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THE SEIBERG-WITTEN INVARIANTS

AND SYMPLECTIC FORMS

Clifford Henry Taubes

Recently, Seiberg and Witten (see [SW1], [SW2], [W]) introduced a re-
markable new equation which gives differential-topological invariants for
a compact, oriented 4-manifold with a distinguished integral cohomology
class. A brief mathematical description of these new invariants is given in
the recent preprint [KM].

My purpose here is to prove the following theorem:

Main Theorem. Let X be a compact, oriented, 4 dimensional manifold
with b2+ ≥ 2. Let ω be a symplectic form on X with ω ∧ ω giving the
orientation. Then the first Chern class of the associated almost complex
structure on X has Seiberg-Witten invariant equal to ±1.

(Note: There are no symplectic forms on X unless b2+ and the first Betti
number of X have opposite parity.)

In a subsequent article with joint authors, a vanishing theorem will be
proved for the Seiberg-Witten invariants of a manifold X, as in the theorem,
which can be split by an embedded 3-sphere as X−∪X+ where neither X−
nor X+ have negative definite intersection forms. Thus, no such manifold
admits a symplectic form. That is,

Corollary. Connect sums of 4-manifolds with non-negative definite
intersection forms do not admit symplectic forms which are compatible
with the given orientation. For example, when n > 1 and m ≥ 0, then
(#nCP

2)#(#mCP
2) has no symplectic form which defines the given orien-

tation.

The Main Theorem also implies that the Seiberg-Witten invariant for the
canonical class of a complex surface with b2+ ≥ 3 is equal to ±1. However,
this result is easy to prove directly, as there is just one nondegenerate
solution in this case.
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There are two steps to the proof of the main theorem. The first step
uses the symplectic form to construct a canonical solution to a 1-parameter
family of perturbations of the Seiberg-Witten equation. This family is
parameterized by r ∈ [0,∞). The second step of the proof argues that
canonical solution to the perturbed equation is the only solution if the
perturbation parameter r is sufficiently large. One must also prove that
this canonical solution is nondegenerate when r is large. The arguments
for the latter assertion are easy versions of those for the former and are
omitted.

1. The r = 0 equation

Fix a metric on X which makes the form ω self dual with length squared
equaling 1/2. Use K to denote the canonical bundle of the almost complex
structure. (Thus, the bundle Λ+ of self dual 2-forms splits (after tensoring
with C) as C · ω ⊕ K ⊕ K−1.)

The bundle K defines a SpinC bundle S = S+ ⊕ S− → X and the
complex 2-plane bundle S+ splits as S+ ≈ I ⊕ K−1, where I is the trivial,
complex line bundle. The form ω defines the splitting; the summand I

is an eigenspace for Clifford multiplication by ω with eigenvalue −i. The
summand K−1 has eigenvalue +i. The aforementioned splitting of S+ will
be implicit in much of what follows.

There is a unique connection A0 (up to gauge) on K−1 whose induced
covariant derivative ∇A0 on S+ has ∇A0

∼= 2−1(1 + i · ω)∇A0 equal to the
product covariant derivative d on the summand I in S+. In particular, for
this connection A0, there is a nontrivial section, u0, of I which is annihilated
by ∇A0 . This section u0 has constant length and should be normalized to
have length equal to 1. If the manifold X were honestly Kähler, with ω
the Kähler form, then u0 would be covariantly constant for ∇A0 as well.
Instead, one has

(1) ∇A0u0 = b

where b is a section of K−1 ⊗ T ∗
C
X. Below, I will sometimes introduce a

local orthonormal section u1 of the K−1 summand in S+, in which case I
will write b = b ⊗ u1 where b is, locally, a complex valued 1-form. (This b
is essentially the torsion of the almost complex structure that is defined by
the metric and ω.)

The spinor u0 solves the Dirac equation when b · u1 = 0; where b is
considered to act by Clifford multiplication. If one introduces local or-
thonormal frame {eν} for T ∗X, then b expands as bν ⊗ eν with bν being
a local section of K−1. The fact that u0 solves the Dirac equation is also
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expressed as the condition that eνbν = 0, where here, eν acts on the spin
bundle as Clifford multiplication.

