

$$#H^1(G_2, W) = #H^0(G_2, W) \cdot #H^2(G_2, W).$$

By local Tate duality ([Se1, Thm. II.1]), we have

$$#H^2(G_2, W) = #H^0(G_2, W^*)$$

where $W^* = \operatorname{Hom}(W, \mu_{\ell})$. Therefore, we wish to prove that $H^0(G_2, W)$ and $H^0(G_2, W^*)$ both vanish. But in fact $H^0(I_2, W)$ and $H^0(I_2, W^*)$ already vanish. Indeed, I_2 acts trivially on μ_{ℓ} , from which we deduce that there is a (noncanonical) isomorphism $W^* \cong W$ of I_2 -modules; hence, it suffices to show that $H^0(I_2, W) = 0$. Since I_2 acts absolutely irreducibly on $\bar{\mathbf{F}}^2_{\ell}$, Schur's lemma implies that the only I_2 -invariant endomorphisms of $\bar{\mathbf{F}}^2_{\ell}$ are scalars. But the only scalar in W is zero.

Specializing to the case $\ell=3$, we now conclude that the representation $\rho_{E,3}$ of $G_{\mathbf{Q}}$ on $T_3(E)$ arises from a modular form. Indeed, Wiles [W, Thm. 3.3] establishes an isomorphism between the universal deformation ring of type \mathcal{D} and the Hecke algebra $\mathbf{T}_{\mathcal{D}}$, where $\mathcal{D}=(\cdot,\Sigma,\mathbf{Z}_3,\emptyset)$ with

- as flat or Selmer according to whether or not E has supersingular reduction at 3;
- Σ as the set of primes dividing 3ABC.

Since $\rho_{E,3}$ defines a deformation of ρ of type \mathcal{D} , the universal property of the deformation ring thus provides a homomorphism $\mathbf{T}_{\mathcal{D}} \to \mathbf{Z}_3$ with the following property: for all p not dividing 3ABC, the Hecke operator T_p is sent to $a_p = p + 1 - N_p$ where N_p is the number of \mathbf{F}_p -points on the reduction of $E \mod p$.

The definition of $\mathbf{T}_{\mathcal{D}}$ ensures that this homomorphism arises from a normalized eigenform of weight two whose p^{th} Fourier coefficient is a_p for all such p. Hence E is modular.

Acknowledgements

The authors are grateful to Kevin Buzzard, Ken Ribet and Karl Rubin for comments on an earlier version of this note.

References

- [Da] H. Darmon, The equations $x^n + y^n = z^2$ and $x^n + y^n = z^3$, Duke IMRN 10 (1993), 263–274.
- [Di] F. Diamond, On deformation rings and Hecke rings, preprint.
- [O] J. Oesterlé, Nouvelles approches du "théorème" de Fermat, Séminaire Bourbaki 694 (1987–88), Astérisque 161–162 (1988), 165–186.
- [Se1] J. P. Serre, Cohomologie Galoisienne, 5^e éd, LNM 5. Springer-Verlag, New York, 1994.
- [Se2] _____, Sur les représentations modulaires de degré 2 de Gal ($\bar{\mathbf{Q}}/\mathbf{Q}$), Duke Math. J. **54** (1987), 179–230.
- [Si1] J. Silverman, The arithmetic of elliptic curves, GTM 106, Springer-Verlag, New York, 1986.
- [Si2] _____, Advanced topics in the arithmetic of elliptic curves, GTM 151, Springer-Verlag, New York, 1994.
- [T] J. T. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular Functions of One Variable IV, LNM 476, Springer-Verlag, New York, 1975.
- [TW] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras, to appear in Ann. Math.
- [W] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, to appear in Ann. Math.

D.P.M.M.S., 16 MILL LANE, UNIV. OF CAMBRIDGE, CAMBRIDGE, CB2 1SB, UK $E\text{-}mail\ address:}$ f.diamond@pmms.cam.ac.uk

DEPARTMENT OF MATHEMATICS, QUEENS COLLEGE (CUNY), FLUSHING, NY 11367 $E\text{-}mail\ address:\ kramer@qcvaxa.acc.qc.edu$