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MORE CONSTRAINTS ON SYMPLECTIC

FORMS FROM SEIBERG-WITTEN INVARIANTS

Clifford Henry Taubes

Recently, Seiberg and Witten (see [SW1], [SW2], [W]) introduced a re-
markable new equation which gives differential-topological invariants for
a compact, oriented 4-manifold with a distinguished integral cohomology
class which reduces mod(2) to the 2nd Steiffel-Whitney class of the mani-
fold. A brief mathematical description of these new invariants is given in
the recent preprint [KM1].

Using the Seiberg-Witten equations, I proved in [T] the following:

Theorem 1. Let X be a compact, oriented, 4 dimensional manifold with
b2+ ≥ 2. Let ω be a symplectic form on X with ω∧ω giving the orientation.
Then the first Chern class of the canonical bundle of a compatible, almost
complex structure on X has Seiberg-Witten invariant equal to ±1.

(A corollary of this theorem is the assertion that connect sums of non-
negative definite compact, oriented 4-manifolds do not admit symplectic
forms which are compatible with the orientation.)

Subsequently, I have found that a slight modification of the proof of
Theorem 1 gives further results about symplectic 4-manifolds. The purpose
of this note is to report on these additional results.

The first result below constrains the other cohomology classes on X
which have non-zero Seiberg-Witten invariant. In the theorem below, [ω]
denotes the cohomology class of the symplectic form ω, and K → X is the
canonical bundle for any almost complex structure on X which is compati-
ble with ω. Also, the symbol • denotes the bilinear pairing on cohomology
as given by cup product and evaluation on the fundamental class of X.

Theorem 2. Let X be a compact, oriented symplectic manifold with b2+ ≥
2 and with symplectic form ω which is compatible with the given orienta-
tion. Let c ∈ H2(X; Z) have non-zero Seiberg-Witten invariant. Then
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|c • [ω]| ≤ c1(K) • [ω] and if equality holds then either ±c is equal to c1(K).
In particular, if X is to admit a symplectic form, then c1(K) • [ω] ≥ 0.

Theorem 2 is proved in [W] for Kähler manifolds with b2 ≥ 3. (The
assertion that c1(K) • [ω] ≥ 0 for Kähler manifolds with b2 ≥ 2 follows
from the fact that such manifolds have (b2+ − 1)/2 holomorphic sections of
K.)

There is another proof of Theorem 2 which uses a result recently an-
nounced by Donaldson concerning the existence of symplectic submanifolds
of a symplectic manifold. Using Donaldson’s existence assertion, Theorem
2 follows with a proof of an adjunction type formula for the line bundles
with non-zero Seiberg-Witten classes. (Donaldson has also noted the other
proof.) The aforementioned adjunction formula for the Seiberg-Witten
classes is the analog of a formula proved by Kronheimer and Mrowka [KM2]
for their basic class description of Donaldson’s polynomial. A version of
the Seiberg-Witten adjunction formula is proved in [KM1] and the general
version will be discussed in a separate paper with other authors.

Another variant of the proof of Theorem 1 yields

Theorem 3. The manifold CP
2 has no symplectic form ω for which

c1(K)•[ω] > 0. (The standard Kähler structure on CP
2 has c1(K)•[ω] < 0.)

Note that the inequalities for c1(K) • [ω] in Theorems 2 and 3 go in
opposite ways. But, there is no contradiction here because CP

2 has b2+ = 1.

a) Proof of Theorem 2

The reader should first become familiar with the proof of Theorem 1 in
[T], for the proof of Theorem 2 will proceed almost verbatim as that of
Theorem 1 modulo some minor changes in notation. To begin, one should
fix a metric on X for which the symplectic form ω is self dual. Then, the
spinC bundle for K−1 splits as S+ = I ⊕ K−1 where the form ω acts (by
Clifford multiplication) on the I summand as multiplication by −i and on
the other summand as multiplication by i. Remember that there is a unique
connection A0 on K−1 which is such that the spinC covariant derivative ∇̂A0

induces the trivial covariant derivative d on the I summand. (This induced
covariant derivative is 2−1 · (1 + iω) · ∇̂A0 · 2−1 · (1 + iω).)

To prove Theorem 2, assume that there is a line bundle L over X whose
first Chern class has non-zero Seiberg-Witten invariant which violates the
conditions in the theorem. Such an assumption will be seen to lead di-
rectly to a contradiction. In deriving this contradiction, it is necessary to
remark first that if c1(L) has non-zero Seiberg-Witten invariant, then so
does −c1(L) (see [W]). Thus, if Theorem 2’s conditions are violated, they
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are violated by an L with

(1) c1(L) • [ω] + c1(K) • [ω] ≤ 0.

