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SIMPLICITY OF THE BERGMAN, SZEGŐ

AND POISSON KERNEL FUNCTIONS

Steven R. Bell

A bstract . We announce a proof that the Bergman, Szegő, and Poisson
kernels associated to a finitely connected domain in the plane are simple
in the sense that they are not genuine functions of two variables. They are
all composed of finitely many holomorphic functions of one variable. We
can also prove that the kernels cannot be too simple by showing that the
only finitely connected domains in the plane whose Bergman or Poisson
kernels are rational functions are the simply connected domains which can
be mapped onto the unit disc by a rational biholomorphic mapping. This
leads to a proof that the classical Green’s function associated to a finitely
connected domain in the plane is one half the logarithm of a real-valued
rational function if and only if the domain is simply connected and there is
a rational biholomorphic map of the domain onto the unit disc.

1. Introduction

There are many places in the study of functions of one complex variable
where functions of two complex variables arise, and it is in one of these
places that I, a hungry analyst of functions of several complex variables,
have recently gone to graze. This paper reports on how I have found the
quality of the fodder to be wholesome, but disappointing from the viewpoint
of several complex variables.

The Bergman and Szegő kernels associated to a bounded domain in the
plane are functions of two complex variables that carry encoded within
them a great deal of information about the domain. Conformal mappings
onto canonical domains, classical domain functions, and other important
objects of potential theory can be expressed simply in terms of the Bergman
and Szegő kernels. It is therefore widely believed that these kernels are
highly transcendental and difficult to compute. The purpose of this paper
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is to announce results that show that the kernel functions are not nearly
as complex as one might expect. They are not genuine functions of two
complex variables. Rather, they are simple rational combinations of finitely
many functions of one complex variable. Full details of the proofs of the
results will appear in [4] and [5].

It has long been known that the kernel functions associated to a simply
connected domain are no more complex than a single Riemann mapping
function. Indeed, let a be a fixed point in a simply connected domain Ω �= C

and let fa(z) denote the Riemann mapping function mapping Ω one-to-one
onto the unit disc D1(0) with fa(a) = 0 and f ′

a(a) > 0. Let S(z, w) denote
the Szegő kernel associated to Ω. The Riemann map fa may be expressed
simply in terms of S(z, a) and S(z, w) is given by

S(z, w) =
c S(z, a)S(w, a)
1 − fa(z)fa(w)

,

where c = 1/S(a, a). A similar identity holds for the Bergman kernel,

K(z, w) =
4πc2S(z, a)2S(w, a)2

(1 − fa(z)fa(w))2

where c = 1/S(a, a). This shows that the Bergman kernel is composed
of the same basic functions that make up the Szegő kernel. Finally, the
Poisson kernel p(z, w) is given by

p(z, w) =
S(z, w)S(w, a)

S(z, a)
+

S(z, w)S(w, a)fa(z)
S(z, a)fa(w)

,

where z is a point in Ω and w is a point in the boundary (see [1, page 37]).
Thus, the Poisson kernel is also composed of the same basic functions.
These formulas for the kernel functions in a simply connected domain are
not new. However, we prove analogous results for n-connected domains
that are new. The new results show that there are n + 1 basic functions
that comprise all the kernels. An interesting feature of the results in this
paper is the central role played by the Ahlfors map and by the zeroes of
the Szegő kernel.

We can prove our main results about the kernel functions in general
finitely connected domains such that no boundary component reduces to
a point. In case Ω is a bounded finitely connected domain in the plane
with C∞ smooth boundary, our results reveal that all the kernel functions
are composed of basic holomorphic functions that are all given as solutions
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to explicit Kerzman-Stein integral equations. All elements of the kernel
functions may be computed by means of simple linear algebra and one di-
mensional integrals and one dimensional integral equations. At no point is
a double integral with respect to area measure needed. This result is partic-
ularly surprising for the Bergman kernel function associated to a multiply
connected domain. A traditional way to compute the Bergman kernel of
such a domain has been to orthonormalize a set of rational functions that
span a dense subset of the Bergman space. This is a numerical nightmare
compared to the methods we establish in [5].

In the last section of this paper, we describe results from [4] that give
conditions on a domain for its Bergman, Szegő, or Poisson kernel function
to be a rational function. We prove in [4], for example, that the Bergman
kernel associated to a finitely connected domain is rational exactly when
the domain is simply connected and is biholomorphic to the unit disc via a
rational mapping. This result about the Bergman kernel has as a corollary
that the Green’s function associated to a finitely connected domain is one
half the logarithm of a rational function if and only if the domain is simply
connected and there is a rational biholomorphic map of the domain onto
the unit disc.

