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THE EIGENVALUE BEHAVIOUR FOR THE

BOUNDARY VALUE PROBLEMS RELATED

TO SELF-SIMILAR MEASURES ON Rd

K. Naimark and M. Solomyak

1. Introduction

Suppose that a compactly supported probability measure µ on Rd is
given. In a domain X ⊂ Rd such that Supp µ ⊂ X, we consider spectral
problems whose “weak” description is as follows: let V = L̊1

2(X) or V =
{v ∈ L1

2(X) :
∫

X
vdµ = 0}. The spaces L̊1

2(X) and L1
2(X) are closely

related to the Sobolev spaces H1
0 (X) and H1(X) respectively and coincide

with them if X is, say, a bounded domain with the sufficiently smooth
boundary. Definitions and some details about these spaces are given in
Section 3.

We seek the eigenvalues λ and eigenfunctions u ∈ V of the equation

(1) λ

∫
X

∇u · ∇vdx =
∫

X

uvdµ, any v ∈ V;

see Section 4 for an accurate statement of the problem. If µ is absolutely
continuous, dµ = V dx, then (1) corresponds to the classical boundary value
problem

(2) −λ∆u = V u,

with the Dirichlet or Neumann conditions on ∂X respectively.

Suppose in addition that the operator associated with the problem (1)
is compact. Then its nonzero spectrum consists of a sequence of positive
eigenvalues λk, λk → 0. Let n(t) be the corresponding distribution func-
tion:

n(t) = #{k : λk > t}, t > 0.
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We are interested in the behaviour of n(t) when t → 0. This behaviour is
well known for absolutely continuous measures, when we are dealing with
the equation (2). Namely, under some, rather mild assumptions on V (and,
for the Neumann boundary value problem, also on ∂X), one has

(3) n(t) = O(t−
d
2 ).

Moreover, n(t) has a regular asymptotic behaviour at 0:

(4) lim
t→0

t
d
2 n(t) =

(4π)−
d
2

Γ(d
2 + 1)

∫
X

V
d
2 dx;

see [BS] for proofs and a detailed discussion of (3) and (4).

Much less is known for singular measures µ. In this case (1) can not in
general be rewritten as a classical boundary value problem. Notice only
that (1) implies ∆u(x) = 0 outside Supp µ. In this paper we consider the
case of self-similar measures µ which constitute an important subclass of
general singular measures. For such a µ, we show that n(t) has a powerlike
growth at t = 0:

(5) ct−δ ≤ n(t) ≤ Ct−δ, t ≤ t0.

We give an expression for δ in (5) and discuss the relations between δ and
the Hausdorff dimensions of the measure µ and of its support.

Spectral problems related to fractals have been rather popular during
the last several years; e.g., see the papers by Lapidus [La] and by Levitin
and Vassiliev [LeVa], which include, in particular, a survey of the topic.
The reference lists in these two papers together cover most of the literature
devoted to this class of problems.

However, the problems investigated in all these works are essentially dif-
ferent from the one considered here. The only exception known to us is the
paper [Fu] by Fujita, where an estimate equivalent to (5) was obtained for
the one-dimensional case. We are thankful to M. L. Lapidus who informed
us about [Fu].

In fact, for d = 1 a much more detailed analysis is possible. This was
done in [SVe], where it was shown that depending on arithmetic properties
of parameters defining µ, tδn(t) behaves at t = 0 either as a constant
or as a function, periodic in log t. Such a detailed result was obtained in
[SVe] on the base of the “renewal equation”, well known in Probability and
Dynamical Systems; e.g., see [Fe], [Wo] and [LeVa]. Here we also use the
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renewal equation when analyzing an auxiliary combinatorial problem. For
this problem we get detailed results of the same type as was obtained in
[SVe] for n(t). The eigenvalue distribution function we are dealing with,
can be estimated from above and from below through the solution of this
combinatorial problem. As a result, for d ≥ 2 we were able to get only the
two-sided estimate (5).

Earlier the renewal equation was applied to various spectral problems
involving self-similar sets by Kigami and Lapidus [KLa], Lapidus [La], and
Levitin and Vassiliev [LeVa]. For the usage of the renewal theory in other
problems related to fractals see [LauW], [St2].

The main purpose of this paper is a detailed exposition of the results
announced in [NS]. We give also an analysis of the spectral problem (1)
corresponding to the Neumann-type boundary condition. Besides, here we
consider a much wider class of domains X than in [NS]; in particular, we
treat the case X = Rd.

2. Self-similar measures

The notions of self-similar set and self-similar measure were introduced
by Hutchinson [Hu]. Let S = {S1, ..., Sm} be a set of contractive similitudes
on Rd, h1, ..., hm their coefficients of contraction. Also, let a system of
positive numbers (“weights”) p = {p1, ..., pm} be given, such that p1 + ...+
pm = 1. Then there exists a unique nonempty compact set C = C(S) ⊂ Rd

such that C =
⋃m

k=1 SkC, and a unique boundedly supported probability
Borelian measure µ = µ(S,p) which satisfies the self-similarity property

(6) µ =
m∑

k=1

pkµ ◦ S−1
k .

