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HARMONIC FUNCTIONS OF LINEAR

GROWTH ON KÄHLER MANIFOLDS

WITH NONNEGATIVE RICCI CURVATURE

Peter Li

Introduction

The subject began in 1975, when Yau [Y1] proved that there are no non-
constant, positive harmonic functions on a complete manifold with nonneg-
ative Ricci curvature. A few years later, Cheng [C] pointed out that using
a local version of Yau’s gradient estimate, developed in his joint work with
Yau [CY], one can show that there are no nonconstant harmonic functions
of sublinear growth on a manifold with nonnegative Ricci curvature. Using
Euclidean space as a model, this prompted Yau [Y3] to suggest in his 1981
IMU lectures the study of the space of harmonic functions of polynomial
growth on manifolds with nonnegative Ricci curvature. He later conjec-
tured that the space of harmonic functions which grows at most polyno-
mially of order p, for p ∈ Z

+, on a complete manifold with nonnegative
Ricci curvature is finite dimensional. Part of this conjecture was verified
by Tam and the author in [TL1]. In fact, they proved a sharp estimate on
the dimension of the space of harmonic functions of linear growth. To state
this theorem in a precise form, let us first make the following definition:

Definition. Let Hp(M) be the space of harmonic functions defined on M ,
satisfying the growth condition

|f(x)| = O(rp
x0

(x))

where rx0(x) is the distance function to some fixed point x0 ∈ M .
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Theorem A (Li-Tam). Let Mn be a complete manifold with nonnegative
Ricci curvature. Suppose x0 ∈ M is a fixed point and there exists a constant
k > 0 such that the volume of the geodesic ball centered at x0 of radius r
satisfies

Vx0(r) = O(rk)

as r → ∞. Then the dimension of H1(M) satisfies the estimate

dimH1(M) ≤ k + 1.

Note that the standard Bishop volume comparison theorem implies that
k ≤ n. Also a theorem of Yau [Y2] and Cheeger-Gromov-Taylor [CGT]
implies that 1 ≤ k.

Let us also point out that H1(Rk) = k+1. Indeed, a basis for H1(Rk) is
given by the constant function 1 and the standard rectangular coordinate
functions. Using this, we can rewrite the Li-Tam estimate as

dimH1(M) ≤ dimH1(Rk).

A natural question to ask, and it should be viewed as a refinement of Yau’s
conjecture, is as follows:

Question. Let M be a complete manifold with nonnegative Ricci curvature.
Suppose

Vx0(r) = O(rk).

Is it true that

(1) dimHp(M) ≤ dimHp(Rk),

for all nonnegative integer p?
There are some partial results in the affirmative direction of this ques-

tion. Tam and the author in [LT2] studied complete surfaces with finite
total curvature. In particular, they gave relatively sharp upper and lower
bounds for the dimension of Hp(M). When restricted to surfaces with
nonnegative Gaussian curvature, their estimates confirmed inequality (1).
In fact, the upper and lower bounds for the dimension of Hp(M) coincide
when the surface has nonnegative Gaussian curvature outside a compact
set. The interested reader should refer to [LT2] for a detailed statement of
the theorem. We would also like to mention that Kasue [K1] also indepen-
dently proved the upper bound for dimHp(M) on surfaces with finite total
curvature. In some later work [K2,K3], Kasue also considered arbitrary
n-dimensional complete manifolds that are in one of the following classes:

(i) The sectional curvature of M satisfies |KM |(x) ≤ C1 r−2−ε
x0

(x), and
the volume growth at each end E satisfies V (E ∩ Bx0(r)) ≥ C2 rn.
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(ii) M is a simply connected manifold with sectional curvature bounded
by −C1 r−2

x0
(x) ≤ KM (x) ≤ 0, and the volume growth satisfies

Vx0(r) ≥ C2 rn.
(iii) The sectional curvature satisfies 0 ≤ KM , and the volume growth

satisfies Vx0(r) ≥ C2 rn.
(iv) The sectional curvature is bounded by 0 ≤ KM (x) ≤ C1 r−2

x0
(x) for

all x ∈ M .
The constants above—C1, C2, and ε—are assumed to be nonnegative. In
those situations, he showed that dimHp(M) < ∞. The arguments of
Kasue used the theory of weighted Sobolev spaces. This method is effective
in the case when the manifold is in some sense asymptotically Euclidean.
However, when the assumption is on Ricci curvature or that the curvature
is not asymptotically flat at infinity, the theory of weighted Sobolev spaces
is unavailable in sufficient effectiveness to be suited for our purpose.

