
Mathematical Research Letters 2, 247–258 (1995)

SYMPLECTIC CUTS

Eugene Lerman

Abstract. According to McDuff the blow-up operation in symplectic ge-
ometry amounts to a removal of an open symplectic ball followed by a col-
lapse of some boundary directions. In this paper I describe a generalization
of the blow-up construction—the symplectic cut. In the case of symplec-
tic manifolds with Hamiltonian circle action, the construction allows us
to embed the reduced spaces in a symplectic manifold (“the symplectic
cut”) as codimension 2 symplectic submanifolds. Several applications are
discussed.

1. Introduction and the basic construction

In the paper [GS5] on birational equivalence in the symplectic category,
Guillemin and Sternberg observe a connection between reduction and blow-
ups. The key idea can be seen in the following example. Consider C ×Cn

with coordinates (w, z) = (w, z1, . . . , zn) and with the standard symplectic
form τ = −√−1(dw∧dw̄+

∑
dzj ∧dz̄j). Consider the Hamiltonian action

of a circle S1 on C × Cn given by

eiθ · (w, z) = (e−iθw, eiθz)

with a momentum map

Φ(w, z) = ||z||2 − |w|2.

Then the Marsden-Weinstein-Meyer reduced space at ε > 0 is the blow-up
C̃n of the origin in Cn. Indeed, consider the map

φ : C × S2n−1 → C × Cn

(w, ζ) �→ (w, (ε + |w|2)1/2ζ),

where S2n−1 = {ζ ∈ Cn : ||ζ|| = 1}. The map φ is an S1 equivariant
diffeomorphism onto the manifold Φ(w, z) = ε. Therefore,

Φ−1(ε)/S1 = (S2n−1 × C)/S1.
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Also it is easy to see that

φ∗τ
∣∣{0}×S2n−1 =

ε√−1

∑
dζj ∧ dζ̄j

∣∣∣∣
S2n−1

,

i.e., the restriction of the reduced symplectic form to the exceptional di-
visor is ε times the standard Fubini-Studi metric. Thus, the blow-up de-
pends on a real parameter ε. Guillemin and Sternberg call the reduced
space Φ−1(ε)/S1 the blow-up of the origin in Cn by an ε amount. Note
also that if ε < 0, the reduced space is Cn.

There is another way to look at this construction. Namely, think of
(Cn,−√−1

∑
dzj ∧ dz̄j) as a symplectic manifold (M, ω) with a Hamil-

tonian circle action and a momentum map µ(z) = ||z||2. Then we have a
Hamiltonian action of a circle S1 on (M × C, ω ⊕ 1√−1

dw ∧ dw̄) given by
eiθ ·(m, w) = (eiθm, e−iθw) with a momentum map Φ(m, w) = µ(m)−|w|2.
The set {Φ = ε} is a disjoint union of two S1 invariant manifolds:

{Φ = ε} =

{
(m, w) : µ(m) > ε & w = eiθ

√
µ(m) − ε

}
⊔

{(m, 0) : µ(m) = ε}.

The first manifold is equivariantly diffeomorphic to the product of Mµ>ε :=
{m ∈ M : µ(m) > ε} and of the circle S1 and the second manifold is
diffeomorphic to the ε level set µ−1(ε). Consequently, the manifold Mµ>ε 

{z ∈ Cn : ||z||2 > ε} embeds into the reduced space {Φ = ε}/S1 as an open
dense symplectic submanifold and the remaining set, {Φ = ε}/S1 −Mµ>ε,
is isomorphic to the reduced space µ−1(ε)/S1.

Thus, the ε blow-up of the origin in Cn could be thought of as removing
the ball of radius

√
ε centered at the origin and collapsing the fibers of the

Hopf fibration in the boundary of the remaining set {z ∈ Cn : ||z||2 ≥ ε}.
This point of view is due to McDuff [McD].