All of the above makes sense whether or note the form ω is closed. Now
consider:

Lemma 1. The form ω is closed if and only if u0 solves the Dirac equation.

Proof. Use the Dirac operator on the equation ω·u0 = −i·u0. The resulting
equation reads:

(2) z · (∗dω) · u0 + eν · ω · b = −ieν · b.
Here, z is a nonzero integer. This last equation uses (1). Since ω acts as
multiplication by i on K−1, equation (2) asserts that z·(∗dω)·u0 = −2ieν ·b,
which gives the lemma.

Note that Clifford multiplication by a real form on S has no kernel; but if
v is Clifford multiplication by a complex valued 1-form, the condition that
v annihilate the K−1 summand requires only that v have coefficients, {vν}
(with respect to a frame {eν} for T ∗X for which ω = 2−1(e1e2 + e3e4)),
which obey

(3) v1 − iv2 = 0 and v3 − iv4 = 0.

That is, v should be a section of T ∗0,1.
The Seiberg-Witten equation for K−1 is an equation for a pair of con-

nection A on K−1 and section ψ ≡ α · u0 + β of S+ = I ⊕ K−1. (Thus, β
is thought of as a section of K−1.) This equation reads

DAψ = 0.

(4) P+FA = i · (|α|2 − |β|2) · ω − i · (α∗β + αβ∗).

Here DA is the Dirac operator as defined with the covariant derivative ∇A

on S+ as defined using the connection A.
With this last equation understood, consider instead the perturbed Seiberg-

Witten equation which reads

DAψ = 0.

(5) P+FA = P+FA0 + i · (|α|2 − |β|2 − 1) · ω − i · (α∗β + αβ∗).

This last equation differs from (4) by a relatively benign perturbation, and
so the Seiberg-Witten invariant of X as defined by the solutions to (4) is
the same as that which is defined by the solutions to (5).

The advantage of (5) over (4) is that the pair (A0, u0) is, by construction,
a solution to (5). Equation (5) is the r = 0 version of the 1-parameter family
of perturbation that is alluded to in the introduction to the proof of the
main theorem.
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2. The family of perturbed equations

A connection A on K−1 can be written uniquely as A0 + i ·a, where a is
a real valued 1-form on X. (On the gauge orbit through A, there is unique
connection of the form A0 + i · a with d ∗ a = 0.)

Given r ≥ 0, here is an equation for a connection A ≡ A0 + i · a on K−1

and a section ψ = (α, β) of S+ = I ⊕ K−1:

DAψ = 0.

P+FA =P+FA0 + i · (|α|2 − |β|2 − 1) · ω − i · (α∗β + αβ∗)

− i · 4 · r(1 + r · |α|2)−1 · (α∗〈b,∇aα〉 − α · 〈b,∇aα〉∗).(6)

Here, 〈 , 〉 signifies the C-bilinear extension to T ∗
C
X of the metric inner

product on T ∗X. In (6), b is the section of K−1 ⊕ T ∗
C
X which is defined

in (1). Also, ∇a ≡ d + i · a is a covariant derivative on complex valued
functions on X.

The following lemmas summarize the important features of (6). They
have one immediate corollary, namely that for any r ≥ 0, one can use (6)
to compute the Seiberg-Witten invariant for X and the line bundle K−1.

Lemma 2. Let ker(d∗) denote the subspace of co-closed 1-forms on X and
let Γ(S+) denote the space of sections of S+. A 1-form, a, in ker(d∗) defines
a connection on K−1 by the setting A = A0+i·a. With this understood, then
for any r ≥ 0, Equation (6) defines a smooth map Ψ: ker(d∗)×C∞(S+) →
C∞(Λ+ ⊕ S−). This map depends smoothly on the parameter r ≥ 0 and it
extends as smooth map from the L2

1 Sobolev space completion of the range
into the L2 Sobolev space completion of the domain. Furthermore, the
differential of Ψ at any (a, ψ) defines an elliptic operator which is Fredholm
when the domain is completed using the L2

1 Sobolev topology and the range
is completed with the L2 Sobolev topology. Thus, the index of the differential
does not depend on the value of the parameter r ∈ [0,∞).