Recently, a more interesting development in this direction was estab-
lished by Wang [W]. He proved that if M is a complete manifold with
nonnegative Ricci curvature outside a compact set D, and if its first Betti
number is finite, then there exists a constant 0 < C < ∞ such that
dimH1(M) ≤ C. Moreover, the constant C only depends on the dimension,
the diameter of D, and the lower bound of the Ricci curvature of D. Wang
utilized the type of argument used in [LT1] and combined with the estimate
on the Green’s function developed in [LT3]. It was in [LT3] where the as-
sumption on the Betti number is required. The intriguing phenomenon in
Wang’s theorem is that it is possible for M to have nonconstant harmonic
functions of sublinear growth. In fact, one can consider the metric

ds2 = dr2 + f(r) r2 dθ2

on R
n, where dθ2 is the standard metric on the unit (n − 1)-sphere and

f(r) is a smooth function satisfying f(r) = 1 when r is close to 0, and
f(r) = α when r is sufficiently large. This metric is flat outside a compact
set. However, using separation of variables, one can determine that for any
fixed real number p > 0, dimHp(M) is a nondecreasing function of α. In
fact, dimHp(M) → ∞ as α → ∞.

The purpose of this paper is to study the equality case of Theorem A.
Unfortunately, we still cannot characterize those manifolds with nonnega-
tive Ricci curvature that has dimH1(M) = n + 1. However, if we pass to
the Kähler category, then we can prove that such a manifold is necessarily
C

m with 2m = n.

Theorem 1. Let Mm be a complete Kähler manifold with nonnegative
Ricci curvature. Then dimH1(M) ≤ 2m + 1. Moreover, if dimH1(M) =
2m + 1 then M is isometric to C

m with the standard flat metric.
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During the course of the proof of Theorem 1, we will point out when
the Kähler assumption is being used. It is conceivable that this is just a
technical reason and that a theorem in the same spirit as Theorem 1 is
true for the Riemannian case. Throughout this paper, we will denote the
complex dimension of the Kähler manifold M by m, and the real dimension
of M by n if M is not assumed to be complex.

Outline of the proof of Theorem A

In order to prove Theorem 1, it is necessary for us to recall some of
the arguments which were used in the proof of Theorem A. The first key
ingredient is the following lemma which was proved by the author in [L].

Lemma B. Let Mn be a complete Riemannian manifold with nonnegative
Ricci curvature. If h is a bounded subharmonic function defined on M,
then h satisfies

lim
r→∞

V −1
x0

(r)
∫

Bx0 (r)

h(y) dy = sup
y∈M

h(y).

To prove Theorem A, the authors of [LT1] considered the following two
disjoint situations. The easy case is when the manifold has only small ends,
which means that

(2)
∫ ∞

0

t dt

Vx0(t)
= ∞.

Together with the assumption that M has nonnegative Ricci curvature,
this volume growth condition is also equivalent to the condition that M
is parabolic (see [V] and [LY]), i.e., M does not admit a positive Green’s
function. The equivalence of parabolicity and small ends can be extended
to a larger class of manifolds with weaker curvature assumption. The in-
terested reader should refer to [LT3] for a more updated theorem in this
direction.

Let f be a harmonic function of linear growth on M . Since M has
nonnegative Ricci curvature, the local gradient estimate of Cheng-Yau [CY]
implies that |∇f |2 is bounded. However, Bochner’s formula implies that
|∇f |2 is subharmonic on M . If M satisfies (2), then it is known [LT2] that
a bounded subharmonic function, hence |∇f |2, must be constant. Applying
Bochner’s formula again, we can conclude that M must isometrically split
into a product manifold of the form N × R. The same type of argument
will show that if M satisfies (2) and has � linearly independent, harmonic
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functions of linear growth, then M must be a product manifold of the form
N × R

�. However, condition (2) implies that � ≤ 2, hence

dimH1(M) ≤ 3.

If, in addition,
Vx0(r) = O(r),

then � ≤ 1 and
dimH1(M) ≤ 2.

The complementary case is given by the condition∫ ∞

0

t dt

Vx0(t)
< ∞,

which is equivalent to M being nonparabolic. In this case, we use Lemma
B to conclude that the bounded subharmonic function |∇f |2 must satisfy

lim
r→∞

V −1
x0

(r)
∫

Bx0 (r)

|∇f |2(y) dy = sup
y∈M

|∇f |2(y).

