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1. Introduction

Let M be a 2n dimensional compact symplectic manifold, L — M
a complex Hermitian line bundle and V a Hermitian connection on L
whose curvature form, w, is the symplectic form. By equipping M with
an almost-complex structure, J, which is compatible with w and positive-
definite, one gets a Riemannian metric, g(v, w) = w(Jv,w), and a splitting
of the complexified tangent bundle of M into the +i and —i eigenspaces
of J:

(1.1) TM ®C=T""M o T M.
Let
AT*M @ C = @;; A\ T*M
denote the associated bigrading of the bundle of forms, and
QW (M, L) = C®(M, N\ T*M ® L)

the space of L-valued forms of type (i,7). Given a Hermitian connection
Vi on the canonical line bundle K = A®™®T*M, one can construct a
Spin®-Dirac operator !

ﬁ(c . QO,even(M7 L) _ QO,odd(M’ L).

(If M is Kahler, L holomorphic, and V, Vg the canonical connections on
L and K, then ;/9@ is equal to the Dirac operator for the twisted Dolbeault
complex.) Let Q(M) be the virtual vector space

(1.2) QM) = ker;ﬁ(C - cokerﬁc.

Received March 7, 1995.

Second author supported by the Humboldt Foundation.

1For more details on the construction, see e.g. Lawson-Michelsohn [LM], or Duis-
termaat [D].
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Since any two w-compatible J’s, and any two Hermitian connections on L,
K can be smoothly deformed into each other, the dimension of Q(M) is a
symplectic invariant of M.

Suppose now that a compact Lie group, GG, acts equivariantly on the
pair (M, L) and preserves V. The infinitesimal action of G on sections of
L is given by the formula of Kostant:

(1.3) D,s = Vs —i(p,v)s

(c.f. [K], page 169) where v € g and ¢ : M — g* is the moment map. In
particular, letting Z = ¢~1(0) and letting + : Z — M be the inclusion
map, the induced action of G on sections of ¢*L is given by

(1.4) D,s =V,s

i.e., sections of +* L are G-invariant iff they are autoparallel along orbits of
G. If in addition G acts freely on Z, zero is a regular value of ¢ ([GS3],
page 185), and hence, Z is a compact submanifold of M. Moreover, the
fact that G acts freely on Z implies that the orbit space

Mg = Z/G

is a compact manifold and the projection map, # : Z — Mg, is a
principal G-fibration. Since G also acts freely on *L (if it acts freely on
Z) the orbit space

Le=.L/G

is a line bundle over M, and from (1.4) it is easy to see that there is a
unique connection, V¢, on Lg with the property

Vo =1"V.
In particular, the curvature form, wg, of Vg satisfies
Trwg = fw

and hence, by Marsden-Weinstein, is the reduced symplectic form on M.
Coming back to (1.1), if J is G-invariant there is a natural representation
of G on Q(M) which, up to isomorphism, is independent of the choice of
J. In particular, denoting by Q(M)® the (virtual) vector space of G-fixed
vectors in Q(M); the dimension of Q(M)% is a symplectic invariant of the
action of G on M.

We will be concerned in this paper with a conjecture of Guillemin-
Sternberg which asserts that

(1.5) dim Q(Mg) = dim Q(M)°.
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(See [GS1].) Several months ago the abelian version of this conjecture was
proved, independently, by M. Vergne [Ve] and E. Meinrenken [Mel]. 2 A
proof for the general case was recently given in [Me3]. 3

The purpose of this note is to give a short, simple proof of their result for
the group S*. This proof is based on the “symplectic cutting” construction
of E. Lerman, a description of which can be found in [Le]. In this article
Lerman proves that if ¢ : M — R is the moment map associated with
the action of S* on M, the disjoint unions

M, = Mg Up H(RT)

and
M_ = Mg Up ' (R™)

are compact symplectic manifolds, and the actions of S* on ¢~1(RT) and
¢~ 1(R™) can be extended to Hamiltonian actions of S on M, and M_
by letting S act trivially on Mgi. In §3 below we will “pre-quantize”
this result by showing that the restrictions of L and V to ¢~ 1(R*) can
be extended to a line bundle and connection, Ly and V., on M, which
are preserved by S!'. Thus, in particular, M, can be “quantized” by
attaching to it the virtual vector space, Q(M, ), and the representation
of S on this space. We will prove (1.5) by computing the character of
this representation, using the equivariant index theorem of Atiyah-Segal-
Singer, and verifying directly that the multiplicity with which the zero
weight of S occurs in Q(M) is the dimension of Q(Mg:1). We will then
compare the characters of the representations of S on Q(M) and Q (M)
and verify the following.