The line bundle L can be written as K−1 ⊗ E2, where E → X is an-
other complex line bundle. With this understood, the spinC spinors for L
decompose as SL+ = E ⊕ (E ⊗ K−1) and a spinor ψ will be written as
(α · u0, β) where α is a section of E and β one of E ⊗ K−1. Here u0 is (as
in [T]) the unit length, A0–covariantly constant section of the summand I

in I ⊕ K−1. A choice of connection A on the line bundle L gives a spinC

covariant derivative ∇̂A on SL+. This ∇̂A induces covariant derivatives on
the two summands of SL+. These induced covariant derivatives are written
as:

(2)
1) 2−1 · (1 + iω) · ∇̂A(αu0) ≡ (∇aα) · u0,

2) 2−1 · (1 − iω) · ∇̂Aβ ≡ ∇′
Aβ.

Here, ∇a is a covariant derivative on E and ∇′
A is one on E ⊗ K−1.

With these preliminaries out of the way, consider now the perturbed
Seiberg-Witten equation in (6) of [T] with the parameter r ∈ [0,∞) as an
equation for a connection A on L and a section ψ = (αu0, β) of SL+:
(3)

DAψ = 0,

P+FA = P+FA0 + i · (|α|2 − |β|2 − 1) · ω − i · (α∗β + αβ∗)

− i · 4 · r · (1 + r · |α|2)−1 · (α∗〈b,∇aα〉 − α · 〈b,∇aα〉∗).

Here, b is the section of K−1 ⊗ T ∗XC which is defined (as in (1) in [T]) by
the equation ∇̂A0u0 = b. (In (3), DA denotes the spinC Dirac operator on
SL+ as defined by the Riemannian metric and A.)

Lemmas 2, 3 in [T] have essentially verbatim analogs for this L version of
the perturbed Seiberg-Witten equation. Also, because of (1), the L version
of Lemma 4 in [T] also holds. Thus, Proposition 5 in [T] also has a self-
evident L version. Consider now whether one can prove the L analog of
Lemma 6 in [T]. Proceeding as in Step 1 of Section c of [T], one finds the
L-analog of Lemma 8 by directly copying the arguments in [T]. Likewise,
the L version of (30) in [T] also holds, but the L version of (31) in [T] may
not. Instead, one has

(4)

∫
(|∇aα|2 + (|α|2 − 1 − |β|2)(|α|2 − 1))−

∫
(1 − |α|2 − |β|2)

=
∫
〈DA(αu0), DAβ〉.
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In the case where L = K−1, the second integral on the right side above
is zero. In general, this integral can be identified using (3) as equal to 2π
times the left hand side of (1). Thus, in the case where (1) holds, one has

(5)
∫

(|∇aα|2 + (|α|2 − 1 − |β|2)(|α|2 − 1)) ≤
∫
〈DA(αu0), DAβ〉,

which implies that (32) in [T] holds for the L-version of (5).
The remaining steps in the proof of Theorem 1 of [T] can then be carried

out through to the end. (These only involve integrations by parts, the
triangle inequality and a standard Sobolev inequality.) These steps lead
directly to a contradiction; namely that |α| ≡ 1 and that ∇aα ≡ 0. To
avoid this contradiction, one is inescapably forced to conclude that (1)
can’t be negative; and if (1) is equal to zero, then L = K−1.

b) Proof of Theorem 3
Suppose that ω is a symplectic form on CP

2 and let K denote the canon-
ical bundle for a compatible almost complex structure. The arguments in
[T] for the proof of Theorem 1 show that the perturbed Seiberg-Witten
equation (3) has a unique solution up to gauge (A0, u0) for all r sufficiently
large. Lemma 4 in [T] holds, and this means that the r = 0 version of
(3) computes a Seiberg-Witten invariant of ±1 for K−1. But, note that
CP

2 has a metric with positive scalar curvature, and this means that the
Seiberg-Witten invariant for K−1 is zero [W] when computed by Seiberg
and Witten’s original equation

(6)
DAψ = 0,

P+FA = i · (|α|2 − |β|2) · ω − i · (α∗β + αβ∗).

The disagreement between the r = 0 version of (3) and (6) leads di-
rectly to Theorem 3. Indeed, consider the family of equations below as
parameterized by s ∈ [0, 1]:

(7)
DAψ = 0,

P+FA = s · P+FA0 + i · (|α|2 − |β|2 − s) · ω − i · (α∗β + αβ∗).

The s = 1 version of (7) is the r = 0 version of (3), and the s = 0 version
of (7) is (6). The only way (3) and (6) can disagree on the Seiberg-Witten
invariant of K−1 is if there exists some s ∈ [0, 1] for which (7) has a ψ ≡ 0
solution. (The vernacular for this is that there is a “wall crossing” for some
value of the parameter s.) If a solution (A, 0) solves (7) for some particular
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s ∈ [0, 1], then wedge both sides of (7) with the symplectic form ω and
integrate over CP

2 to conclude that

(8) c1(K−1) • [ω] = s · c1(K−1) • [ω] + s · [ω] • [ω].

This last possiblity is forbidden if c1(K−1) • [ω] < 0. (Note that (8) will
occur for some s if c1(K−1) • [ω] > 0 as happens with the standard Kähler
structure on CP

2.)
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