This fact allows us to define an inner product given by

〈〈f, g〉〉 = lim
r→∞

V −1
x0

(r)
∫

Bx0 (r)

〈∇f,∇g〉(y) dy

on the space

H1
0(M) = {f | f ∈ H1(M) and f(x0) = 0}.

Using this inner product, one can choose {f1, f2, · · · , f�} as an orthonormal
basis for H1

0(M). The second key ingredient is the fact that if we define
the function

ρ2(y) =
�∑

i=1

f2
i (y)

with � = dimH1
0(M), then it satisfies the estimate that

(3) |∇ρ|(y) ≤ 1.

Actually, it was only proved in [LT1] that

(4) |∇(ρ2)|(y) ≤ 2|φ1|(y) ≤ 2r0(y)
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where φ1 is one of the elements in an appropriately chosen orthonormal
basis. However, the argument implies (3) because

|φ1|(y) ≤ ρ(y).

To finish the proof of Theorem A, one can simply apply the divergence
theorem and (4) to

2
∫

Bx0 (r)

(
�∑

i=1

|∇fi|2
)

=
∫

Bx0 (r)

∆(ρ2)

=
∫

∂Bx0 (r)

∂(ρ2)
∂r

≤ 2r Ax0(r)

where Ax0(r) is the area of the ∂Bx0(r). Dividing this inequality by 2Vx0(r)
and letting r → ∞, we conclude that

� = 〈〈fi, fi〉〉

≤ lim
r→∞

r Ax0(r)
Vx0(r)

.

The estimate on � follows by integrating with respect to r.

The holomorphic case

In this section, we will first prove Theorem 1 in the holomorphic category.

Theorem 2. Let Mm be a complete Kähler manifold with nonnegative
Ricci curvature. Suppose M admits m linearly independent holomorphic
functions of linear growth, then M must be isometric to Cm with the stan-
dard flat metric.

Before we proof this theorem, let us established a key lemma which is
valid for the Riemannian case as well.

Lemma 3. Let Mn be a complete Riemannian manifold with nonnegative
Ricci curvature, and x0 ∈ M be a fixed point. If dimH1(M) = n + 1 and
{f1, · · · fn} is an orthonormal basis for H1

0(M), then the map F : M → R
n

given by
F = (f1, · · · , fn)

is proper. Moreover, the function ρ2(x) =
∑n

i=1 f2
i (x) has the asymptotic

behavior
ρ(x) r−1

x0
(x) → 1
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as x → ∞.

Proof. Let us first observe that according to Cheng [C], the assumption
that dimH1(M) = n + 1 implies that there are n linearly independent
harmonic functions of linear growth on M . As in the proof of Theorem A
outlined in the previous section, but using (3) instead of (4), we have

V −1
x0

(r)
∫

Bx0 (r)

(
n∑

i=1

|∇fi|2
)

≤ V −1
x0

(r)
∫

∂Bx0 (r)

ρ

=
r Ax0(r)
Vx0(r)

(
A−1

x0
(r)

∫
∂Bx0 (r)

ρ r−1

)
.

(5)

We now claim that

(6)
r Ax0(r)
Vx0(r)

≤ n.

To see this, let us consider the integral

(7)
∫

Bx0 (r)

|∇rx0 |2 = −
∫

Bx0 (r)

rx0 ∆rx0 +
∫

∂Bx0 (r)

rx0 .

Using |∇rx0 | = 1 and the comparison theorem, which asserts that

∆rx0 ≤ n − 1
rx0

,

(7) implies that

Vx0(r) ≥ −(n − 1)Vx0(r) + rAx0(r),

which is equivalent to (6). Substituting (6) into (5) and taking r → ∞, we
conclude that

n =
n∑

i=1

〈〈fi, fi〉〉 ≤ n lim
r→∞

(
A−1

x0
(r)

∫
∂Bx0 (r)

ρ r−1

)
.

However, using the fact that ρ2(x0) =
∑n

i=1 f2
i (x0) = 0 and integrating

(4) along a geodesic joining x0 to x, we conclude that ρ(x) r−1
x0

(x) ≤ 1 as
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x → ∞. This implies that for any given ε > 0, there exists R(ε) > 0 such
that

(1 − ε)Ax0(r) ≤
∫

∂Bx0 (r)

ρ r−1 ≤ Ax0(r)

for all r ≥ R(ε). Integrating from R1 to R2, for R(ε) ≤ R1 ≤ R2, we have

(8) (1 − ε)Vx0(R1, R2) ≤
∫

Bx0 (R1,R2)

ρ r−1
x0

≤ Vx0(R1, R2).

where Bx0(R1, R2) = Bx0(R2) \ Bx0(R1) and Vx0(R1, R2) = Vx0(R2) −
Vx0(R1).