2. Preliminaries

Before we can state our main theorems, we must review some basic facts
about the Szegő kernel and the Ahlfors mapping. (Proofs of these facts can
be found in [6] and [1].)

Suppose that Ω is a bounded n-connected domain in the plane with C∞

smooth boundary. Let γj , j = 1, . . . , n, denote the n non-intersecting C∞

simple closed curves which define the boundary of Ω, and suppose that
γj is parameterized in the standard sense by zj(t), 0 ≤ t ≤ 1. Let T (z)
be the C∞ function defined on bΩ such that T (z) is the complex number
representing the unit tangent vector at z ∈ bΩ pointing in the direction
of the standard orientation. This complex unit tangent vector function is
characterized by the equation T (zj(t)) = z′j(t)/|z′j(t)|.

We shall let A∞(Ω) denote the space of holomorphic functions on Ω that
are in C∞(Ω). The space of complex valued functions on Ω that are square
integrable with respect to Lebesgue area measure dA will be written L2(Ω),
and the space of complex valued functions on bΩ that are square integrable
with respect to arc length measure ds will be denoted by L2(bΩ). The
Bergman space of holomorphic functions on Ω that are in L2(Ω) shall be
written H2(Ω) and the Hardy space of functions in L2(bΩ) that are the L2

boundary values of holomorphic functions on Ω shall be written H2(bΩ).
Let 〈u, v〉bΩ denote the inner product on L2(bΩ) and 〈u, v〉Ω denote the
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inner product on L2(Ω).
For each fixed point a ∈ Ω, the Szegő kernel S(z, a), as a function of z,

extends to the boundary to be a function in A∞(Ω). Furthermore, S(z, a)
has exactly (n−1) zeroes in Ω (counting multiplicities) and does not vanish
at any points z in the boundary of Ω. The Garabedian kernel L(z, a) is a
kernel related to the Szegő kernel via the identity

(2.1)
1
i
L(z, a)T (z) = S(a, z) for z ∈ bΩ and a ∈ Ω.

For fixed a ∈ Ω, the kernel L(z, a) is a holomorphic function of z on Ω−{a}
with a simple pole at a with residue 1/(2π). Furthermore, as a function of
z, L(z, a) extends to the boundary and is in the space C∞(Ω − {a}). In
fact, L(z, a) extends to be in C∞((Ω×Ω)−{(z, z) : z ∈ Ω}). Also, L(z, a)
is nonzero for all (z, a) in Ω × Ω with z �= a.

The kernel S(z, w) is holomorphic in z and antiholomorphic in w on
Ω × Ω, and L(z, w) is holomorphic in both variables for z, w ∈ Ω, z �= w.
We note that S(z, z) is real and positive for each z ∈ Ω, and that S(z, w) =
S(w, z) and L(z, w) = −L(w, z). The Szegő kernel reproduces holomorphic
functions in the sense that

h(a) = 〈h, S(·, a)〉bΩ

for all h ∈ H2(bΩ) and a ∈ Ω.
Given a point a ∈ Ω, the Ahlfors map fa associated to the pair (Ω, a)

is a proper holomorphic mapping of Ω onto the unit disc. It is an n-to-
one mapping (counting multiplicities), it extends to be in A∞(Ω), and it
maps each boundary curve γj one-to-one onto the unit circle. Furthermore,
fa(a) = 0, and fa is the unique function mapping Ω into the unit disc
maximizing the quantity |f ′

a(a)| with f ′
a(a) > 0. The Ahlfors map is related

to the Szegő kernel and Garabedian kernel via

(2.2) fa(z) =
S(z, a)
L(z, a)

.

Also, f ′
a(a) = 2πS(a, a) �= 0. Because fa is n-to-one, fa has n zeroes. The

simple pole of L(z, a) at a accounts for the simple zero of fa at a. The
other n − 1 zeroes of fa are given by (n − 1) zeroes of S(z, a) in Ω − {a}.
Let a1, a2, . . . , an−1 denote these n − 1 zeroes (counted with multiplicity).
I proved in [3] (see also [1, page 105]) that, if a is close to one of the
boundary curves, the zeroes a1, . . . , an−1 become distinct simple zeroes. It
follows from this result that, for all but at most finitely many points a ∈ Ω,
S(z, a) has n − 1 distinct simple zeroes in Ω as a function of z.
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3. A formula for the Szegő kernel

The zeroes of the Szegő kernel give rise to a particularly nice basis for
the Hardy space of an n-connected domain with C∞ smooth boundary,
and this basis allows us to write down a formula for the Szegő kernel that
reveals its complexity. We shall use the notation that we set up in the
preceding section. We assume that a ∈ Ω is a fixed point in Ω that has
been chosen so that the n − 1 zeroes, a1, . . . , an−1, of S(z, a) are distinct
and simple.

