ON THE NON-EXISTENCE OF COCOMPACT LATTICES FOR SL(n)/SL(m)

François Labourie and Robert J. Zimmer

In this note we continue the investigation of manifolds locally modelled on non-Riemannian homogeneous spaces, along the lines developed in [3], [4]. If H/J is a homogeneous space of a Lie group H, a natural but special class of compact forms of H/J (i.e., compact manifolds locally modelled on H/J) are those compact manifolds of the form $\Gamma \backslash H/J$ where $\Gamma \subset H$ is a cocompact lattice for H/J, i.e., a discrete subgroup acting freely and properly discontinuously on H/J. It remains an open problem to classify those H/J that admit such a discrete subgroup or those admitting a compact form. This problem is not completely solved even for the basic test case of $H = SL(n, \mathbb{R}), J = SL(m, \mathbb{R}), 2 \leq m < n$, and where the embedding $J \subset H$ is the standard one. (See [2] for a survey on the general problem.) In this note we prove:

Theorem 1. If $m \geq 2$ and $n \geq m+3$, then $SL(n,\mathbb{R})/SL(m,\mathbb{R})$ does not admit a cocompact lattice.

Remarks.

- (1) It is natural to believe that there are no compact forms not only no cocompact lattices.
- (2) The results of [3] establish that for $n \geq 2m$, $m \geq 2$, $n \geq 5$, there are no compact forms.
- (3) For 2n/3 < m, the assertion in Theorem 1 has been proven by T. Kobayashi [1] by completely different methods.

Proof. Suppose such a group Γ existed. Set $H = SL(n, \mathbb{R})$, $J = SL(m, \mathbb{R})$, and $G = SL(n-m, \mathbb{R})$, with the natural embedding in the centralizer of J in H. Since G centralizes J we have a natural action of G on the compact manifold $M = \Gamma \backslash H/J$ given by $g \cdot (\Gamma hJ) = \Gamma hg^{-1}J$, and this action preserves a smooth volume form on M [4]. The projection $\Gamma \backslash H \to \Gamma \backslash H/J$ is a principal bundle with structure group J on which G acts by principal bundle automorphisms. Following the arguments of [3], [4], since

Received December 21, 1994.

Research of second author partially supported by NSF grant.

 \mathbb{R} -rank $(G) \geq 2$ from the assumption $n \geq m+3$, we can apply superrigidity for actions on principal bundles. We deduce that there are

- (1) a homomorphism $\pi: G \to J$,
- (2) a compact subgroup $K \subset Z_J(\pi(G))$, and
- (3) a measurable section $s: A \to \Gamma \backslash H$, where $A \subset \Gamma \backslash H/J$ is a G-invariant set of positive measure, such that

$$s(gm) = gs(m)\pi(g)^{-1}c(g,m),$$

where $c(q, m) \in K$.

We can, of course, view π as a representation $\pi: G \to SL(m, \mathbb{R})$ and consider separately the following cases:

- (1) π is irreducible;
- (2) π is reducible.

In case (i), it follows that the centralizer $Z_J(\pi(G))$ is itself compact. One can then apply the main result of [3] to deduce that this is impossible using the existence of an \mathbb{R} -split one parameter subgroup in $Z_H(JG)$. (See [3] for details.) It thus suffices to consider the case in which π is reducible. We shall need the following simple algebraic fact.

Lemma 2. Let $SL(2,\mathbb{R}) \subset SL(3,\mathbb{R})$ be the standard embedding and $A \subset SL(2,\mathbb{R})$ the diagonal matrices. Then for any finite dimensional representation of $SL(3,\mathbb{R})$, there is a non-zero vector fixed by A.

We postpone the proof of Lemma 2 and proceed with the proof of Theorem 1.

