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RECENT RESULTS ON THE SHORT-TIME

GEOMETRY OF RANDOM HEAT KERNELS

Richard B. Sowers

A bstract . We give some recent results concerning the short-time behavior
of the random heat kernel associated with the stochastic partial differen-
tial equation du = 1

2
∆u dt + (σ,∇u) ◦ dWt on some Riemannian mani-

fold M . Here ∆ is the Laplace-Beltrami operator, σ is some vector field,
∇ is the gradient operator, and ◦ dWt denotes Stratonovich integration
against a standard Wiener process. These results show how classical short-
time asymptotics of deterministic heat kernels must be corrected to account
for the random term; an exponential term must be added.

0. Introduction

This research announcement reports some recent results concerning the
short-time geometry of random heat kernels of the form

(0.1) dpy =
1
2
∆py dt + (σ,∇py) ◦ dWt, t > 0; lim

t→0
py(t, ·) = δy.

The spatial variable takes values on a C∞, compact, connected, and d-
dimensional Riemannian manifold M with inner product (·, ·), ∆ and ∇ are
respectively the standard Laplace-Beltrami and gradient operators, and σ
is some vector field. Here W is a standard Wiener process, which is defined
on some underlying probability space (Ω,F , P), and ◦ denotes Stratonovich
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integration. Finally, δy denotes the Dirac measure which has mass at y,
where y is any fixed point in M . The equation (0.1) is an example of a
stochastic partial differential equation, or SPDE; SPDE’s are currently an
object of much study (see [17]), particularly in some areas of applied math-
ematics. We might let σξ̇ model a rough or turbulent velocity field; as the
turbulence increases, an equation like (0.1) might be the appropriate limit
(see [16]). Alternately, (0.1) describes the evolution of the unnormalized
density for a certain nonlinear filtering problem. Our interest here is the
short-time asymptotics of py (i.e., as t → 0). The short-time asymptotics
of a deterministic counterpart of (0.1) are well-known—consider the PDE
on M given by

(0.2)
∂qy

∂t
=

1
2
∆qy + (σ,∇qy)ζ̇(t), t > 0; lim

t→0
qy(t, ·) = δy,

where ζ is some C1 function on [0,∞). The classical short-time asymptotics
of qy are

(0.3) qy(t, x)

= exp
[
−d2(x, y)

2t
−

∫ t

0

(
γ̇t,x

y (s), σ(γt,x
y (s))

)
ζ̇(s) ds + O(t)

]
· Θy(x)(2πt)−d/2

for x sufficiently close to y. In this expression, d(·, ·) is the Riemann-
ian distance function, γt,x

y is the geodesic running from y to x in time t,
which we assume to be unique, and Θy is related to the Riemannian vol-
ume element at y. A very abbreviated list of references concerning (0.3)
is: [2], [4], [6], [7], [8], [10], [11], [13], [14], and [20]. The exponential
rate of decay, i.e., −d2(x, y)/(2t), was isolated by Varadhan in [19], and∫ t

0

(
γ̇t,x

y (s), σ(γt,x
y (s))

)
ζ̇(s) ds, the so-called work term (since it is the work

of the time-varying vector field σζ̇ along the geodesic γt,x
y ), was isolated in

[14]. The formula (0.3), in particular when σ ≡ 0, has led to deep results
in differential geometry (see [3]). A quite natural question is to ask how
results such as (0.3) may be translated to the SPDE (0.1). This is the
essence of [18], of which this is a brief summary. A corresponding study of
a related problem can be found in [22].