Theorem 3.1. The Szegő kernel is given by

S(z, w) =
1

1 − f(z)f(w)


c0S(z, a)S(w, a) +

n−1∑
i,j=1

cijS(z, ai) S(w, aj)




where f(z) denotes the Ahlfors map fa(z), c0 = 1/S(a, a), and the coeffi-
cients cij are given as the coefficients of the inverse matrix to the matrix
[S(aj , ak)].

We now sketch the proof of Theorem 3.1. The proof uses a special basis
for the Hardy space. For convenience, let a0 denote a. It is shown in [4]
that the set of functions

hik(z) = S(z, ai)f(z)k,

0 ≤ i ≤ n − 1, and k ≥ 0, forms a basis for the Hardy space H2(bΩ).
Furthermore,

(3.1) 〈hik, hjm〉bΩ =
{

0, if k �= m

S(aj , ai), if k = m.

Orthonormalize the basis via the Gram-Schmidt procedure. Identity
(3.1) shows that most of the functions in the sequence are already orthog-
onal. We need only fix k and orthonormalize the n functions S(z, ai)f(z)k,
i = 0, 1, . . . , n − 1. We obtain an orthonormal set {Hik} given by

H0k(z) = b00S(z, a)f(z)k and,

Hik(z) =
i∑

j=1

bijS(z, aj)f(z)k, i = 1, . . . , n − 1,

where bii �= 0 for each i = 0, 1, . . . , n − 1. Because |f | = 1 on bΩ, it follows
that the coefficients bij do not depend on k.
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The Szegő kernel can be written in terms of our orthonormal basis as

S(z, w) =
n−1∑
i=0

∞∑
k=0

Hik(z) Hik(w).

The sum ∞∑
k=0

f(z)k f(w)k =
1

1 − f(z)f(w)

can be factored from the expression for S(z, w) to yield the formula in the
statement of Theorem 3.1. To see that c0 = 1/S(a, a), set z = a and
w = a in the formula. The values of the other coefficients can be deduced
by setting w = ak, k = 1, . . . , n − 1 in the formula and by noting that
f(ak) = 0 and S(a, ak) = 0. The details may be found in [4].

4. The Bergman kernel

In this section, we shall see that the Bergman kernel of an n-connected
domain in the plane with C∞ smooth boundary is composed of the same
basic functions that comprise the Szegő kernel.

The Bergman kernel K(z, w) is related to the Szegő kernel via the iden-
tity

K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

AijF
′
i (z)F ′

j(w),

where the functions F ′
i (z) are classical functions of potential theory de-

scribed as follows. The harmonic measure function ωj which solves the
Dirichlet problem on Ω with boundary data equal to one on the boundary
curve γj and zero on γk if k �= j has a multivalued harmonic conjugate.
The function F ′

j(z) is a globally defined single valued holomorphic function
on Ω which is locally defined as the derivative of ωj + iv where v is a local
harmonic conjugate for ωj . The Cauchy-Riemann equations reveal that
F ′

j(z) = 2(∂ωj/∂z).
Let F ′ denote the complex linear span of the set of functions {F ′

j(z) :
j = 1, . . . , n− 1}. It is a classical fact that F ′ is n− 1 dimensional. Notice
that S(z, ai)L(z, a) is in A∞(Ω) because the pole of L(z, a) at z = a is
cancelled by the zero of S(z, ai) at z = a. Schiffer proved (see [9,1,3]) that
the n− 1 functions S(z, ai)L(z, a), i = 1, . . . , n− 1 form a basis for F ′. We
may now write

(4.1) K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

λijS(z, ai)L(z, a) S(w, aj)L(w, a),
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which, together with Theorem 3.1, shows that the Bergman kernel is no
more complex than the Szegő kernel.

Theorem 4.1. The Bergman kernel is a rational combination of the same
finitely many basic functions that make up the Szegő kernel.