Furthermore, C(S) = Supp µ(S,p). Measures µ(S,p), corresponding to the
same set S but to different families p, are mutually singular.

It is µ(S,p) that we are interested in. For the rest of the paper µ =
µ(S,p).

We always suppose that S meets the “open set condition” (see [Hu]).
This means that there exists a bounded open set Ω ⊂ Rd, such that

(7) 1.
m⋃

k=1

Sk(Ω) ⊂ Ω, 2. Sk(Ω)
⋂

Sl(Ω) = ∅ for k �= l.
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Evidently, (7) implies that C(S) ⊆ Ω. It follows also that
∑m

k=1 hd
k ≤ 1. In

fact, we will assume that Ω is a domain (a connected open set). Another
assumption is

(8) µ(∂Ω) = 0.

It is known that otherwise µ(Ω) = 0 (see [LauW]). Assumption (8) is of a
rather technical character and can sometimes be withdrawn.

The simplest particular case of a self-similar measure is δa (the delta-
measure supported at a point a). We obtain it taking m = 1.

3. Embedding theorems

Let X ⊆ Rd be an arbitrary domain. Since the open set condition (7)
does not imply any regularity restriction on the open set, the problem (1)
is intimately connected not with the usual Sobolev space H1 but with its
less familiar counterpart, L1

2. We recall the definitions of function classes
L̊1

2(X) and L1
2(X) (all the information needed can be found in [M]).

L̊1
2(X) is defined as the closure of C∞

0 (X) in the metric of Dirichlet
integral

∫
X
|∇u|2dx. If d ≥ 3, or if d = 2 and R2 � X is not a set of zero

inner (2, 1)-capacity, or if d = 1 and X �= R1, this is actually a space of
functions ([M], §11.2). L̊1

2(X) coincides with the Sobolev space H1
0 (X) if,

for example, X is bounded.

The definition of L1
2(X) is as follows:

L1
2(X) = {u ∈ H1

loc(X) :
∫

X

|∇u|2dx < ∞}.

If u ∈ L1
2(X) implies u ∈ L2(X), then clearly L1

2(X) coincides with H1(X)
algebraically and topologically. In particular, this is true if X is a bounded
domain with the Lipschitz boundary.

L1
2(X) can be considered as a Hilbert space with respect to any metric

form

(9)
∫

X

|∇u|2dx +
∣∣∣∣
∫

X

ψudx

∣∣∣∣
2

,

where ψ ∈ C∞
0 (X) is such that

∫
X

ψdx �= 0. The choice of ψ is arbitrary,
and the corresponding norms are equivalent.
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The space
L2(µ) := L2(Rd, µ)

can be identified in a standard way with L2(C(S), µ). Let X ⊆ Rd be
a domain such that Ω ⊆ X. Our goal here is to study the embeddings of
L̊1

2(X) and L1
2(X) into L2(µ). This problem does not arise in the case d = 1,

because then L1
2(X) ⊂ C(X) and hence the embedding L1

2(X) ⊂ L2(µ) is
bounded and compact for any finite compactly supported µ.

If d ≥ 2, the problem is more complex. We start with the case X = Rd.
Denote

(10) Ak = h2−d
k pk, k = 1, ..., m, A(S,p) = max

k
Ak.

Proposition 1. Suppose that (7) (the open set condition) is satisfied.
Then

(11) L1
2(R

d) ⊂ L2(µ) compactly

if and only if

(12) A(S,p) < 1.

Proof. If d = 1, then (12) is satisfied automatically, and, as was noted
above, (11) also holds. So below we discuss only the case d ≥ 2.

Necessity. Assume that (11) is valid. Then first of all µ can not have a
nonzero delta-component. Indeed, for d ≥ 2 the Sobolev space H1 contains
unbounded functions, so the above embedding is not even bounded.

Now suppose that h2−d
1 p1 ≥ 1. Let a ∈ Supp µ. We may assume that

a �= S1(a). Indeed, m contractions Sk have finite number (not greater than
m) of fixed points, while Supp µ must be infinite; otherwise µ would be a
linear combination of delta-measures, which is impossible.