In order to point out what is unusual in this problem, consider a simple
example. Namely, consider the SPDE on R given by

dpy =
1
2

∂2py

∂x2
dt + c

∂py

∂x
◦ dWt, t > 0; lim

t→0
py(t, ·) = δy
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where c is any nonzero constant. This of course is the SPDE (0.1) when
M = R (with the usual atlas), the Riemannian inner product field is (·, ·) =
dx ⊗ dx, and the vector field σ is σ = c ∂

∂x (we shall understand tangent
vectors as derivations). This does not exactly fit the requirements we have
specified for (0.1) since R is not compact, but we shall proceed anyways.
It is easily checked that the solution of this SPDE is explicitly

(0.4) pcan
y (t, x)

�
= exp

[
−|x − y|2

2t
−

(
x − y

t

)
(cWt) −

(cWt)2

2t

]/√
2πt,

for all t > 0 and all x in R, the superscript can indicating that this is a
“canonical” case. The reader familiar with filtering theory may be more
comfortable with the representation

pcan
y (t, x) = exp

[
−|x − (y − cWt)|2

2t

] /√
2πt, t > 0, x ∈ R.

We may from this understand pcan
y (t, ·) as the conditional density of y −

cWt + W̃t given {Ws : s ≥ 0 }, where W̃ is any standard Wiener process
independent of W .

In this simple situation, a complete analysis of the short-time asymp-
totics of pcan

y is possible, thanks to well-known and classical results on
Brownian motions. Via the law of the iterated logarithm [12, Theorem
1.9.23, and 15, Theorem II.1.9], the exact small-time asymptotics of the
second and third exponential terms of (0.4) are

(0.5)
(

x − y

t

)
(cWt) = O

(√
t−1 ln ln t−1

)
;

(cWt)2

2t
= O

(
ln ln t−1

)
,

with the first asymptotic holding only, of course, when x �= y. Thus all of
the terms in the exponent in (0.4) blow up almost-surely, but with decreas-
ing rates from left to right.

Let’s now try to fit the formula (0.4) into the framework given by (0.3).
Obviously, |x − y|2 = d2(x, y), where d(·, ·) is the Riemannian distance
function on R defined by the metric (·, ·) = dx ⊗ dx. Also,

(
x − y

t

)
(cWt) =

∫ t

0

(
γ̇t,x

y (s), σ(γt,x
y (s))

)
◦ dWs

where { γt,x
y (s) : 0 ≤ s ≤ t } is again the unique geodesic running from y

to x in time t; in this case, γt,x
y (s)

�
= y + s

t (x − y) for 0 ≤ s ≤ t. Thus a
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more qualitatively valuable representation of (0.4) is
(0.6)

pcan
y (t, x) =

exp
[
−d2(x,y)

2t −
∫ t

0

(
γ̇t,x

y (s), σ(γt,x
y (s))

)
◦ dWs − (cWt)

2

2t

]
√

2πt

for each t > 0 and x and y in R. Comparing this to (0.3), we find the usual
distance and work terms. From (0.5), however, we see that the third expo-
nential term in (0.6) blows up (P-a.s.), whereas in (0.3) the third exponential
term was negligible. Thus, for small time, there are more non-negligible
exponential terms in the random heat kernel (0.1) than in the deterministic
heat kernel (0.2).

The explicit expression (0.4), along with the asymptotics of (0.5), also
points out a potential problem in technique. A general way of studying
short-time asymptotics of heat kernels is by rescaling time. Essentially,
rescaling here would replace Wt in (0.4) by t1/2η, where η is any zero-mean
unit-variance Gaussian random variable. Then for each t > 0 and x and y
in R, we have the following equality of law:

pcan
y (t, x)

(L)
= exp

[
−|x − y|2

2t
−

(
x − y

t1/2

)
(cη) − (cη)2

2

] /√
2πt,

which does not at all reflect the second asymptotic statement of (0.5), which
forms the focus of our interest. Thus, as in the study of Brownian motion,
we must distinguish between the almost-sure asymptotics of pcan

y and the
asymptotics of the law of pcan

y . To be explicit, our aim is a study of its
almost-sure asymptotics.

1. The main result

The main result is given by Theorem 1 below. Preparatory to stating
this theorem, we need some notation. Let ∇ denote the Levi-Civita con-
nection and let Rop and R respectively denote the curvature operator and
curvature tensor. To remove any confusion about signs, we use the defi-
nition Rop(X, Y )Z

�
= ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z for any vector fields

X, Y , and Z on M , where [·, ·] denotes the Lie Bracket of vector fields.
Finally, for each y ∈ M , let Cut(y) denote the cut-locus of y.