Formula (4.1) describes the Bergman kernel in a domain with smooth
boundary. If a finitely connected domain does not have smooth boundary,
and if none of its boundary components are points, it can be mapped
conformally onto a domain whose boundary is smooth. The transformation
formula for the Bergman kernels under biholomorphic mappings can then
be used to obtain the following theorem.

Theorem 4.2. Suppose Ω is a finitely connected domain such that no
boundary component of Ω is a point. Let f(z) denote an Ahlfors map of
Ω onto the unit disc. The Bergman kernel K(z, w) associated to Ω is a
function of the form

K(z, w) =
1

(1 − f(z)f(w))2


n(n+1)/2∑

j,k=1

CjkHj(z)Hk(w)




+
n−1∑
i,j=1

λijGi(z) Gj(w)

where the functions Hj and Gj are functions of one variable in the Bergman
space.

5. Complexity of the Poisson kernel

I showed in [3] how the Szegő projection can be used to solve the Dirichlet
problem. The method gives rise to a formula for the Poisson kernel in terms
of the Szegő kernel. Let Ω be a bounded n-connected domain with C∞

smooth boundary. As above, we select a point a ∈ Ω such that the zeroes
a1, . . . , an−1 of S(z, a) are all distinct and simple. Let Sa(z) = S(z, a) and
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La(z) = L(z, a). The Poisson kernel p(z, w) is given by

p(z, w) =
S(z, w)S(w, a)

S(z, a)
+

S(z, w)L(w, a)
L(z, a)

(5.1)

−
n−1∑

j,k=1

(
BjkS(ak, w)S(w, a)

∫
ζ∈γj

S(z, ζ)S(ζ, a)
S(z, a)

ds

)

−
n−1∑

j,k=1

(
BjkS(ak, w)S(w, a)

∫
ζ∈γj

S(z, ζ)L(ζ, a)
L(z, a)

ds

)

+
n−1∑
j=1

ωj(z)

(
n−1∑
k=1

BjkS(ak, w)S(w, a)

)

where Bjk are constants whose explicit values are given in [4].
The first term in the sum on the right hand side of (5.1) is a meromorphic

function in z with simple poles at the zeroes of S(z, a). The second term
is antiholomorphic in z with no poles. The third term is meromorphic in
z with simple poles at the zeroes of S(z, a) that exactly cancel the simple
poles of the first term. The fourth term is antiholomorphic in z with no
poles. The last term is harmonic in z. This formula, although rather ugly,
is built up of functions of one complex variable.

We show in [4] that formula (5.1) can be manipulated to yield the shorter
identity

p(a, w) =
|S(w, a)|2
S(a, a)

+
n−1∑
j=1

(ωj(a) − λj(a))µj(w)

where the λj are non-harmonic functions in C∞(Ω) that have the same
boundary behavior as the harmonic measure functions and the µj are C∞

functions on bΩ. The µj can be expressed directly in terms of the Szegő
and Garabedian kernels and the λj can be written explicitly in terms of
simple integrals of the Szegő kernel. This last formula relates the Poisson
kernel p(z, w) to the Poisson-Szegő kernel |S(w, a)|2/S(a, a) in a multiply
connected domain. (These two kernels are equal in simply connected do-
mains.)

Formula (5.1) can be used to write the Poisson kernel as

p(z, w) = Re


∑n

i,j=1 hi(z)Hj(w)T (w)

1 − f(z)f(w)
+

n−1∑
j=1

Aj(z)Bj(w)T (w)




+h0(w) + H0(w)T (w) +
n−1∑
j=1

ωj(z)gj(w)T (w)
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where f(z) denotes an Ahlfors mapping of Ω onto the unit disc, and the
other functions, hj , Hj , Aj , Bj , and gj , are all holomorphic functions of one
variable in A∞(Ω). Recall that Ahlfors maps are also in A∞(Ω). Hence,
the Poisson kernel is formed by taking simple combinations of the functions
ωj and finitely many holomorphic functions in A∞(Ω) of one variable.

6. The Green’s function

Because the Poisson kernel is related to the gradient of the classical
Green’s function, the results of the previous section can be used to deduce
that the gradient of the Green’s function is composed of finitely many
functions of one variable that are all in C∞(Ω). Indeed, (2.1) and (5.1) can
be used to show that

p(z, w) = i
S(z, w)L(w, z)T (w)

S(z, z)
+

n−1∑
j=1

(ωj(z) − λj(z))gj(w)T (w),

where gj(w) = −i
∑n−1

k=1 BjkS(w, ak)L(w, a), and since

p(z, w) =
1
2π

∂

∂nw
G(z, w) =

i

π

∂

∂w̄
G(z, w)T (w),

we may equate these two expressions. The resulting identity extends to
hold for all w in Ω.