Fix a function U0 ∈ C∞
0 (Rd) such that U0(a) > 0. Define

(13) Un(x) = p
−n

2
1 U0(S−n

1 (x)),

then, in view of the self-similarity of µ,
∫
|Un|2dµ =

∫
|U0|2dµ. Clearly,

Un ∈ H1(Rd) ⊂ L1
2(R

d). Moreover, {Un} is bounded in L1
2(R

d):
(14)

‖Un‖2
L1

2(R
d)

=
∫

Rd

|∇Un|2dx +
∣∣∣∣
∫

Rd

ψUndx

∣∣∣∣
2

≤
∫

Rd

|∇Un|2dx + C

∫
Rd

|Un|2dx

= (p1h
2−d
1 )−n

(∫
Rd

|∇U0|2dx + Ch2n
1

∫
Rd

|U0|2dx

)
≤ C ′‖U0‖2

H1(Rd).
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Now recall that S1(a) �= a. If b is the fixed point of S1, then |Sn
1 (a)−b| =

hn
1 |a − b| for any n. Therefore, U0 may be chosen so that Supp Un are

mutually disjoint. Thus

(15)
∫

|Un − Um|2dµ =
∫

|Un|2dµ +
∫

|Um|2dµ = 2
∫

|U0|2dµ > 0,

which, together with (14), contradicts the compactness of the embedding.

Sufficiency. Let h2−d
k pk < 1, k = 1, ..., m. Then for ε positive and

sufficiently small we have
(
h2−d

k

)1+ε
pk < 1, any k. Choose q such that

2 < q < 2 + 2ε. We will prove first that under our assumptions the
embedding H1(Rd) ⊂ Lq(µ) is compact. For a finite measure µ, this yields
the compactness of H1(Rd) ⊂ L2(µ). (11) follows from here because µ is
compactly supported.

We will need the following result (see [M], Theorems 3 and 4 in §8.8):

The embedding H1(Rd) ⊂ Lq(µ) is compact if and only if

(16) lim
δ→+0

sup
x∈Rd,ρ∈(0,δ)

ρ1− d
2 [µ(B(x, ρ))]

1
q = 0 for d > 2,

(17) lim
δ→+0

sup
x∈Rd,ρ∈(0,δ)

| log ρ| 12 [µ(B(x, ρ))]
1
q = 0 for d = 2,

where B(x, ρ) denotes the ball of radius ρ centered at x.

Now we concentrate on the proof of (16) and (17).

For a multiindex j = (j1, ..., jn) ∈ {1, ..., m}n we denote

(18)

S(j) = Sjn ...Sj1 ,

Ω(j) = S(j)Ω,

p(j) = pj1 ...pjn ,

h(j) = hj1 ...hjn
,

A(j) = Aj1 ...Ajn .

Also, denote

(19) pmax = max
k=1,...,m

pk, hmin = min
k=1,...,m

hk.
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Here we apply the following result (see [Fa], Lemma 8.5 and the proof
of Theorem 8.6):

Let the open set condition (7) be satisfied, and 0 < ρ < 1. Then there exist
constants c, l and a family of multiindices j1, ..., jr satisfying

Ω(jα) ∩ Ω(jβ) = ∅ for α �= β

and
cρ ≤ h(jα) ≤ ρ, any α,

such that any ball Bρ of radius ρ intersects no more than l of the sets Ω(jα).

Therefore, for d > 2 we get:

ρ1− d
2 [µ(B(x, ρ))]

1
q ≤ ρ1− d

2

[
l max

α
µ(Ω(jα))

] 1
q

≤ l
1
q ρ1− d

2

[
max

h(jα)≤ρ
p(jα)

] 1
q

≤ l
1
q ρ1− d

2 ρ(d−2)(1+ε) 1
q = l

1
q ρ(d−2)( 1+ε

q − 1
2 ).

Since q < 2(1 + ε), we have 1+ε
q − 1

2 > 0. Hence

lim
δ→+0

sup
x∈Rd,ρ∈(0,δ)

ρ1− d
2 [µ(B(x, ρ))]

1
q ≤ l

1
q lim

δ→+0
δ(d−2)( 1+ε

q − 1
2 ) = 0.

For d = 2, we get in a similar way:

| log ρ| 12 [µ(B(x, ρ))]
1
q ≤ l

1
q | log ρ| 12

[
max

h(jα)≤ρ
p(jα)

] 1
q

.

h(jα) ≤ ρ implies (hmin)|jα| ≤ h(jα) ≤ ρ, so |jα| ≥ (log hmin)−1 log ρ.
Hence

max
h(jα)≤ρ

p(jα) ≤ (pmax)|jα| ≤ exp
(

log pmax

log hmin
log ρ

)
= ρ

log pmax
log hmin ,

and we obtain

lim
δ→+0

sup
x∈Rd,ρ∈(0,δ)

| log ρ| 12 [µ(B(x, ρ))]
1
q ≤ l

1
q lim

δ→+0
| log δ| 12 δ

log pmax
q log hmin = 0.