We now define a certain stochastic differential equation (SDE). Let TM⊕
TM be the Whitney sum of two copies of TM ; i.e., TM ⊕TM is the vector
bundle over M for which the fibre over x, for each x ∈ M , is the Cartesian
product TxM × TxM . Fix t > 0, y ∈ M , and x ∈ M ∼ Cut(y), and
let { γt,x

y (s) : 0 ≤ s ≤ t } be the unique geodesic which runs from y to x
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in time t. Let { (Ξ1,t,x
y (s),Ξ2,t,x

y (s)) : 0 ≤ s ≤ t } be the solution of the
TM ⊕ TM -valued SDE

(1.1)

(
DsΞ1,t,x

y

DsΞ2,t,x
y

)
=

(
0 I

Rop

(
γ̇t,x

y (s), ·
)
γ̇t,x

y (s) 0

) (
Ξ1,t,x

y (s)
Ξ2,t,x

y (s)

)
ds

+
(−σ(γt,x

y (s))
∇∗

γ̇t,x
y (s)σ

)
◦ dWs,

Ξ1,t,x
y (0) = 0y,

Ξ1,t,x
y (t) = 0x,

0 ≤ s ≤ t.

Here ∇∗
is the adjoint of ∇; i.e., (∇∗

Y σ, X) = (∇Xσ, Y ) for all vector
fields X and Y . Secondly, 0y and 0x are respectively the zero elements of
TyM and TxM . This equation describes two random vector fields along the
deterministic curve γt,x

y . The form of this equation is simple. The operator

(
X
Y

)
�→

(
Y

Rop

(
γ̇t,x

y (s), X
)
γ̇t,x

y (s)

)

which is the effect of the first term on the right of (1.1), is clearly linear for
each 0 ≤ s ≤ t. The ◦ dWt term on the right of (1.1) does not depend on
Ξ1,t,x

y or Ξ2,t,x
y ; thus the evolution of the pair (Ξ1,t,x

y ,Ξ2,t,x
y ) is governed by

a forced linear SDE. The terminal condition on Ξ1,t,x
y makes the stochastic

calculus associated with this SDE anticipative and therefore potentially
problematic, but the simple linear form of (1.1) allows one to solve (1.1)
using a simple variation of parameters formula and in the process resolve
such anticipativity issues. Geometrically, the linear part of (1.1) is exactly
the equation for Jacobi fields; thus one can interpret (1.1) in some sense
as a forced Jacobi field (the reason for this will become clear at the end of
Section 2).

We now can use the solution of (1.1) to define the third term in the
exponential expansion of py. For each t > 0, y ∈ M and x ∈ M ∼ Cut(y),
define

(1.2) Gy(t, x;W )

�
= −1

2

∫ t

0

‖Ξ2,t,x
y (s)‖2 ds − 1

2

∫ t

0

R
(
Ξ1,t,x

y (s), γ̇t,x
y (s),Ξ1,t,x

y (s), γ̇t,x
y (s)

)
ds

−
∫ t

0

(
∇∗

γ̇t,x
y (s)σ, Ξ1,t,x

y (s)
)
◦ dWs.
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Similarly to (1.1), the stochastic calculus associated with the third expres-
sion on the right is complicated by some anticipativity problems (since
Ξ1,t,x

y is anticipative); however, the above comment that we can solve (1.1)
by a variation of parameters formula also leads to a meaningful definition
of (1.2). Geometrically, (1.2) is similar to the index form in differential
geometry—the second derivative of the energy functional of curves (again,
the reason for this will be made clearer at the end of Section 2).

We finally have the main result:

Theorem 1. We have that for each ε ∈ (0, 1/2),

(1.3)

py(t, x) = exp
[
−d2(x, y)

2t
−

∫ t

0

(
γ̇t,x

y (s), σ(γt,x
y (s))

)
◦ dWs + Gy(t, x;W )

+O(t1/2−ε)
]
Θy(x)(2πt)−d/2

P-a.s. as t tends to zero, for y ∈ M and x ∈ M ∼ Cut(y).