Theorem 1. If m is a nonnegative integer, the multiplicity with which m
occurs as a weight of S* in Q(M,) is equal to the multiplicity with which
it occurs as a weight in Q(M); and if m is negative, this multiplicity is
zero.

It follows that, for m = 0, the multiplicity with which m occurs as a
weight in Q(M) is equal to the dimension of Q(Mg:1).

2They actually proved that for (1.5) to be true it suffices that zero be a regular value
of ¢ (in which case Mg is an orbifold and L an orbifold line bundle).

3More elementary proofs are available for rank one groups (see Jeffrey-Kirwan [JK]
and Meinrenken [Me2]), for L replaced with some high tensor power LY (see Guillemin-
Sternberg [GS2] and Meinrenken [Mel]), or if one assumes that a sufficiently large
neighborhood of zero is contained in the set of regular values of ¢ (see Martin-Weitsman
MW)).
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Comments

1. The proof of (1.5) which we have just sketched can be extended, with
the appropriate adaptions, to orbifolds.

2. Let H be a compact Lie group. Given a Hamiltonian action of H
on M which commutes with the action of S!, one gets representations of
H on Q(Mg:) and Q(M)Sl; and our proof of (1.5) will show that these
representations are isomorphic.

3. From the orbifold version of (1.5) for S!, one can deduce the orbifold
version of (1.5) for St x --- x 8! by “reduction in stages.”

2. The equivariant index formula

Let x be the character of the representation of S' on Q(M). The
equivariant index formula [ASS] for the Spin® Dirac operator asserts that
if x is a generic element of R / 277, x(e") can be written as a sum of local

contributions over the connected components F' of the fixed point set of
Sl

(2.1) > xr(e)

where

(2.2) XF(eix) _ / Ch(%?}’g)d(F)

the terms Ch(L,z),... in the integrand being defined as follows: Recall
that the definition of ﬁ(c involved the choice of an S!-invariant almost-
complex structure on M. From this one gets complex structures on the
tangent bundle and normal bundle of F. Td(F') is the Todd class of the
tangent bundle (with respect to this complex structure), and Ch(L, ) is
the equivariant Chern character of L.

D(F, z) is an equivariant class associated with the normal bundle of F'.
Using the “splitting principle”, one can assume without loss of generality
that the normal bundle of F splits equivariantly into a sum of complex line
bundles, Ej, j =1,...,7r (where rp = codim F'/2). Since F is connected,
St acts on E; by multiplication by a fixed character, el aj € Z; and,
by definition

(2.3) D(F,z) = H(l _ emjx_aj)

where «; € H?(F,R) is the Chern class of F;. (If the normal bundle
doesn’t split equivariantly into line bundles, the individual terms in this
product aren’t well-defined, but the product is.)
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Noting that Ch(L,x) is represented by the equivariant characteristic
form, e!**% we can rewrite xr(e'*) as

e Td(F
(24) XF uz: — 'L(;bpz/
H _ za]z a])

where €’ is the character of the representation of S' on the fiber of L
at points of F. This extends to a meromorphic function, xr(z), on the
Riemann sphere, C U {oo}

e’ Td(F

(2.5) /i Z%_a])

If £ = ¢F is the maximum value of ¢, all the weights a; are negative and
hence

(2.6) xr(z) =2~ /F e* Td(F) + O(zF1)

as z — 00. Otherwise, at least one a; is positive and

(2.7) xr(z) = 0(z")

One can also express x(z) in terms of the multiplicities N(m) with which
m occurs as a weight of the representation of S' on Q(M), as the finite
sum