Proof. The only serious issue here is to verify that (6) linearizes to an
elliptic operator from ker(d∗) ⊕ C∞(S+) into C∞(Λ+ ⊕ S−). Written in
block diagonal form, this linearization has the form

(7)
(

P+d r · vıd
0 D

)
+ zero’th order terms,

where vı is (locally) contraction with a complex valued vector field and D
is the Dirac operator. It is clear from (7) that the linearization is elliptic
for any r as claimed.

In the next lemma, and subsequently, the symbol ∇′
A will be used below

to denote the induced covariant derivative on the K−1 summand of S+;
that is, ∇′

A ≡ 2−1 · (1 − i · ω) · ∇A. (Of course, this equals ∇′
A0

+ i · a.)
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Lemma 3. Let {ri} be a countable sequence in [0,∞) and let {(Ai, ψi)}
be a sequence of solutions to (6) for the corresponding ri. Then there is an
infinite subsequence of {ri, (Ai, ψi)} which has the following property:

(1) The subsequences {|ψi|} and {|∇Aiψi|} converge strongly in the L2
1

topology and the L2 topology, respectively. Furthermore, the former
is also uniformly bounded in the supremum norm.

(2) Writing ψi = (αi, βi), then the subsequences {|αi|} and {|βi|} con-
verge strongly in the L2

1 topology, and the subsequences {|∇aiαi|}
and {|∇′

Ai
βi|} converge strongly in the L2 topology.

(3) If the subsequence {ri} converges to some r0 < ∞, then the subse-
quence {(Ai, ψi)} is gauge equivalent to a sequence which converges
in the C∞ topology to a solution to (6) for the parameter value
r ≡ r0.

Proof. The key step to proving the first assertion consists of a digression
first to obtain some a priori estimates for solutions to (6). Take the ap-
proach which Witten [W] found for (4); that is, compute the Weitzenboch
formula for DADAψ. The formula reads:

(8) D2
Aψ = ∇A

∗∇Aψ + s · ψ + 2−1(P+FA) · ψ.

Here, (P+FA) is an imaginary valued 2-form which acts by Clifford multi-
plication on S+. Also, s is proportional (with a positive constant) to the
scalar curvature of the metric on X. In the present case, DAψ is assumed
to vanish. Input this information into (8) and take the inner product of
the resulting equation with ψ to find that

(9) 2−1 · d∗d|ψ|2 + |∇Aψ|2 + s|ψ|2 + 〈ψ, 2−1(P+FA)ψ〉 = 0.

Now one should substitute for P+FA from (6) into the last term above. The
key point to observe here is that Clifford multiplication by the r-dependent
term in the second equation in (6) has no diagonal entries when written in
2× 2 block form with respect to the decomposition of S+ as I⊕K−1. This
has the following consequence: The norm of this part of the curvature has
the following a priori r-independent bound:

(10) z · r|α|
(1 + r|α|2) · |∇aα| ≤ z · |α|−1 · |∇aα|.

Here, z is determined by the size of the torsion b and is independent of the
parameter r. (Here and below, z will be used indiscriminantly to denote a
universal constant which is, in particular, r-independent. Its precise value
from line to line may change.)
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In (9), this part of the curvature appears with a factor of either αβ∗ or
α∗β. Thus, the r-dependent part of (6) contributes a term in (9) which is
a priori bounded by

(11) z · |ψ| · |∇aα| ≤ z · |ψ| · (|∇Aψ| + |ψ|)

for any value of r ≥ 0.
The first two factors in (6) for P+FA contribute to (9) as described by

Seiberg and Witten (see also [KM]), and allow one to write (9) as

(12) 2−1d∗d|ψ|2 + |∇Aψ|2 + |ψ|4 = R(ψ, ∇Aψ)

where

(13) |R(ψ, ∇Aψ)| ≤ z · (|ψ|2 + |ψ| · |∇Aψ|).