This is the counterpart of (0.3).

2. Heuristics

Where do the formulæ of Section 1 come from? Here we give a brief
outline.

Let’s start with a classical way of focussing on the short-time behavior
of heat kernels—rescaling time. For every ε > 0, define

(2.1) pε
y(t, x)

�
= py(tε, x). t > 0, x ∈ M

Then pε
y satisfies the SPDE

dpε
y =

ε

2
∆pε

y dt +
√

ε(σ,∇pε
y) ◦ dW ε

t , t > 0; lim
t→0

pε
y(t, ·) = δy.

Here W ε is the Wiener process defined by

(2.2) W ε
t

�
= ε−1/2Wtε. t > 0

Ultimately, we will want to vary ε. We will, however, want to be careful
when we do this, since the dependence of W ε upon ε is very irregular due
to the irregularity of Brownian motion. To somewhat separate the different
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effects of ε in (2.1), let us now take a fixed Wiener process B on (Ω,F , P)
which does not depend on ε > 0. Then we can study the SPDE

(2.3) dp̃ε
y =

ε

2
∆p̃ε

y dt +
√

ε(σ,∇p̃ε
y) ◦ dBt, t > 0; lim

t→0
p̃ε

y(t, ·) = δy

and, assuming that the solution of this SPDE exists and is unique, we have

that pε
y

(L)
= p̃ε

y. Note that since the scaling properties of Wiener processes are
statements about the laws of Wiener processes, we have lost the possibility
of directly studying the almost-sure behavior of py; we can only study the
law of py (recall the comments at the end of Section 0). However, we shall
for the present ignore this obstacle—we here are searching only for heuristic
arguments.

Next we replace B in (2.3) with a smooth function b and consider the
solution of

dqb,ε
y =

ε

2
∆qb,ε

y dt +
√

ε(σ,∇qb,ε
y )ḃ(t), t > 0; lim

t→0
qb,ε
y (t, ·) = δy;

this is similar to (0.2), so at least we are in known territory. We do not
really care here whether b is random or deterministic; we wish only to find
some dependencies of the behavior of qb,ε

y upon b; in particular, we will try
to identify some function Γy : M × (0, 1)×C1([0,∞); R) → R such that as
ε tends to zero, qb,ε

y (1, x) � exp [Γy(x; ε, b)]. Here “�” denotes logarithmic
equivalence. By the celebrated result of Wong and Zakai [21], if we take
b to be random and an approximation of B, then qb,ε

y should approximate
p̃ε

y, at least in law, and thus hopefully we will have in some sense that

(2.4) p̃ε
y(1, x) � exp [Γy(x; ε, B)] .

Of course to carry out any analysis of this, the dependence of Γy upon B
should be sufficiently simple. If (2.4) is true, then we next may hope that
in some sense pε

y(1, x) � exp [Γy(x; ε, W ε)] and, since py(t, x) = pt
y(1, x) for

all t > 0 and x ∈ M , that finally in some sense

(2.5) py(t, x) � exp
[
Γy(x; t, W t)

]
.

Recall now that qb,ε
y can be interpreted as the density of a certain M -

valued diffusion. The theory of large deviations (see [5]) now suggests that
the asymptotics of qb,ε

y as ε tends to zero are

(2.6) qb,ε
y (1, x) � exp

[
−1

ε
Hy(x; ε, b)

]
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for any t > 0, x in M , and b in C1([0,∞); R), where for each ε ∈ (−1, 1)

(2.7) Hy(x; ε, b)
�
= inf

ϕ∈C1([0,1];M)
ϕ(0)=y,ϕ(1)=x

1
2

∫ 1

0

‖ϕ̇(s) +
√

εσ(ϕ(s))ḃ(s)‖2 ds

(see [9], [13]). This is slightly different from the classical result of Varadhan
[19]. The classical result follows from this by realizing that the effect of√