1.1. Basic construction. Suppose now that (M, ω) is an arbitrary sym-
plectic manifold with a Hamiltonian circle action and a momentum map
µ : M → R. If the circle S1 acts freely on a level set µ−1(ε), then ε is a
regular value of the momentum map Φ(m, w) = µ(m) − |w|2 arising from
the action of S1 on the product manifold (M × C, ω ⊕ 1√−1

dw ∧ dw̄), the
action being eiθ · (m, w) = (eiθm, e−iθw). Then, as before, the manifold
Mµ>ε embeds as an open dense submanifold into the reduced space

Mµ≥ε := Φ−1(ε)/S1 = {(m, w) ∈ M × C : µ(m) − |w|2 = ε}/S1
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and the difference Mµ≥ε − Mµ>ε is symplectomorphic to the reduced
space µ−1(ε)/S1. Topologically, Mµ≥ε is the quotient of the manifold
with boundary Mµ≥ε by the relation ∼ where m ∼ m′ if and only if
µ(m) = µ(m′) = ε and m = eiθm′ for some eiθ ∈ S1.

A similar procedure defines

Mµ≤ε = {(m, w) ∈ M × C : µ(m) + |w|2 = ε}/S1;

one only needs to look at the diagonal circle action on the product (M ×
C, ω ⊕ √−1 dw ∧ dw̄). The symplectic manifold µ−1(ε)/S1 is embedded
in both Mµ≥ε and Mµ≤ε as a codimension 2 symplectic submanifold but
with opposite normal bundles. So the symplectic gluing [G] of Mµ≥ε and
Mµ≤ε along the reduced space µ−1(ε)/S1 recovers the original manifold
M . For this reason, I would like to call the operation that produces Mµ≥ε

and Mµ≤ε symplectic cutting. Note that there is no a priori reason to
concentrate exclusively on Mµ≥ε; both sides of the cut may be interesting,
depending on the context. For example, when M = Cn, Mµ≤ε is isomor-
phic to the projective space CPn and the embedding of Mµ<ε provides the
projective space with a large Darboux chart. Perhaps one should think of
this CPn as Cn blown-up at infinity an ∞− ε amount.

Remark 1.1. (Kaehler structure on cuts.) If the manifold (M, ω) is Kaeh-
ler then its product with C is Kaehler and so by theorem 3.5 of [GS2]
the cut spaces Mµ≥ε and Mµ≤ε, being the results of reduction, are also
Kaehler. Note however that while the embedding Mµ<ε ↪→ Mµ≤ε is sym-
plectic it is not a Kaehler isometry as the example of M = Cn clearly
indicates.

Remark 1.2. (Cuts and Hamiltonian group actions.) If in addition to the
action of a circle on our manifold (M, ω) we have a Hamiltonian action
of another group K on M that commutes with the action of S1 then the
spaces Mµ≥ε and Mµ≤ε obtained by cutting M along a level set µ−1(ε) are
again Hamiltonian K spaces. In particular, one always has a Hamiltonian
circle action on the cut spaces.

Indeed, we can let K act on the product M ×C by simply letting it act
on the first factor. Since this action of K commutes with the two actions of
S1 of interest to us, it descends to a Hamiltonian action on the S1-reduced
spaces Mµ≥ε and Mµ≤ε.

Remark 1.3. (Cuts and global blow-ups.) Let (M, ω) be a Hamiltonian
S1 space with a proper momentum map µ : M → R. Suppose the momen-
tum map achieves its maximum on M and that it achieves this maximal
value c at a single point m0. Then for ε sufficiently small, m0 is the only
critical point in the set Mµ>c−ε = {m ∈ M : c − µ(m) < ε}. Assume
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further that the weights of the isotropy representation of S1 on Tm0M are
all 1. It follows from the equivariant Darboux theorem that the level sets
µ = c− δ are spheres for all 0 < δ < ε. Therefore, the manifold M̄µ≤c−δ is
the blow-up of M at m0 by a δ amount since we obtained it by removing
a set symplectomorphic to an open ball and then collapsing the fibers of
the Hopf fibration in the boundary of the remaining set.

More generally, the momentum map may achieve its maximum on a
symplectic submanifold F . Then, if the weights of the isotropy represen-
tation of S1 on the normal bundle of F are all 1 and δ is sufficiently small,
the manifold Mµ≤c−δ is the blow-up of M along F by a δ amount.

Remark 1.4. (Blow-up of T ∗Sn along the zero section.) Cuts may some-
times be used to blow up along a Lagrangian submanifold (a similar con-
struction is described in [G]).