If we let μ be the finite G-invariant volume on M restricted to A, then $\int_{c \in K} c_*(s_*\mu) d\mu_K(c)$ is a finite $gr(\pi)$ -invariant measure on $\Gamma \backslash H$ where μ_K is the Haar measure of K and $gr(\pi)$ is the graph of π . (Cf. [3], proof of Theorem 2.2.) It follows that for any subgroup $L \subset gr(\pi)$ and any conjugate hLh^{-1} in H, there is a hLh^{-1} -invariant probability measure on $\Gamma \backslash H$. Since Γ acts properly on H/J, J acts properly on $\Gamma \backslash H$, and hence, any closed subgroup of J that preserves a probability measure on $\Gamma \backslash H$ must be compact. (Cf. [5], proof of Lemma 2.7.) Therefore, to show the existence of Γ is impossible, it suffices to find a non-compact closed $L \subset gr(\pi)$ and an element $h \in H$ such that $hLh^{-1} \subset J$.

Consider $SL(2,\mathbb{R}) \subset G = SL(n-m,\mathbb{R}) \subset H$ via the standard embedding. Thus, this copy of $SL(2,\mathbb{R})$ acts on the standard basis e_1,\ldots,e_n of \mathbb{R}^n by fixing all e_i except e_{m+1} and e_{m+2} . Since π is reducible, by lemma 2 there are two linearly independent vectors in \mathbb{R}^m that are invariant under $\pi \mid A$, where $A \subset SL(2,\mathbb{R})$ is the split Cartan subgroup. Conjugating π by an element $j \in J = SL(m,\mathbb{R})$, we can assume these vectors are the first two standard basis vectors. Let $L = gr(\pi \mid A)$. Then it is clear

that if w is the element of the Weyl group of $SL(n,\mathbb{R})$ with respect to the standard basis that interchanges e_k and e_{k+m} for k=1,2 and fixes all the others, then $wjLj^{-1}w^{-1} \subset J$. As we have already observed, this suffices to complete the proof of Theorem 1. \square

Proof of Lemma 2. We work with the Lie algebras $\mathfrak{a} \subset \mathfrak{sl}(2,\mathbb{R}) \subset \mathfrak{sl}(3,\mathbb{R})$. Let (π,V) be a representation of $\mathfrak{sl}(3,\mathbb{R})$, which we may assume is nontrivial. Write $\pi \mid \mathfrak{sl}(2,\mathbb{R}) = (\pi_{\text{even}}, V_{\text{even}}) \oplus (\pi_{\text{odd}}, V_{\text{odd}})$ where π_{even} is the sum of those irreducible components of $\pi \mid \mathfrak{sl}(2,\mathbb{R})$ with even highest weight and π_{odd} the corresponding sum for odd highest weight. By the standard theory of representations for $\mathfrak{sl}(2,\mathbb{R})$, it suffices to see that π_{even} is non-zero. However, there is $X \in \mathfrak{sl}(3,\mathbb{R})$ (namely the matrix E_{13}) that is an eigenvector of weight 1 under representation $ad_{\mathfrak{sl}(3,\mathbb{R})} \mid \mathfrak{a}$. Thus, $\pi(X)(V_{\text{odd}}) \subset V_{\text{even}}$. If $V_{\text{even}} = (0)$, then $\pi(X) = 0$ which is impossible by the simplicity of $\mathfrak{sl}(3,\mathbb{R})$. This completes the proof. \square

Acknowledgement

This work was completed while the second author was a visitor at l'Université de Paris-sud, Orsay, and he wishes to express his appreciation for the hospitality shown him.

References

- T. Kobayashi, A necessary condition for the existence of compact Clifford-Klein forms of homogeneous spaces of reductive type, Duke Math. J. 67 (1992), 653–664.
- F. Labourie, Quelques résultats récents sur les espaces localement homogènes compacts, preprint, 1993.
- 3. F. Labourie, S. Mozes and R. J. Zimmer, On manifolds locally modelled on non-Riemannian homogeneous spaces, preprint.
- R. J. Zimmer, Discrete groups and non-Riemannian homogeneous spaces, Jour. Amer. Math. Soc. 7 (1994), 159–168.
- Ergodic theory and the automorphism group of a G-structure, in Group representations, ergodic theory, operator algebras, and mathematical physics, C. C. Moore, ed., Springer, New York, 1987.

DÉPARTMENT DE MATHÉMATIQUES, UNIVERSITÉ PARIS-SUD, 91405 ORSAY, FRANCE $E\text{-}mail\ address:}$ labourieorphee.polytechnique.fr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, IL 60637 $E\text{-}mail\ address:}$ zimmer@math.uchicago.edu