For any 0 < δ < 1, let us define mδ(R1, R2) to be the measure of the set

{x ∈ Bx0(R1, R2) | ρ r−1
x0

≤ 1 − δ}.

Clearly∫
Bx0 (R1,R2)

ρ r−1
x0

≤ (1 − δ)mδ(R1, R2) + (Vx0(R1, R2) − mδ(R1, R2)).

Hence, together with (8), we conclude that

(1 − ε)Vx0(R1, R2) ≤ (1 − δ)mδ(R1, R2) + (Vx0(R1, R2) − mδ(R1, R2)),

which implies that
mδ(R1, R2)
Vx0(R1, R2)

≤ ε

δ
.

Since ε is arbitrary, this proves that

(9)
mδ(R1, R2)
Vx0(R1, R2)

→ 0

as R1, R2 → ∞.
The estimate (3) implies that for any pair of points x, y ∈ M,

ρ(y) ≤ ρ(x) + r(x, y)

where r(x, y) is the geodesic distance between x and y. This is equivalent
to

ρ(y) r−1
x0

(y) ≤
(

ρ(x)
rx0(y)

+
r(x, y)
rx0(y)

)
.
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If there exists α > 0 and a sequence of points xi ∈ M such that xi → ∞
and

ρ(xi) r−1
x0

(xi) ≤ (1 − α),

then for any y ∈ Bxi
(α rx0 (xi)

4 ), we have

ρ(y) r−1
x0

(y) ≤
(

ρ(xi)
rx0(y)

+
r(xi, y)
rx0(y)

)

≤
(

(1 − α)rx0(xi)
rx0(y)

+
α rx0(xi)
4rx0(y)

)
.

(10)

However, the triangle inequality implies that

rx0(y) +
α rx0(xi)

4
≥ rx0(y) + r(xi, y) ≥ rx0(xi).

Hence combining with (10), we have

ρ(y) r−1
x0

(y) ≤
(

4(1 − α)
4 − α

+
α

4 − α

)
=

(
4 − 3α

4 − α

)
< 1.

Let us set δ to satisfy

1 − δ =
(

4 − 3α

4 − α

)
,

then
ρ r−1

x0
≤ 1 − δ

on Bxi(
α rx0 (xi)

4 ). Obviously,

(11) Vxi

(
α rx0(xi)

4

)
≤ mδ

((
1 − α

4

)
rx0(xi),

(
1 +

α

4

)
rx0(xi)

)
.

On the other hand, the fact that

Bx0

((
1 +

α

4

)
rx0(xi)

)
⊂ Bxi

((
2 +

α

4

)
rx0(xi)

)
and the volume comparison theorem imply that

Vxi

(
α rx0(xi)

4

)
≥ Vxi

((
2 +

α

4

)
rx0(xi)

) (α

4

)n (
2 +

α

4

)−n

≥ Vx0

((
1 − α

4

)
rx0(xi),

(
1 +

α

4

)
rx0(xi)

) (α

4

)n (
2 +

α

4

)−n
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Combining with (11), we conclude that

mδ((1 − α
4 )rx0(xi), (1 + α

4 )rx0(xi))
Vx0((1 − α

4 )rx0(xi), (1 + α
4 )rx0(xi))

≥
(α

4

)n (
2 +

α

4

)−n

.

This contradicts (9) as i → ∞, and we have established the claim that

ρ(x) r−1
x0

(x) → 1

as x → ∞.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let {g1, · · · , gm} be m linearly independent holomor-
phic functions of linear growth. Since gi is of linear growth, we claim that
the real part �(gi) and the imaginary part �(gi) are of linear growth. This
is indeed the case; since both �(gi) and �(gi) are harmonic functions on M
that grow at most linearly, they are either of linear growth or identically
constant. However, if one of them is constant then the other must also be
constant because of the Cauchy-Riemann equations. This violates the fact
that gi is of linear growth.

Moreover, the Cauchy-Riemann equations also imply that

〈�(gi),�(gi)〉 ≡ 0

and
|∇�(gi)| ≡ |∇�(gi)|.

Hence
〈〈�(gi),�(gi)〉〉 = 0

and
〈〈�(gi),�(gi)〉〉 = 〈〈�(gi),�(gi)〉〉.