So we have proved that for d ≥ 2 the embedding H1(Rd) ⊂ Lq(µ) is
compact for some q > 2, which implies (11). �

We could not obtain a sufficient condition for the embedding L1
2(R

d) ⊂
L2(µ) to be bounded. Clearly, A(S,p) ≤ 1 is necessary, but it is not
sufficient even if d = 2. Indeed, if p1h

d−2
1 = p1 = 1, then we have only

one contraction S1, and µ is a delta-measure. So if d = 2, the boundedness
and the compactness of the embedding are equivalent. It is unknown to us
whether this is still true for d > 2.
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Proposition 2. Suppose that (7) is satisfied and d ≥ 2. Let X ⊆ Rd be a
domain such that Ω ⊆ X. If d = 2, suppose also that R2 � X has nonzero
inner (2,1)-capacity. If (12) is satisfied, that is, A(S,p) < 1, then

L̊1
2(X) ⊂ L2(µ) compactly.

If, in addition, µ(∂Ω) = 0, then (12) is also necessary for the compact-
ness of L̊1

2(X) ⊂ L2(µ).

Proof. The proof is easily reduced to the one of Proposition 1.

Necessity. Since µ(∂Ω) = 0, we can choose a ∈ Supp µ so that a ∈ Ω.
Moreover, Supp µ � ∂Ω is infinite (otherwise µ includes a delta-measure).
Therefore a again can be taken in such a way that a �= S1(a).

Suppose that h2−d
1 p1 ≥ 1. Define Un as in (13). Clearly, we may assume

Supp Un ⊂ Ω. So if un := Un|X , then un ∈ L̊1
2(X) and

‖un‖2

L̊1
2(X)

=
∫

Rd

|∇Un|2dx ≤ ‖U0‖2
H1(Rd).

Therefore, {un} is bounded in L̊1
2(X). The remaining part of the proof is

the same.

Sufficiency. Follows evidently from Proposition 1. �

Before going over to L1
2(X), let us discuss in more detail the sense of the

embedding considered. Suppose first that µ(∂Ω) = 0. Then the integral

(20) Qµ[u] =
∫

|u|2dµ

is well defined on the set L1
2(X)∩C∞(X), which is dense in L1

2(X). If Qµ

is bounded in L1
2(X), that is, if for any u ∈ L1

2(X) ∩ C∞(X) we have

(21) Qµ[u] ≤ C

(∫
X

|∇u|2 +
∣∣∣∣
∫

X

ψudx

∣∣∣∣
2
)

,

then we extend Qµ to the whole of L1
2(X) by continuity. For L1

2(R
d) and

L̊1
2(X) the sense of the embeddings considered is the same, with C∞

0 (Rd)
or C∞

0 (X) as the initial domain of Qµ.
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The situation changes if µ(∂Ω) = 1, because then we can not start with
u ∈ C∞(X). In order that Qµ[u] be well defined on L1

2(X), we need an
additional assumption:

(22) L1
2(X) ∩ C∞(X ∪ Supp µ) is dense in L1

2(X).

Now the same scheme as above works; if (21) is valid for any u ∈ L1
2(X) ∩

C∞(X ∪ Supp µ), then we extend Qµ to L1
2(X) by continuity.

The condition (22) withdraws some pathological cases. Say, if d = 2, X
is the unit disc with a cut along a radius and µ is supported on this radius,
then Qµ[u] makes no sense on L1

2(X).

Another notion we need below is the extension property for L1
2.

We say that a domain X ⊂ Rd admits the extension property for L1
2 and

write
X ∈ E(L1

2),

if there exists a continuous linear operator Π : L1
2(X) → L1

2(R
d) such that

Πf |X = f for any f ∈ L1
2(X). The extension property for H1 and the class

E(H1) are defined in the same way.

The following statement (due to V. Maz’ya) shows that for a bounded
X these two properties are equivalent. (If X is unbounded, then this is not
the case.)

Lemma 1. Let X ⊂ Rd be a bounded domain. Then

X ∈ E(L1
2) ⇐⇒ X ∈ E(H1).

Proof. The implication “=⇒” is evident. Conversely, if X ∈ E(H1), then
H1(X) ⊂ Lq(X) for some q > 2. So for any u ∈ H1(X)

(23)
(∫

X

|u|qdx

) 2
q

≤ C

(∫
X

|∇u|2dx +
∫

X0

|u|2dx +
∫

X′
|u|2dx

)
,

where X0 ⊂ X is a domain with the Lipschitz boundary, and X ′ = X � X0.
Estimating the last term on the right-hand side of (23) by the Hölder
inequality, we get
(24)(∫

X

|u|qdx

) 2
q

≤

C

(∫
X

|∇u|2dx +
∫

X0

|u|2dx

)
+ C(measX ′)1−

2
q

(∫
X′

|u|qdx

) 2
q

.
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Choosing X0 in such a way that C(measX ′)1−
2
q < 1

2 , we obtain

(25) ‖u‖L2(X) ≤ C1‖u‖Lq(X) ≤ C2

(∫
X

|∇u|2dx +
∫

X0

|u|2dx

) 1
2

.

Since the right-hand side of (25) is an equivalent norm in L1
2(X) and H1(X)

is dense in L1
2(X), we are done. �

It follows from this Lemma that for bounded X ∈ E(H1) we have
L1

2(X) = H1(X). Recall that any bounded domain with the Lipschitz
boundary belongs to E(H1); e.g., see [Ste]. For the rest of the paper we
denote E = E(L1

2).