With (12) and (13) understood, uniform L2 bounds for ψ and |∇Aψ| and
uniform L∞ bounds for ψ follow by standard techniques. Also, remember
that |d|ψ| | ≤ |∇Aψ| so that |ψ| is uniformly bounded in L2

1.
Finally, note that these uniform bounds for |ψ| and for |∇Aψ| provide

the analogous uniform bounds for |α| and |∇aα|, and also for |β| and |∇′
Aβ|.

End the digression.
Now, reconsider the sequence {ri, (Ai, ψi)}. It follows from the preceding

that the sequence {|ψi|} is uniformly bounded in L2
1 and hence it has a

weakly convergent subsequence which strongly converges in L2. The limit
of this subsequence will be denoted by f ;, an L2

1 function on X. Note that
f is in L∞ since the sequence of ψ’s is uniformly bounded in L∞. In fact,
{ψi} converges strongly to f in Lp for any p < ∞.

Meanwhile, the sequence {|∇Aiψi|} has a weakly convergent subse-
quence in L2 which can be assumed to coincide with the convergent sub-
sequence of {|ψi|}. The limit of the weakly convergent subsequence of
{|∇Aiψi|} will be called g.

One can now use the strong Lp convergence of the |ψi|’s to f to conclude
that the relevant subsequence of {|∇Aiψi|} converges strongly to g in L2,
and that the subsequence of {|ψi|} converges strongly to f in L2

1. Indeed,
for the former, one need only show that the relevant subsequence of L2

norms of {|∇Aiψi|} converges to the L2 norm of g, and this follows by
integrating both sides of (9) over X and using the already established facts
about the strong convergence of the ψi’s in Lp. A similar argument proves
that the relevant subsequence of {d|ψi|} converges strongly in L2.

This last point establishes Assertion 1 of Lemma 3. A similar argument
gives Assertion 2. Assertion 3 is proved by using the usual elliptic regularity
arguments.
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Lemma 4. For no r ≥ 0 does (6) have a solution with ψ = 0.

Proof. Such a solution would have P+FA = P+FA0 − i ·ω. If such were the
case, then FA and FA0 would not be cohomologous, and so A would not be
a connection on K−1.

These last three lemmas have as corollary:

Proposition 5. For any r ≥ 0, the solutions to (6) can be used to com-
pute the Seiberg-Witten invariant for the pair (X, K−1) just as well as the
original equation (4).

(Of course, one would have to count degenerate solutions to (6) with
the appropriate multiplicity. These multiplicities can be determined by
perturbing the second equation of (6) with the addition of some small
self dual 1-form to the right side to resolve the degeneracy. This sort of
perturbation is also considered in [W] and [KM].)

3. A vanishing theorem for large r

As just remarked, the solutions to (6) can be used to compute the
Seiberg-Witten invariant. For any r ≥ 0, (6) has one obvious solution,
namely A = A0 and ψ = u0. The purpose of this section is to prove that
this solution is the only solution to (6) when r is sufficiently large. Fur-
thermore the same arguments (but linearized) will show that (A0, u0) is a
nondegenerate solution to (6) when r is sufficiently large.

The proof that (6) has a unique solution for large r will be had by
modifying the proof for a Kähler manifold that K−1 has just one Seiberg-
Witten solution. (See e.g. [W].) There are three steps in this process.

In Step 1, one supposes that there exists an increasing, unbounded se-
quence {rm} of parameter value for which (6) has a solution (Am, ψm ≡
(αm, βm)). One then establishes

Lemma 6. For a sequence as above, zero is the limit as m tends to ∞ of
the measure of the set of points in X where |αm| < 1/2.

(Here, one could just as well take the set of points in X where |αm| is
less than 1 − δ for any δ > 0.)

In Step 2, one establishes

Lemma 7. For a sequence as above, let V (m) denote the set of points in
X where |αm| < 1/2. For each m, the integral over x of |∇Amβm|2 + |βm|2
is bounded from above by an (r, m)-independent multiple of the integral over
V (m) of |βm|2.