(2.8) x(z) = 3" N(m)z
By comparing (2.8) with (2.6) — (2.7), one deduces that
(2.9) N(k)=0

if kK > max ¢, and

(2.10) N(k) = /F ¢ Td(F) = dim Q(F)

if K = ¢ = max ¢. Similarly, by looking at the limit z — 0, one deduces
that

(2.11) N(k)=0

if k < min ¢ and

(2.12) N(k) = dim Q(F)
if k = ¢p = min ¢.
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3. Symplectic cutting

The action of the circle group on the complex plane C by multiplication
by e preserves the symplectic form —idz A dZ, and is a Hamiltonian
action with moment map —|z|?. Therefore, the diagonal action of S* on
the product C x M is Hamiltonian with moment map

(3.1) ¥(z,p) = —|z> + ¢(p).

Moreover, S! acts freely on the zero level set of 1. (Proof: If z is not
equal to zero, this is obvious. If z =0, 0 = ¥(z,p) = ¢(p), so p is on the
zero level set of ¢.) Therefore, the reduced space

def. | _
(3.2 M, " 1 0) /81

is well-defined. Let ¢=1(0) = Wy U Wy, where Wy is the subset of 1=1(0)
where z = 0, and W is its complement. The action of S' on W; possesses
a global cross-section, namely the set where Arg(z) = 0, and a point (z,p)

is in this set iff ¢(p) > 0 and z = \/@(p). Thus,
Wy ~ ¢ Y(RT) x St

On the other hand, (z,p) € Wy iff 2 = 0 and ¢(p) = 0; so Wy ~ ¢~ 1(0)
and

VV()/S1 ~ Msl .
Modulo a few technical details, this proves the following theorem of Ler-
man:

Theorem 2. Mg: imbeds in My as a symplectic submanifold of codi-
mension 2, and its complement is symplectomorphic to the open subset
¢~ Y (RY) of M. In particular, My is the disjoint union

(3.3) M, = Mg U¢ H(RT).

Next, observe that there is another Hamiltonian action of the circle on
C x M—the product of the trivial action on C with the given action of
S1 on M. Since this commutes with the diagonal action, it gives rise to
a Hamiltonian action of S* on M. It is easy to check that the moment
map associated with this action is zero on the first summand of (3.3) and,
on the second summand, is the restriction of ¢ to ¢~1(R*). From this, it

follows that the fixed point set, (M, )S", is the union
(MS" ¢ (RF)) U Mg,

i.e., in addition to the fixed points that existed prior to cutting, there
is one new connected set of fixed points created by cutting—the reduced
space Mg:.
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A parenthetical remark. If we make a small modification in the construc-
tion we have just described—namely, take ¢ dz A dz rather than —idz Adz
to be the symplectic form on C—we get in place of M a symplectic man-
ifold, M_, which is set-theoretically the disjoint union

(3.4) Mg Ugp HR™).

Lerman’s construction can be “pre-quantized” by taking L¢ to be the
trivial line bundle over C, with fiber metric equal to the usual metric times
exp(—|z|?) and V¢ to be the connection which takes sections of Lc, i.e.,
complex-valued functions f, to one forms

(3.5) Vef =df — 2f dz.

The product bundle on C x M, L¢c X L, can then be equipped with the
product connection Ve XV, which is invariant under the product action of
S! x S, and hence, by the “pre-quantum” version of reduction which we
described in §1, this descends to an S'-invariant line bundle and connection
on M.

The proof of (1.5). For z large

k
(3.6) Xr(2) =Y cr? +0(z""), k= ér;
=0

by (2.6) — (2.7). Moreover, by (2.7), the coefficient of the leading term
in this sum is zero if ¢p < max¢. Since zero is a regular value of ¢,
max ¢ > 0; so by (2.8) and (3.6),

(3.7) N©O)= > cr.

The same formula, however, gives the multiplicity with which the triv-
ial representation of S! occurs in Q(M,); by (2.12), this is equal to
dim Q(Mg1) (the moment map associated with the Hamiltonian action
of St on M, achieves its minimum at zero and achieves this minimum on
M Sl). O
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