Notice that if X ∈ E, then (22) is automatically satisfied, because in this
case L1

2(X) ∩ C∞(X) is dense in L1
2(X).

Proposition 3. Suppose that (7) is satisfied. Let d ≥ 2 and X ⊆ Rd be a
domain such that Ω ⊆ X. If µ(∂Ω) = 1, then let also (22) be satisfied. If

L1
2(X) ⊂ L2(µ) compactly,

then (12) is satisfied, that is, A(S,p) < 1.

If, in addition, there exists a domain Y ∈ E such that Ω ⊆ Y ⊆ X, then
(12) is also sufficient for compactness of L1

2(X) ⊂ L2(µ).

Proof. The proof is quite similar to the one of Proposition 1; the slight
changes needed are clear. �

4. The operators TD
µ,X and TN

µ,X .
Formulation of the main results

Here we give an accurate statement of the problems to be considered
below.

If the conditions of the sufficiency part of Proposition 2 are satisfied,
then Qµ[u] generates in L̊1

2(X) a compact, self-adjoint and nonnegative
operator, which we denote by TD

µ,X . The equality

TD
µ,Xu = f, u, f ∈ L̊1

2(X)

means that ∫
X

∇f · ∇vdx =
∫

X

uvdµ, any v ∈ L̊1
2(X).
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In particular, every eigenpair (λ, u) meets the equation (1), with V =
L̊1

2(X).

To define TN
µ,X , we need to introduce a special metric form on L1

2(X).

Assume that we are in the conditions of the sufficiency part of Proposi-
tion 3, so that the embedding L1

2(X) ⊂ L2(µ) is compact. Along with the
quadratic functional Qµ[u] introduce a linear functional

(26) φµ(u) =
∫

udµ.

This makes sense for u ∈ C∞(X) if µ(∂Ω) = 0, or for u ∈ C∞(X ∪Supp µ)
if µ(∂Ω) = 1. Clearly,

|φµ(u)|2 ≤ Qµ[u],

so φµ is bounded on L1
2(X). As usual, we extend φµ to the whole of L1

2(X)
by continuity. Notice that according to our definitions, we have for any
u ∈ L1

2(X)

(27) Qµ[u] = Qµ[u|Ω] and φµ(u) = φµ(u|Ω).

Consider now the metric form on L1
2(X):

(28) D2
µ[u] =

∫
X

|∇u|2dx + |φµ(u)|2.

Lemma 2. Suppose that the assumptions of Proposition 3 are satisfied.
Then L1

2(X) is complete with respect to Dµ.

Proof. Our arguments are quite standard. Let {uk} be a Cauchy sequence
in the metric Dµ, then {uk|Y } is a Cauchy sequence in H1(Y ). So there
exists v ∈ H1(Y ) such that ‖uk|Y − v‖H1(Y ) → 0. Besides, it follows from
the completeness of L1

2(X) factorized by constants ([M], §1.1.13), that there
exists a function u ∈ L1

2(X) such that
∫

X
|∇(uk−u)|2dx → 0, and therefore∫

Y
|∇(uk − u)|2dx → 0. It follows that u − v = C = const on Y . Now,

u′ := u − C ∈ L1
2(X) and uk → u′ in the metric Dµ. �

Suppose now that the conditions of the sufficiency part of Proposition
3 are satisfied. Then by TN

µ,X we denote the compact, self-adjoint and
nonnegative operator generated by Qµ[u] in L1

2(X) with Dµ as the metric
form. The equality

TN
µ,Xu = λu, u ∈ L1

2(X)
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means that
(29)

λ

(∫
X

∇u · ∇vdx +
∫

X

udµ ·
∫

X

vdµ

)
=

∫
X

uvdµ, any v ∈ L1
2(X).

The equation (29) has the trivial eigenvalue λ = 1, with the corresponding
eigenfunction u0 ≡ 1. For any eigenfunction orthogonal to u0, (29) is
equivalent to (1), with V = {v ∈ L1

2(X) :
∫

X
vdµ = 0}.

Our interest lies in the behavior of the eigenvalues λk(TD
µ,X) or λk(TN

µ,X);
we shorten the notation of both operators to Tµ when it is unambiguous. As
usual, we express this behaviour in terms of the corresponding distribution
function

n(t, Tµ) = #{k : λk(Tµ) > t}.

Theorem 1. Let (7) and (12) be satisfied, and assume Ω ∈ E. Let X be
a domain in Rd, d ≥ 2, such that Ω ⊆ X. If d = 2, then let R2 � X have
nonzero inner (2,1)-capacity. Define δ > 0 as the unique solution of

(30)
m∑

k=1

Aδ
k =

m∑
k=1

(
h2−d

k pk

)δ
= 1.