Let M be the cotangent bundle of the sphere Sn with the standard
symplectic form and the standard round metric g. Then the length func-
tion µ(q, p) = gq(p, p)1/2, the square root of the energy, is smooth off
the zero section of T ∗Sn, so its Hamiltonian flow is well-defined. Note
also that the flow has period 1 everywhere. Therefore we can construct
(T ∗Sn)µ≥ε, which is an ε blow-up of the cotangent bundle of the sphere
along the zero section. I must admit that the use of the word “blow-up”
may be ill-advised at this point since there is no blow-down map. How-
ever, the inertia of using this word in the symplectic setting whenever one
removes an open submanifold and then quotients the boundary along the
null directions is too strong to resist.

Remark 1.5. (Cuts and moment polytopes.) Atiyah-Guillemin-Sternberg
convexity theorem [A], [GS1] says that if a torus T acts on a compact
symplectic manifold (M, ω) with a moment map µ : M → t∗, then µ(M)
is a rational convex polytope in t∗. We will refer to it as the moment
polytope. Suppose ξ ∈ t generates a circle subgroup Sξ of T . Then the
action of Sξ on (M, ω) is Hamiltonian with moment map µξ = ξ ◦ µ. The
actions of Sξ and of T commute. If we cut M at ε ∈ R using µξ, we get
two Hamiltonian T orbifolds Mµξ≥ε and Mµξ≤ε. Their moment polytopes
are

µ(M) ∩ {λ ∈ t∗ : 〈ξ, λ〉 ≥ ε} and µ(M) ∩ {λ ∈ t∗ : 〈ξ, λ〉 ≤ ε}

respectively. Thus, there is a correspondence between symplectic cuts of
manifolds and cuts of moment polytopes.

Delzant showed [D] that for effective completely integrable torus actions,
the correspondence between actions and moment polytopes is one-to-one.
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An analogous theorem holds for orbifolds [LT]. Thus, for completely in-
tegrable torus actions, there is a one-to-one correspondence between sym-
plectic cuts of spaces and partitions of polytopes by hyperplanes.

Remark 1.6. (Cuts and dynamical systems.) Suppose as before that
we have a Hamiltonian circle action on a symplectic manifold M with
momentum map µ : M → R and suppose that h ∈ C∞(M) is an S1

invariant Hamiltonian. Then h defines an S1 invariant function h̃ on
M × C by h̃(m, w) = h(m) and thereby, Hamiltonians hµ≤ε and hµ≥ε on
Mµ≤ε and Mµ≥ε, respectively. Note that the reduced dynamical system
(µ−1(ε)/S1, hε) embeds into the cut systems

(Mµ≤ε, hµ≤ε) and (Mµ≥ε, hµ≥ε).

Thus, one sees that the reduced dynamical system and parts of the original
dynamical system can be combined into one system.

Remark 1.7. (Normal bundle of the reduced space in the cut spaces.)
Since the normal bundle ν of the reduced space µ−1(ε)/S1 in the cut
space Mµ≥ε is given by

ν = µ−1(ε) ×S1 C,

the Euler class of ν is the Chern class of the principal S1 bundle

µ−1(ε) → µ−1(ε)/S1.

Remark 1.8. (Generalizations of the construction.) In conclusion we note
that the basic construction of symplectic cutting can be generalized in
several ways. First of all, a global Hamiltonian S1 action is not necessary to
define symplectic cuts. The only two properties of the level set Z = µ−1(ε)
that we use are

• the difference M − Z has two connected components and
• the null foliation of the pull-back ω|Z of the symplectic form to Z

is a principal circle fibration.
Thus, any hypersurface satisfying the two properties above allows us to
carry out cuts.

Alternatively, we can drop the assumption that the action of the circle
on the level set in question is free. If we keep the assumption that ε is a
regular value of the moment map µ : M → R, then the action of the circle
on the level set µ−1(ε) is locally free and so the cut spaces are orbifolds.
This is the generic situation.

If we completely drop the regularity assumptions on the moment map
then the reduced space µ−1(ε)/S1 and the cut spaces are symplectic strat-
ified spaces (see [SL]).
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2. Applications

In this section I describe several applications of symplectic cutting.
These are a proof of the connectedness of fibers of moment maps aris-
ing from symplectic representations of compact groups (this will conclude
the proof of the orbit conjecture of Benson et alii [BJLR]), a proof of Kir-
wan’s convexity theorem, a proof of Kirwan’s connectedness theorem and
a proof of Kalkman’s localization theorem.