Step 3 is short, as it uses a standard Sobolev inequality to establish a
contradiction from Lemma 6 and 7.
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Step 1: To begin the task of proving Lemma 6, project (8) onto the two
summands of S+ = I ⊕ K−1 so as to get a pair of coupled equations for α
and β. To begin start with the Dirac equation which is written out below
with the help of a local orthonormal frame {eα} for T ∗X which is chosen
so that

(14) ω = 2−1(e1e2 + e3e4).

Here is the equation DAψ = 0:

(15) (∇aα)ν · eν · u0 + eν(∇′
Aβ)ν = 0.

Here, and below, (∇aα)ν denotes 〈eν ,∇aα〉 (with ∇a ≡ d + ia); there is
a similar formula for (∇′

Aβ)ν . Note that the torsion b does not appear in
(15). Acting on both sides of (15) by DA yields

((∇a∇aα)νµeνeµ)u0 + (∇aα)µeνeµbν

+ (eνeµ)(∇′
A∇′

Aβ)νµ − b∗ν(∇′
Aβ)µeνeµu0 = 0(16)

This equation can be simplified by using the Clifford Multiplication rule
eνeµ + eµeν = −2δνµ. Also, the equation can be simplified if one uses the
identities eνbν = 0 and also b∗νeνu0 = 0 which come from the fact that u0

is annihilated by DA0 . With the preceding understood, (16) simplifies to

(17) (∇a∇aα)νµeνeµu0−2〈∇aα, b〉+eνeν(∇′
A∇′

Aβ)νµ+2〈b∗,∇′
Aβ〉u0 = 0.

(Remember that 〈, 〉 has been defined as the C-bilinear extension to T ∗
C
X of

the Riemannian inner product on X; thus, the b∗ in the last term of (17).)
Consider the projection of (17) onto K−1. The result is

(18) 4−1α(1− iω) · (FA−FA0) ·u0−2〈∇aα, b〉+2−1(1− iω) ·DADAβ = 0.

Here, FA −FA0 is acting as Clifford multiplication by an imaginary valued
2-form. After substituting from (6) for FA−FA0 , this last equation becomes

(19)
1
2
|α|2β + 2

r|α|2
(1 + r|α|2) 〈∇aα, b〉 − 2〈∇aα, b〉 +

1
2
(1 − iω)DADAβ = 0.

Finally, (19) can be rearranged to read

(20)
1
2
|α|2β − 2

1
(1 + r|α|2) 〈∇aα, b〉 +

1
2
(1 − iω)DADAβ = 0.
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To make hay from (20), take the inner product of both sides with β and
integrate the result over X. After an integration by parts in the last term
of (20) and some rearragnements, one finds

(21)
∫ (

|DAβ|2 + |α|2β|2
)

= 2
∫

1
(1 + r|α|2) 〈∇aα, β∗b〉

The reader should note here that the terms on the left side of (21) are
nonnegative. And it is crucial to note that the term on the right side has
r appearing in the denominator.

Equation (21) will be used twice. For the first application, integrate by
parts on the right side and then take absolute values to find

∫
(DAβ|2 + |α|2β|2)

≤z

∫
1

(1 + r|α|2) (|α||∇′
Aβ| + |α| · |β| + |β||d|α||).(22)

There are three terms on the right side of (22). The first two are smaller
than a multiple of r−1/2; this follows from Lemma 3 and the fact that the
function h(s) = s(1 + rs2)−1 is bounded by r−1/2

√
2/3.

To analyze the last term on the right hand side of (22), introduce V (r) =
V (r, |α|) to denote the subset of X where

(23) |α| ≤ r−1/4.

Split the integral of the last term on the right in (22) into two pieces, the
integration over V (r) and the integration over the compliment of V (r). On
the latter, the function (1 + r|α|2)−1 is small, smaller than (2r)−1/2. And
so it follows with Lemma 3 that the integral of the last term in (22) over the
compliment in V (r) is also bounded by a multiple of r−1/2. In summary,
the left side of (2) is seen bounded by

(24)
∫

(|DAβ|2 + |α|2|β|2) ≤ z(
1

r1/2
+

∫
V (r)

|β| |d|α||
(1 + r|α|2) ).