Then there exists a constant C > 0 such that for Tµ = TD
µ,X

(31) n(t, Tµ) ≤ Ct−δ, for any t > 0.

If, in addition, µ(∂Ω) = 0, then there exist positive constants c and t0 such
that for Tµ = TD

µ,X

(32) n(t, Tµ) ≥ ct−δ, for any t ∈ (0, t0).

Theorem 2. Let (7) and (12) be satisfied, and assume Ω ∈ E. Let X be a
domain in Rd, d ≥ 2, such that Ω ⊆ X. If µ(∂Ω) = 1, then let also (22)
be satisfied. Define δ > 0 as the unique solution of (30).

Then the results of Theorem 1 are valid for Tµ = TN
µ,X .

5. Proof of the main results: basic construction

Theorems 1 and 2 will be proved simultaneously. We use the variational
approach. Self-similarity of µ allows us to present a construction giving for
n(t, Tµ) estimates of order O(t−δ) both from above and from below.
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Let a finite set of multiindices j1, ..., jr, whose entries are 1, ..., m and
whose length is not fixed, be chosen in such a way that the family Ξ =
{Ω(j1), ...,Ω(jr)} satisfies

1. Ω(jα) ∩ Ω(jβ) = ∅ for α �= β, 2. µ (∪r
α=1Ω(jα)) = 1.

It was supposed that Ω ∈ E in both Theorems 1 and 2. So the conditions
of Proposition 3 are satisfied for X = Ω. This yields

(33)
∫

Ω

|u|2dµ ≤ K

(∫
Ω

|∇u|2dx +
∣∣∣∣
∫

Ω

udµ

∣∣∣∣
2
)

, any u ∈ L1
2(Ω),

with K = ‖TN
µ,Ω‖2.

Let V = L̊1
2(X) or V = {v ∈ L1

2(X) :
∫

X
vdµ = 0}, for Theorems 1 or 2

respectively. Consider the subspace F ⊂ V:

(34) F = {u ∈ V :
∫

Ω(jα)

udµ = 0, α = 1, ..., r}.

Clearly, codim F ≤ r. For any u ∈ F and any α = 1, ..., r (33) yields:∫
Ω

|u(S−1(jα)x)|2dµ ≤ K

∫
Ω

|∇u(S−1(jα)x)|2dx,

so ∫
Ω(jp)

|u(x)|2dµ = p(jα)
∫

Ω

|u(S−1(jα)x)|2dµ

≤ Kp(jα)h(jα)2−d

∫
Ω(jα)

|∇u(x)|2dx = KA(jα)
∫

Ω(jα)

|∇u(x)|2dx,

with the same constant factor K as in (33).

Denote
t+ = t+(Ξ) = max{A(jα), α = 1, ..., r},
t− = t−(Ξ) = min{A(jα), α = 1, ..., r}.

Then for any u ∈ F we get:

(35)

∫
Ω

|u|2dµ =
r∑

α=1

∫
Ω(jα)

|u(x)|2dµ ≤ K
r∑

α=1

A(jα)
∫

Ω(jα)

|∇u(x)|2dx

≤ Kt+

r∑
α=1

∫
Ω(jα)

|∇u(x)|2dx ≤ Kt+

∫
X

|∇u(x)|2dx.
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So we have constructed a subspace of codimension not greater than r on
which

(36)
∫

Ω

|u|2dµ ≤ Kt+

∫
X

|∇u(x)|2dx.

Therefore, in view of the variational principle, we obtain both for TD
µ,X and

TN
µ,X :

(37) n(Kt+, Tµ) ≤ r.

Now, we turn to the estimates from below. In the proof of Theorem 2,
we will deal here with L1

2(X) rather than with V. Since the codimension of
V in L1

2(X) is 1, this suffices for the proof of (32).

Recall that here we suppose µ(∂Ω) = 0. Let a ∈ Supp µ. We may
assume a ∈ Ω. Fix a nonnegative function u0 ∈ C∞

0 (Ω) such that u0(a) > 0.
Define

ujα
(x) =

{
u0(S−1(jα)x), x ∈ Ω(jα);
0, x ∈ X � Ω(jα),

then ujα
∈ L̊1

2(X). Moreover, Supp ujα
⊂ Ω(jα), so the supports of ujα

for
different α are mutually disjoint. Hence ujα

are mutually orthogonal both
in L1

2 and in L2(µ) scalar products. We have

(38)
∫

X

|ujα
|2dµ =

∫
Ω(jα)

|ujα
|2dµ = p(jα)

∫
Ω

|u0|2dµ,

and

(39)

∫
X

|∇ujα
|2dx +

∣∣∣∣
∫

ujα
dµ

∣∣∣∣
2

=
∫

Ω(jα)

|∇ujα
|2dx +

∣∣∣∣∣
∫

Ω(jα)

ujα
dµ

∣∣∣∣∣
2

= (h(jα))d−2
∫

Ω

|∇u0|2dx + p(jα)
∣∣∣∣
∫

Ω

u0dµ

∣∣∣∣
2

≤ (h(jα))d−2

(∫
Ω

|∇u0|2dx +
∣∣∣∣
∫

Ω

u0dµ

∣∣∣∣
2
)

.