Theorem 6.1. Suppose that Ω is a bounded n-connected domain with C∞

smooth boundary. The Green’s function associated to Ω satisfies

∂G

∂w̄
(z, w) = π


S(z, w) L(w, z)

S(z, z)
− i

n−1∑
j=1

(ωj(z) − λj(z))gj(w)


 .

for all z, w ∈ Ω, z �= w.

Theorem 3.1 asserts that the Szegő kernel is composed of finitely many
functions of one variable, and since L(z, w) satisfies an analogous identity
(see [4]), it follows from Theorem 6.1 that the gradient of the Green’s
function is also composed of finitely many functions of one variable in
C∞(Ω).

7. Characterization of domains with rational kernel functions

In the previous sections, we have explained why the kernel functions are
not as complex as one might expect them to be. In this section, we shall
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describe theorems that say that the only domains whose kernel functions
are rational are the simply connected domains given as {z : |F (z)| < 1} for
some rational function F (z).

A function R(z, w) of two complex variables is called rational if there
are relatively prime polynomials P (z, w) and Q(z, w) such that R(z, w) =
P (z, w)/Q(z, w). It is not hard to prove that a function H(z, w) which is
holomorphic in z and w on a product domain Ω1×Ω2 is rational if and only
if for each fixed b ∈ Ω2, the function H(z, b) is rational in z, and for each
fixed a ∈ Ω1, the function H(a, w) is rational in w (see Bochner and Martin
[7, page 201]). We shall say that the Bergman kernel function K(z, w)
associated to a domain Ω is rational if it can be written as R(z, w̄) where R
is a holomorphic rational function of two variables. Because the Bergman
kernel is hermitian, the facts above imply that K(z, w) is rational if and
only if for each point a ∈ Ω, the function K(z, a) is a rational function of z.
In fact, K(z, w) is rational if and only if there exists a small disc Dε(w0) ⊂ Ω
such that K(z, a) is a rational function of z for each a ∈ Dε(w0). Similar
statements hold for the other kernel functions.

Theorem 7.1. Suppose Ω is a bounded n-connected domain, n > 1, with
C∞ smooth boundary. Neither the Bergman kernel nor the Szegő kernel
associated to Ω can be rational functions.

The assumption in Theorem 7.1 that the boundary of Ω is C∞ smooth
can be relaxed. For example, the conclusion about the Bergman kernel
holds if the domain is only assumed to be finitely connected and such that
no boundary component is a point. We explain in [4] how to relax the
smoothness assumptions.

Theorem 7.1 together with the following theorem characterize those do-
mains in the plane with rational Bergman or Szegő kernels.

Theorem 7.2. Suppose Ω �= C is a simply connected domain; the Bergman
kernel associated to Ω is rational if and only if there is a rational biholo-
morphic mapping f(z) mapping Ω one-to-one onto the unit disc. The Szegő
kernel associated to Ω is rational if and only if there is a rational biholo-
morphic mapping f(z) mapping Ω one-to-one onto the unit disc such that
f ′(z) is the square of a rational function.

Since the Bergman kernel is equal to a second partial derivative of the
Green’s function, Theorem 7.1 and 7.2 yield the following theorem.

Theorem 7.3. Suppose Ω is a finitely connected domain such that no
boundary component of Ω is a point. The Green’s function G(z, a) associ-
ated to Ω is 1/2 the logarithm of a real-valued rational function of the four
real variables given by the real and imaginary parts of z and a if and only
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if Ω is simply connected and there is a rational biholomorphic mapping of
Ω onto the unit disc. Furthermore, the Bergman kernel K(z, w) associated
to Ω is rational if and only if Ω is simply connected and equivalent to the
disc via a rational biholomorphic mapping.

Hence, the only finitely connected domains having Green’s functions as
simple as the Green’s function for the disc are the obvious ones. (Of course,
the Green’s function itself can never be rational because it has a logarithmic
singularity.)

Finally, we mention that similar results hold for the Poisson kernel.

Theorem 7.4. Suppose that Ω is a bounded n-connected domain with C∞

smooth boundary. The Poisson kernel p(z, w) associated to Ω is such that
p(z, w) is a rational function of the real and imaginary parts of z ∈ Ω
for w in an open subset of the boundary if and only if n = 1 and Ω is
biholomorphic to the unit disc via a rational map f : Ω → D1(0).
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