One can now deduce the following lemma from (24):

Lemma 8. Let {rm, (Am, ψm)} be a sequence of solutions to (6) where
the sequence {rm} is increasing without bound. Assume that the sequences
{|ψm|} and {|∇Amψm|} converge in L2

1 and L2, respectively. Consecutively,
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take (α, β) equal to (αm, βm) in the right side of (24 ). Then, the resulting
sequence of numbers converges to zero as m tends to infinity.

Proof. The first term in (24) evidently converges to zero. Argue that the
second term converges to zero as follows: As remarked in Lemma 3, the
sequence of |αm|’s converges strongly in L2

1 to some function f : with this
understood, one can replace |d|α|| in (24) with |df | with small error at
large m. And, since the |βm|’s are uniformly bounded, the issue is simply
whether

(25)
∫

V (r)

|df |
(1 + r|α|2)

converges to zero when r = rm and α = αm and m tends to infinity. To
settle the issue, compare the integral in (25) with

(26)
∫

V (r)

|df |
(1 + rf2)

The strategy is to first prove that (26) tends to zero as r tends to infinity,
and then prove that the difference between (25) and (26) tends to zero.
Here is a proof that (26) tends to zero as r tends to ∞: First, (26) is
bounded by the integral of the same integrand, but over X, Second, for each
n = 1, 2, . . . , consider breaking the integral (over X) into two integrals, the
former over the domain where f2 > 1/n and the latter over the region
where f2 ≤ 1/n. The integral over the former region is bounded by

(27) z
n

r
‖df‖L2 ,

which tends to zero for fixed n as r tends to ∞. The integral over the latter
region tends to zero by appeal to

Lemma 9. Let f be a non-negative, L2
1 function over a compact manifold.

For ε > 0, let θε denote the integral of |df | over the region where f is less
than ε. Then the sequence of θε’s has limit zero as ε tends to zero.

This lemma is proved below.
With the preceding understood, the comparison of (25) with (26) con-

siders the integral over V (r) of

(28) |df | |(1 + rf2)−1 − (1 + r|α|2)−1| = |df |r ||α|2 − f2|
(1 + rf2)(1 + r|α|2) .
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Break this integral up into two pieces, the first where f2 > 1/n, and the
second where f2 ≤ 1/n. By Lemma 9, the integral over the latter part is
bounded by a sequence, {θε : ε = n−1/2} of r-independent numbers which
go to zero as n tends to ∞. Meanwhile, for fixed n, the integral over the
former tends to zero as r gets large because the measure of the set where
|α|2 differs from f2 by (2n)−1 vanishes as r tends to infinity since |α|2
converges to f2 in this limit. With this understood, one compares (25) to
(26) by fixing n so that the integral of (28) where f2 < n−1] is small, and
then one takes r large to make the remainder small.

Thus, the proof of Lemma 8 has been reduced to a proof of Lemma 9.
The following proof was suggested by David Jerison.

Proof of Lemma 9. Let Uε ⊂ X denote the set of points x where f(x) ≤ ε.
One has Uε1 ⊂ Uε2 when ε1 < ε2 and ∩εUε ≡ W is the set of points x
where f(x) = 0. If W has measure zero, then the sequence of measures
of Uε tends to zero as ε tends to zero and so the lemma is immediate. So
consider the case where W has positive measure. To handle this case, one
must claim that

(29) df = 0 almost everywhere on W.

Granted (29), the integral of |df | over Uε is the same as the integral of |df |
over U ′

ε = Uε − W . The measure of ∩εU
′
ε is zero which means that the

measures of the U ′
ε tend to zero as ε tends to zero. This implies the lemma

in the case where W has positive measure.
As for (29), the reader is referred to Theorem 1 on page 242 of [S], the

remark labled (ii) on page 247 of [S], and then Theorem 2 of page 249 of
[S]. (All of this takes place in Chapter 8 of [S].)

With Lemma 8 understood, let us agree to relable the original sequence
{rm, (Am, ψm)} so that the left hand side of (24) is less than m−1 when
r = rm and (A, ψ) = (Am, ψm).