Before giving any details, I would like to mention a very nice applica-
tion of symplectic cutting that I will not describe here. This a proof of
Duistermaat et alii [DGMW] in the case of circle actions of a conjecture
of Guillemin and Sternberg that quantization commutes with reduction.

2.1. Connectedness of fibers of momentum maps for linear sym-
plectic actions. A linear action of a compact Lie group K on a symplectic
vector space (V, ω) that preserves the symplectic form is necessarily Hamil-
tonian. The fibers of the corresponding momentum map J : V → k∗ are
intersections of real quadrics. These sets can be quite complicated and
their connectedness is not at all apparent. F. Kirwan proved [K1] (see also
[K2]) that if a momentum map arising from an action of a compact Lie
group on a connected symplectic manifold is proper, then the preimages
of coadjoint orbits under the map are connected. Consequently the fibers
of the momentum map are connected. In our case the map J need not
be proper, so Kirwan’s theorem doesn’t apply directly. However, one can
turn J into a proper map by cutting away the infinity and thereby prove
the following theorem.

Theorem 2.1. Let K be a compact connected group acting linearly on a
symplectic vector space V and preserving its symplectic form ω. Let J :
V → k∗ denotes the corresponding moment map. Then for any coadjoint
orbit O of K, the set J−1(O) is connected. Consequently, for any α ∈ k∗,
the fiber J−1(α) is connected.

Proof. Without loss of generality, we may assume that V is Cn with the
standard symplectic form and K is a subgroup of the unitary group U(n).
Let O be a coadjoint orbit of K. We will show that for any r > 0 the
closed ball B̄(r) = { z ∈ Cn : |z|2 ≤ r } intersects J−1(O) in a connected
set. Clearly this will prove that J−1(O) is connected. Since J−1(O)/K =
J−1(α)/Kα for α ∈ O and since the isotropy group Kα of α in k∗ is
connected, the preimage of the orbit O is connected if and only if the
reduced space J−1(α)/Kα is connected if and only if the fiber J−1(α) is
connected.

Now the fibers of the map π : B̄(r) → Cn||z||2≤r, where Cn||z||2≤r is
the blow-up of Cn at infinity an ∞ − r amount, are points or circles.
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So a eiθ invariant set X in the closed ball is connected if and only its
image under π in the blow-up is connected. Since the action of K on
Cn commutes with multiplication by eiθ, we see that the action of K
descends to a Hamiltonian action on the blow-up with momentum map
Jr : Cn||z||2≤r → k∗ that makes the diagram

{||z||2 ≤ r} −→ Cn

π ↓ ↓ J

Cn||z||2≤r
Jr−→ k∗

commute. Therefore, J−1
r (O) = π(J−1(O)

⋂
B̄(r)). On the other hand,

since the blow-up is the projective space CPn, the momentum map Jr is
proper. So Kirwan’s theorem (op. cit.) applies and the sets J−1

r (O) are
connected. This, as we have seen, implies that the fibers of the original
momentum map J are connected as well and we are done.

2.2. Kirwan’s convexity and connectedness theorems. It was ob-
served by E. Meinrenken and C. Woodward that symplectic cuts can be
used to reduce the proof of Kirwan’s nonabelian convexity theorem to the
convexity theorem for torus actions on orbifolds (an analog of Atiyah-
Guillemin-Sternberg convexity theorem for orbifolds was proved in [LT]).
The cuts can also be used to reduce the proof of connectedness of fibers
of a nonabelian moment map to the corresponding statement for abelian
moment maps on orbifolds. We now sketch the arguments that should also
work for actions on orbifolds. The details of the arguments will appear in
[LMTW]. We start by giving precise statements of the theorems.

Theorem 2.2. Let (M, ω) be a compact connected symplectic manifold,
K× (M, ω) → (M, ω) a Hamiltonian action of a compact Lie group K and
µ : M → k∗ a corresponding equivariant moment map. Then the fibers of
µ are connected.