Therefore, by a unitary change of basis, we may assume that the set

{�(g1),�(g1), · · · ,�(gm),�(gm)}

forms an orthonormal basis with respect to the inner product 〈〈·, ·〉〉. Ac-
cording to Lemma 4, the holomorphic map G : M → C

m given by G =
(g1, · · · , gm) is proper and the function

ρ2(x) =
m∑

i=1

|gi|2
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satisfies
ρ(x) r−1

x0
(x) → 1.

Let us set f2i−1 = �(gi) and f2i = �(gi) for i = 1, · · · , m. Then the map
G = F = (f1, · · · , f2m) can be viewed as a map into R

2m. If we denote the
differential of F by dF, then the pq-th entry of the matrix (dF ) ◦ (dF )t is
given by

2m∑
α=1

∂fp

∂zα

∂fq

∂zα
= 〈dfp, dfq〉.

In this notation, the fact that {f1, · · · , f2m} forms an orthonormal basis
means that

lim
r→∞

V −1
x0

(r)
∫

Bx0 (r)

dF ◦ (dF )t = I.

This implies that the integrand must be nonsingular somewhere and hence
the differential dF is nonsingular somewhere. Since the map G is holomor-
phic and it is nonsingular at least at a point, the image G(M) must be a
subvariety of dimension m in C

m. By the properness of G, we conclude
that G must be surjective. Let us point out that this is the only part of
the argument where holomorphicity is being used.

Using orthonormality of the basis {f1, · · · , f2m} once again, and using
the fact that the inner product

〈〈fp, fp〉〉 = sup
M

|∇fp|2,

we conclude that the energy density e(F ) of the map F is bounded by

e(F ) ≤
2m∑
p=1

|∇fp|2 ≤ 2m.

However, the arithmetic-geometric mean implies that

e(F )
2m

≥ (det(dF ))
1

2m .

where det(dF ) is the determinant of the differential dF . This implies that
the Jacobian of the map J(F ) = (det(dF ))

1
2 satisfies

(12) J(F ) ≤ 1.

For 0 < R1 < R2, let B̄(R1, R2) ⊂ C
m be the annulus of radius R1 to

R2 centered at the origin. The set F−1(B̄(R1, R2)) is given by

F−1(B̄(R1, R2)) = {x ∈ M |R1 ≤ ρ ≤ R2}.
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Since F is surjective, we have∫
F−1(B̄(R1,R2))

J(F )(x) dx ≥ V̄ (R1, R2),

where V̄ (R1, R2) is the Euclidean volume of B̄(R1, R2). Using (12), we
conclude that

(13) Vol(F−1(B̄(R1, R2))) ≥ V̄ (R1, R2).

where Vol(F−1(B̄(R1, R2))) is the volume of the set F−1(B̄(R1, R2)).
On the other hand, Lemma 4 implies that for any ε > 0, there exists

R(ε) > 0 such that

(1 − ε) rx0(x) ≤ ρ(x) ≤ rx0(x)

for ρ(x) ≥ R(ε). If we take R1 ≥ R(ε), then we have

F−1(B̄(R1, R2)) ⊂ Bx0

(
R1,

R2

1 − ε

)
.

Combining with (13), and substituting R2 = (1 − ε)R, we obtain

Vx0(R1, R) ≥ V̄ (R1, (1 − ε)R).

Hence, we have shown that as R → ∞, the ratio

lim
R→∞

Vx0(R)
V̄ (R)

= lim
R→∞

Vx0(R1) + Vx0(R1, R)
V̄ (R1) + V̄ (R1, R)

≥ lim
R→∞

V̄ (R1, (1 − ε)R)
V̄ (R1, R)

= (1 − ε)2m.

Since ε is arbitrary, we conclude that

lim
R→∞

Vx0(R)
V̄ (R)

≥ 1.

However, the Bishop volume comparison theorem implies that

lim
R→∞

Vx0(R)
V̄ (R)

≤ 1

and equality holds if and only if M is isometric to R
2m. This implies that

the map F is an isometry and Theorem 3 is proved.
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Reduction to the holomorphic case

Proof of Theorem 1. Let us first assume that M is simply connected. In
this case, one needs to show that if M has 2m linearly independent har-
monic functions of linear growth, then it must have m linearly independent,
linear growth, holomorphic functions. The proof of Theorem 1 in [LY2] can
be adopted to prove this claim. In fact, since M has nonnegative Ricci cur-
vature, the argument simplifies substantially by applying the mean value
inequality of [LS]. For the sake of completeness, let us outline the argument
for our present situation.