Turn next to the projection of (17) along u0. The resulting equation is

(30) ∇∗
a∇aα + (|α|2 − |β|2 − 1)α + 〈u0, D

2
Aβ〉 = 0.

Multiply both sides of this equation with α∗ and integrate the resulting
equation over X. After an integration by parts, the resulting equation
reads:

(31)
∫

(|∇aα|2 + (|α|)2 − 1 − |β|2)(|α|2 − 1) =
∫
〈DA(αu0), DAβ〉.

Here, I have used the fact that

(32)
∫

(1 − |α|2 + |β|2) = 0;
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an expression of the fact that the integral over X of FA ∧ ω is equal to the
integral over X of FA0 ∧ ω. (This is because FA and FA0 are closed forms
which are cohomologous.)

In discussing (31), introduce w = (1 − |α|2). Then, (31) implies that

(32)
∫

(|∇aα|2 + w2 + |β|2) ≤ z

∫
(|∇aα| |DAβ| + |α|2β|2).

With the triangle inequality, this last expression gives

(33)
∫

(|∇aα|2 + w2 + |β|2) ≤ z

∫
(|Daβ|2 + |α|2β|2).

In the case where r = rm and (A, ψ) = (Am, ψm), the right side of (33) is
less than m−1.

Fix any δ > 0 and it follows from the preceding remarks that the volume
of the set where |αm|2 < 1−δ is bounded from above by (mδ2)−1. One can
see this from (33) by focusing exclusively on the w2 term. If w is bigger
than δ on a set of measure greater than (mδ2)−1, then the integral of the
w2 term in (33) would be larger than the integral on the right side of (33).
(Being non-negative, the remaining terms can’t cancel out any excess w2

integral.) (A similar argument shows that the analogous limit of the |βm|’s
is 0.)

This gives Lemma 6 and ends Step 1.

Step 2: Return to (21). Break the integral on the right side of (21)
into two parts, the first where |α| ≥ 1/2 and the second where |α| < 1/2.
Taking absolute values gives the following inequality:

(34)
∫

(|Daβ|2 + |β|2|α|2) ≤ z

r

∫
|∇aα| · |β| + z

∫
V

|∇aα| · |β|.

Here V is the set of points where |α| < 1/2. Plug this last inequality into
(33) and use the triangle inequality to conclude that

(35)
∫

(|∇aα|2 + w2 + |β|2) ≤ z

∫
V

|β|2.

With (35) understood, return to (34) to conclude that

(36)
∫

|DAβ|2 ≤ z

∫
V

|β|2.
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Now, write DAβ = eν(∇′
Aβ)ν to relate the integral on the right above to

the integral of |∇′
Aβ|2. The result is

(37)
∫

|∇′
Aβ|2 ≤

∫
(|DAβ|2 + |β|2) ≤ z

∫
V

|β|2.

Here, (6) has been used to evaluate the inner product of β with Clifford
multiplied on β by the imaginary 2-form FA to obtain the first inequality
in (37). The second inequality in (37) follows from (35) and (36). In
particular, this last equation implies that

(38)
∫

(|∇′
Aβ|2 + |β|2) ≤ z

∫
V

|β|2.

This last equation completes the proof of Lemma 7 and ends Step 2.
Step 3: Remark now that there is an inherent contradiction in (38) unless

β vanishes identically for large m. Indeed,

(39)
∫

V

|β|2 ≤ V ol(V )1/2(
∫

V

|β|4)1/2 ≤ zV ol(V )1/2

∫
(|d|β||2 + |β|2)

where the last inequality is a Sobolev inequality. As |d|β| | ≤ |∇′
Aβ|, this

last equation implies that

(40)
∫

V

|β|2 ≤ V ol(V )1/2z

∫
(|∇′

Aβ|2 + |β|2).

Since the volume of the set V tends to zero, the inequalities in (38) and
(40) imply that β = βm must vanish for all m sufficiently large. Plug this
result into (35) to conclude that α = αm is ∇am covariantly constant with
norm 1. Thus, when m is large, (Am, ψm) is gauge equivalent to (A0, u0)
as claimed in the Main Theorem.
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