Theorem 2.3. Let (M, ω), K and µ : M → k∗ be as in Theorem 2.2 above
and let t∗+ ⊂ k∗ be a Weyl chamber. Then µ(M) ∩ t∗+ is a rational convex
polytope.

Theorem 2.2 is due to Kirwan [K1]. Theorem 2.3 is due to Guillemin
and Sternberg in the Kaehler case [GS3] and to Kirwan in the general case
[K2].

Sketch of proof. Assume for simplicity that the image of the moment map
contains regular points in k∗ (i.e., points with abelian isotropy groups).
More strongly, assume that generically in M the isotropy groups are zero
dimensional. The general case can be reduced to the one we are considering
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by means of the principal orbit type theorem. Fix a maximal torus T of K,
identify the dual of its Lie algebra t∗ with a subspace of k∗ and fix a Weyl
chamber t∗+. Consider the set F = µ−1(̊t∗+), the preimage of the interior of
the Weyl chamber. Since the moment map µ is equivariant, it is transversal
to t̊∗+, hence F is a T invariant submanifold of M . By Theorem 26.7 of
[GS4], F is symplectic. It is not hard to see that µF := µ|F is a moment
map for the symplectic action of T on F .

One can show that F is connected and that K · F is dense in M . Con-
sequently the closure of the image of F in t∗ is the intersection µ(M)∩ t∗+.

Since F is not compact, µF is not proper. We now “compactify” F as
follows. Choose an affine hyperplane for each wall of the Weyl chamber,
so that it is parallel to the wall, intersects the interior of the chamber and
is distance less than ε � 1 away from the wall. Cut the image µF (F ) with
these hyperlanes, i.e., cut F using the actions of the circles corresponding
to the simple roots (cf remark 1.5). The result for a generic choice of
hyperplanes is a compact symplectic orbifold F̄ε which inherits a Hamilto-
nian action of the torus T (cf proof of Theorem 2.1) and µF descends to a
moment map µ̄ε. By the results of [LT], the fibers of µ̄ε are connected and
the image µ̄ε(F̄ε) is a rational convex polytope. Consequently, the fibers
of µF are connected (cf again proof of Theorem 2.1) and µF (F ) = µ(F ) is
convex.

Since µ|F = µF , µ is equivariant and K · F is dense in M , it follows
that, generically, the fibers of µ are connected. This is not quite enough
to conclude that all the fibers of µ are connected. We need in addition the
following topological fact.

Fact. Let X be a manifold, f : X → V a vector space valued proper
continuous map with the property that for any ball B in V there is a dense
subset U ⊂ B such that f−1(U) is connected. Then the fibers of f are
connected.

Since the set K ·̊ t∗+ is locally connected in k∗, we can now conclude that
all the fibers of the moment map are connected.

To prove that the closure of µ(F ) is a polytope, we need to make sure
that the number of vertices of µ̄ε(F̄ε) is uniformly bounded as ε → 0.
But the vertices lie in the intersections of the hyperlanes that we use for
cutting with the singular values of the moment map µT arising from the
Hamiltonian action of T on M . By Atiyah-Guillemin-Sternberg convexity
theorem, the singular values of µT are a finite union of convex polytopes.
Consequently, the number of vertices of µ̄ε(F̄ε) is uniformly bounded and
hence µ(M) ∩ t∗+ is a convex polytope.
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2.3. A localization theorem. Consider a compact symplectic manifold
(M, σ) with a Hamiltonian action of a compact Lie group K and let µ :
M → k∗ denote a corresponding moment map. Even when the group K is
a circle, it maybe difficult to understand the geometry of the corresponding
Marsden-Weinstein-Meyer reduced spaces (cf. [GS2]). Therefore, one often
considers a simpler problem—determining the cohomology rings of the
reduced spaces. Kirwan proved in [K1] that the map i∗ : H•

K(M, C) →
H•

K(µ−1(0), C) in equivariant cohomology induced by the inclusion i :
µ−1(0) → M is surjective. If the action of K on µ−1(0) is locally free, we
then get a surjective ring homomorphism

r : H•
K(M, C) → H•(µ−1(0)/K, C)

by composing i∗ with the isomorphism

H•
K(µ−1(0), C) 
 H•(µ−1(0)/K, C).