So we have constructed a subspace of dimension r on which

(40)

∫
X
|u|2dµ

‖u‖2

L̊1
2(X)

≥
∫

X
|u|2dµ

‖u‖2
L1

2(X)

≥ A(jα)

∫
Ω
|u0|2dµ∫

Ω
|∇u0|2dx +

∣∣∫
Ω

u0dµ
∣∣2 ≥ Ct−.
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Applying again the variational principle, we get both for TD
µ,X and TN

µ,X :

(41) n(Ct−, Tµ) ≥ r.

Now we describe a suitable sequence of families

ΞN =
{

Ω(jN1 ), ...,Ω(jNr(N))
}

.

Take Ξ0 = {Ω}. Suppose ΞN is already constructed. Let j0 be a
multiindex for which Ω(j0) ∈ ΞN and

A(j0) = t+(ΞN ).

Then ΞN+1 is obtained from ΞN by the replacement of Ω(j0) by the
collection S1Ω(j0), ..., SmΩ(j0). (If there are several such multiindices j0,
we do the same with all the corresponding sets Ω(j0).)

It is easy to see that for the sequence {ΞN}∞N=0 we have

(42) t+(ΞN ) ≤ Ā(S,p)t−(ΞN ).

Now Theorems 1 and 2 can be proved with the help of an auxiliary combi-
natorial problem.

6. Combinatorial problem

Consider a class of paths on (Z+)m. The initial point of each path is 0
and every link is parallel to one of the coordinate axes and goes in positive
direction. Let a linear function L(x) in Rm be given:

L(x) = L(x1, ..., xm) = c1x1 + ... + cmxm, ck > 0, k = 1, ..., m.

Denote
cmin = min

k=1,...,m
ck, cmax = max

k=1,...,m
ck.

Fix s ≥ 0. Let N(s) be the family of paths whose last link intersects the
hyperplane L(x) = s. (The path is in N(s) if the endpoint of its last link
belongs to this hyperplane, and is not in N(s), if the starting point does.)
Denote #N(s) = N(s). Our aim is to estimate N(s). This we will do
in an “indirect” way. Namely, let W(s) be the family of paths that lie in
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the pyramid (R+)m
⋂
{L(x) ≤ s} and cannot be extended inside it and let

W (s) = #W(s). For s < 0 we set W (s) = 0. Then

(43) W (s) ≤ N(s) ≤ W (s + cmax).

Indeed, consider a path from W(s). The endpoint of its last link either
lies on the hyperplane L(x) = s—then this path belongs also to N(s)—or
it is beneath the hyperplane; in this case the path may be continued to
become the one from N(s). So to any path of W(s) corresponds at least
one path from N(s), and this correspondence is clearly injective. Hence
W (s) ≤ N(s).

A similar argument shows that N(s) ≤ W (s + cmax); we should only
take into account that the endpoints xe = (xe

1, ..., x
e
m) of paths from N(s)

satisfy
s ≤ L(xe) = c1x

e
1 + ... + cmxe

m < s + cmax.

Now notice that W (s) satisfies a simple functional equation:

(44) W (s) = W (s − c1) + ... + W (s − cm) + ∆(s),

where ∆(s) = 1 for s < cmin and ∆(s) = 0 for s ≥ cmin (the verification
is straightforward). Define δ as the unique nonnegative solution of the
equation

(45) e−δc1 + ... + e−δcm = 1.

Denoting F (s) = e−sδW (s), we rewrite (44) as

(46) F (s) = e−δc1F (s − c1) + ... + e−δcmF (s − cm) + e−δs∆(s).

This is a particular case of the so called renewal equation. The solvability
results for this equation can be borrowed e.g. from [Fe], Chapter XI.1. We
come to the following statement:

Proposition 4. 1) If at least one of the ratios ck

cl
is irrational (“non-

arithmetic case”), then there exists a positive constant B such that

e−δsW (s) → B, s → ∞.

2) If all the ratios ck

cl
are rational (“arithmetic case”), then there exists

bounded, positive and bounded away from zero periodic function ψ(s) on
Rd such that

e−δsW (s) − ψ(s) → 0, s → ∞.
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In fact, the complete formulation of this Proposition gives explicit ex-
pressions for B and ψ(s).

Corollary (of Proposition 4 and inequality (43)). There exist positive
constants c and C such that

c ≤ e−δsN(s) ≤ C for s ≥ 0.

7. Proof of the main results: the final step

Choose ck = − lnAk, k = 1, ..., m. Then, taking (42) in account, (37)
and (41) become

(47) n(KĀ(S,p)e−s, Tµ) ≤ N(s) ≤ n(Ce−s, Tµ).