First or all, Lemma 1 of [LY2] implies that the complex Hessian of a
harmonic function f on M must satisfy the Bochner-type formula

(14) ∆|fij̄ |
m−1

m ≥ 0.

On the other hand, the standard Bochner’s formula implies that

(15) ∆|∇f |2 ≥ 2f2
pq,

where fpq is the real Hessian of f . Let us define the nonnegative cutoff
function φ satisfying

φ(x) =

{
1 on Bx0(R)

0 on M \ Bx0(2R)

with |∇φ| ≤ C R−1 for some constant C > 0. Multiplying (15) by φ2 and
integrating over M , we have∫

M

φ2 ∆|∇f |2 ≥ 2
∫

M

φ2 f2
pq.

However, integrating the left hand side by parts yields∫
M

φ2 ∆|∇f |2 = −4
∫

M

φ |∇f | 〈∇φ,∇|∇f |〉

≤ 4
∫

M

|∇φ|2 |∇f |2 +
∫

M

φ2 |∇|∇f ||2

≤ 4
∫

M

|∇φ|2|∇f |2 +
∫

M

φ2 f2
pq.

Therefore, we conclude that∫
M

φ2 f2
pq ≤ 4

∫
M

|∇φ|2|∇f |2.



92 PETER LI

The definition of φ implies that

∫
Bx0 (R)

|fij̄ |2 ≤
∫

Bx0 (R)

f2
pq

≤ C R−2

∫
Bx0 (2R)

|∇f |2.

Dividing through by Vx0(R) and using the fact that |∇f | is bounded, we
obtain

V −1
x0

(R)
∫

Bx0 (R)

|fij̄ |2 ≤ C R−2 Vx0(2R)
Vx0(R)

.

The Bishop volume comparison theorem now implies that the right hand
side tends to 0 as R → ∞. Hence we conclude that

lim
R→∞

V −1
x0

(R)
∫

Bx0 (R)

|fij̄ |2 = 0.

Applying the mean value inequality of Li-Schoen [LS] and using (14), we de-
duce that fij̄ ≡ 0. Therefore, f is a pluri-harmonic function on M . The as-
sumption that M is simply connected implies that f is either a real or imag-
inary part of a linear growth holomorphic function g. If dimH1

0(M) = n,
then the argument used in the proof of the Main Theorem in [LY2] applies
and we conclude that there are m linearly independent holomorphic func-
tions of linear growth on M . Theorem 2 now implies that M is isometric
to C

m.
To delete the simply connectedness assumption on M , we observe that

the lift of a harmonic function of linear growth to the universal covering M̃
of M is also a harmonic function of linear growth. Indeed, if π : M̃ → M
is the universal covering map, then we can define the lift of a harmonic
function of linear growth f on M by

f̃(y) = f ◦ π(y).

Again, let us normalize f by setting f(x0) = 0. Let {y0, · · · , yi, · · · } be the
set of preimage points of x0 under π. Then f̃(yi) = 0. For any y ∈ M̃ ,
let γ be a minimizing geodesic in M joining π(y) to x0. Lifting γ to a
minimizing geodesic γ̃ joining y to a yi, we see that

r̃(y0, y) ≥ r̃(yi, y)

= rx0(π(y)),
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where r̃ denotes the distance function on M̃ . However, the assumption on
f implies that

|f̃(y)| = |f(π(y))|
≤ C rx0(π(y))

= C r̃(y0, y),

which implies that f̃ is also of linear growth.
If dimH1

0(M) = 2m, then by lifting all the harmonic functions of linear
growth, we see that dimH1

0(M̃) = 2m. Applying the argument for the
simply connected case to M̃ , we conclude that the map F̃ :→ C

m given by

F̃ = (f̃1, · · · , f̃2m)

is an isometry. Moreover, the set {f̃i} corresponds to the rectangular co-
ordinate functions of C

m. In particular, they must separate points in M̃ .
On the other hand, f̃i comes from lifting fi, hence M = M̃ .

In the above argument of showing that the harmonic function of linear
growth f is pluri-harmonic, we only need the fact that |∇f | grows sublin-
early. On the other hand, the gradient estimate of Cheng-Yau implies that
if f is of sub-quadratic growth, then |∇f | is of sublinear growth. Hence we
can summarize by the following:

Corollary 5. Let M be a complete Kähler manifold with nonnegative Ricci
curvature. If f is a harmonic function of sub-quadratic growth defined on
M , then f is pluri-harmonic.
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