If we know the kernel of r, we can compute the cohomology ring of the
reduced space µ−1(0)/K in terms of the ring H•

K(M, C). The map r makes
sense on the level of equivariant differential forms. A theorem of Jeffrey
and Kirwan [JK] expresses the integral∫

µ−1(0)/K

r(α)eiσ0

in terms of the restrictions of the equivariant form α ∈ Ω•
K(M) to the

fixed point set in M of the maximal torus of K. Here and throughout the
discussion we use the Cartan model of equivariant cohomology and we do
not distinguish between cohomology classes and the forms that represent
them. The symbol σ0 denotes the reduced symplectic form on µ−1(0)/K.
The paper [JK] is based on the results of Witten [W].

Independently of Jeffrey and Kirwan, Kalkman considered the case of
K = S1, a circle, [Ka]. By adapting Berline-Vergne localization theorem
[BV] to manifolds with boundary, he showed that for an equivariant form
α ∈ Ω•

K(M) of degree dimM − 1, the integral∫
µ−1(0)/K

r(α)

can be expressed in terms of the restrictions of α to certain components
of the K fixed point set MK .

Symplectic cutting allows us to prove Kalkman’s localization result di-
rectly from the Berline-Vergne localization. (This observation was also
made independently by Siye Wu). The proof consists of three steps.
We first observe that there exists a ring map s : H•

K(M) → H•
K(M≥0)

which preserves degrees and satisfies i∗Fs(α) = i∗Fα for all F ⊂ MK with
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µ(F) > 0 (where iF : F → M denotes the embedding of F into M). To
construct the map s, consider H•

T 2(M × C), where T 2 = K × S1 acts on
M × C by (k, t) · (m, w) = (k · m, t−1w). This cohomology ring is isomor-
phic to H•

K(M) ⊗ H•
S1(C) = H•

K(M) ⊗ C[y]. Therefore, H•
K(M) injects

into H•
T 2(M ×C). On the other hand, we have a T 2 equivariant inclusion

i : {(m, w) : µ(m) − |w|2 = 0} ↪→ M × C.

Composing H•
K(M) ↪→ H•

T 2(M×C) with the pull-back i∗ : H•
T 2(M×C) →

H•
T 2({µ(m) = |w|2}), we get a map H•

K(M) → H•
T 2({µ(m) = |w|2}).

It remains to observe that since the action of the diagonal circle ∆ in
T 2 is locally free on {µ(m) = |w|2}, we have H•

T 2({µ(m) = |w|2}) =
H•

T 2/∆({µ(m) = |w|2}/∆). The quotient {µ(m) = |w|2}/∆ is the cut
space Mµ≥0 and H•

T 2/∆ = H•
K since T 2 
 K × ∆. Therefore, we get a

map s : H•
K(M) → H•

K(Mµ≥0).
The second step is to apply Berline-Vergne localization on the cut space

Mµ≥0 to s(α) for α ∈ Ω•
S1(M) of degree dimM − 2. Using the fact that

i∗Fs(α) = i∗Fα we then get
∫

M0

i∗M0
s(α)

e(M0)
+

∑
F, µ(F)>0

∫
F

i∗Fα

e(F)
= 0.(1)

Here M0 is the reduced space µ−1(0)/K, e(M0) is the equivariant Euler
class of its normal bundle in Mµ≥0, the F ’s are connected components of
MS1

and the e(F)’s are the corresponding equivariant Euler classes.
Note that the integrals

∫
F i∗Fα/e(F) are rational functions in one inde-

terminate x. Therefore, it makes sense to take residues, that is to say, the
coefficients of x−1 in the integrals. Equation (1) becomes

− res|x=0

∫
M0

i∗M0
s(α)

e(M0)
=

∑
F,µ(F)>0

res|x=0

∫
F

i∗Fα

e(F)
.

The third step is an observation that

− res|x=0

∫
M0

i∗M0
s(α)

e(M0)
=

∫
M0

r(α)

combined with the fact that the Euler class of the normal bundle of M0

in Mµ≥0 is the Chern class of the circle bundle µ−1(0) → M0 (see Re-
mark 1.7). A detailed discussion of this step can be found in [GK].
The key fact is that, on the level of forms, the map H•

K(µ−1(0), C) →
H•(µ−1(0)/K, C) is given by substituting the curvature for the indetermi-
nate x.
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