The conclusion of Theorems 1 and 2 immediately follows from the Corollary.

8. Discussion

1) The case d = 1 was analyzed in [SVe]. Here n(t, Tµ) itself satisfies
an equation similar to (44). As a result, more precise conclusions were
obtained.

2) The Hausdorff dimension of µ equals

β =

(
m∑

k=1

pk ln pk

)
/

(
m∑

k=1

pk lnhk

)

(see [St1]). The Hausdorff dimension α of C(S) is determined by the equa-
tion

∑m
k=1 hα

k = 1 (see [Hu]). Always β ≤ α, and the equality takes place if
and only if pk = hα

k , k = 1, ..., m. These pk’s are called “natural weights”.

The exponent δ meets the following conditions:

(48)
β

β + 1
≤ δ ≤ α

α + 1
for d = 1 ( see [SVe]),

δ = 1 for d = 2,

(49)
α

α − (d − 2)
≤ β

β − (d − 2)
≤ δ for d ≥ 3
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(the proof of (49) is similar to the proof of (48) given in [SVe]). If d ≥ 3,
the value of δ can be arbitrarily large. The equalities in (48), (49) take
place only in the case of natural weights.

3) For the natural weights, µ(S,p) is nothing but the restriction on C(S)
of the Hausdorff measure of dimension α. In this case the sufficiency part
of Proposition 1 can be derived from Theorem 1 of Chapter 7 of [JWal].

4) If d = 2, the only self-similar measures for which (12) fails, are delta-
measures supported at an interior point of Ω; here m = 1.

5) The sign “=” in the inequality
∑m

k=1 hd
k ≤ 1 is rather rare. It cor-

responds to the case when Sk(Ω), k = 1, ..., m, constitute a tiling of Ω
by a family of subdomains similar to Ω. If, in addition, pk are the natural
weights, µ(S,p) is nothing but the d-dimensional Lebesgue measure on Ω.
Here, clearly, δ = d

2 .

6) In the results of Section 3, the spaces H1
0 (X) and H1(X) endowed

with the standard metric of H1, can be taken instead of L̊1
2(X) and L1

2(X).
The minor changes needed in the assumptions are evident. These changes
correspond to the passage from (1) to the equation

λ

(∫
X

(∇u · ∇v)dx +
∫

X

uvdx

)
=

∫
X

uvdµ, any v ∈ V.

The estimates (31) and (32) remain valid for this modified equation.

7) In the case d = 1, it was proven in [Bo] that for any finite singular µ
one has for the problem (1)

(50) n(t) = o(t−
1
2 )

(instead of O(t−
1
2 ), given for d = 1 by (3)). [Bo] contains also the first

attempt to specify “o” in (50), provided µ meets some additional restric-
tions. However, for self-similar µ the estimates obtained in [Bo] turn out
to be not sharp. As was mentioned in Section 1, the estimate (5) for d = 1
was first obtained in [Fu] with the help of another approach.

8) The equation (30) for δ has some resemblance with the equation for
the so called spectral dimension dS of a “fractal object” (whose description
includes a self-similar set endowed with a self-similar measure and with
the so called harmonic structure; see [KLa]). The exponent dS appears in
connection with the spectral analysis of the Laplacian on a fractal. This
Laplacian and also the spectral dimension dS are determined by a fractal
object and formally do not depend on the embedding into Rd (though usu-
ally the specific harmonic structure involved is implied by this embedding).
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On the contrary, in our type of problems the definition of the operators Tµ

depends on this embedding.

Acknowledgement

We are obliged to V. Maz’ya from whom we learned about the statement
given in Section 3 as Lemma 1. The proof adduced also belongs to V.
Maz’ya. We are grateful to him for the permission to include this material
into our text.

References

[BS] M. Birman and M. Solomyak, Quantitative analysis in Sobolev imbedding the-
orems and applications to spectral theory, Tenth Math. Summer School (Kat-
siveli/Nalchik, 1972), Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev (1974),
5–189 (in Russian); English transl. in Amer. Math. Soc. Transl. 114 (2) (1980).

[Bo] V. Borzov, Quantitative characteristics of singular measures, Problemy Mat.
Fiz., vyp. 4, Leningrad (1970), 42–47 (in Russian); English transl. in Topics in
Math. Phys., 4, Plenum Press, NY (1971).

[Fa] K. J. Falconer, The geometry of fractal sets, Cambridge University Press, 1985.

[Fe] W. Feller, An introduction to the probability theory and its applications, Vol.
II, John Wiley & Sons, Inc., New York-London-Sydney-Toronto, 1971.

[Fu] T. Fujita, A fractional dimension, self-similarity and a generalized diffusion
operator, Taniguchi Symp. PMMP Katata (1985), 83–90.

[Hu] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981),
713–747.

[JWal] A. Jonsson and H. Wallin, Function spaces on subsets of R
n, Mathematical
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