εσ(ϕ(s))ḃ(s) becomes negligible as ε becomes small. One might say that
here we are stopping at an intermediate step in the proof of the classical
result. The motivation of (2.7) is the Azencott approach to large deviations
(see [1]); qb,ε

y can be understood as describing the law of a process given
by transforming a small Wiener process, where this transformation itself
depends on ε. Note also that we are considering curves which go from y to
x; usually one considers curves from x to y, which would change the “+”
sign to a “−” sign; it is more natural here to integrate in the same direction
that b evolves. The asymptotics (2.6) and the “action functional” of (2.7)
suggest that the desired asymptotics of py should be given by taking

(2.8) Γy(x; ε, b) ≈ −1
ε
Hy(x; ε, b)

and realizing the program outlined above. Note, however, a serious prob-
lem: to proceed to the next step, we would have to replace b in (2.7) with
a trajectory of the Wiener process B; this would formally give us

Hy(x; ε, B) = inf
ϕ∈C1([0,1];M)

ϕ0=y,ϕ1=x

1
2

∫ 1

0

‖ϕ̇s +
√

εσ(ϕs) ◦ Ḃs‖2 ds

at which point we are faced with the problem that Wiener processes are
nowhere differentiable and this expression is not easily made rigorous.

The resolution of this difficulty lay in expanding Hy in powers of
√

ε; we
write

Hy(x; ε, b) ≈ Hy(x; 0, b) +
√

εḢy(x; 0, b) +
ε

2
Ḧy(x; 0, b)

where

Ḣy(x; ε, b)
�
=

∂Hy

∂
√

ε
(x; ε, b); Ḧy(x; ε, b)

�
=

∂2Hy

∂(
√

ε)2
(x; ε, b)

for all ε ∈ (−1, 1). Then instead of (2.8), we can define Γy(x; ε, b) as

Γy(x; ε, b)
�
= −1

ε
Hy(x; 0, b) − ε−1/2Ḣy(x; 0, b) − 1

2
Ḧy(x; 0, b).
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Since we are still only interested in heuristics, we do not need to verify
here that Hy is indeed twice-differentiable with respect to

√
ε (issues of

dependence of calculus of variation problems upon parameters are often
delicate).

The expressions for Hy(x; 0, b), Ḣy(x; 0, b), and Ḧy(x; 0, b) follow from
standard calculus of variations calculations. We will give only some repre-
sentative parts of these calculations. We have that

Hy(x; 0, b) =
d2(x, y)

2
; Ḣy(x; 0, b) =

∫ 1

0

(
σ(γ1,x

y (s)), γ̇1,x
y (s)

)
ḃ(s) ds.

The term Ḧy(x; 0, b) similarly has an explicit formula. Note that since
Ḧy(x; 0, b) can be understood as the second-derivative of a functional of ḃ

in the direction of ḃ, Ḧy(x; 0, b) is a quadratic functional of ḃ. Thus

Γy(x; ε, b)

= −1
ε

{
d2(x, y)

2
+
√

ε

∫ 1

0

(
σ(γ1,x

y (s)), γ̇1,x
y (s)

)
ḃ(s) ds +

ε

2
Ḧy(x; 0, b)

}
.

Now let b be a smooth approximation of the Wiener process B. We get
that in some sense

Γy(x; ε, B) = −d2(x, y)
2ε

− 1√
ε

∫ 1

0

(
σ(γ1,x

y (s)), γ̇1,x
y (s)

)
◦dBs−

1
2
Ḧy(x; 0, B).

By our previous comments about Ḧy, we see that the term Ḧy(x; 0, B)
can be understood as a second-order integral in B, which of course can be
rigorously understood. Finally substituting W t for B, as required by (2.5)
and then undoing the scaling of (2.2), we get that in some sense

Γy(x; t, W t)

= −d2(x, y)
2t

− 1√
t

∫ 1

0

(
σ(γ1,x

y (s)), γ̇1,x
y (s)

)
◦ dW t

s − 1
2
Ḧy(x; 0, W t)

= −d2(x, y)
2t

−
∫ t

0

(
σ(γt,x

y (s)), γ̇t,x
y (s)

)
◦ dWs −

1
2
Ḧy(x; 0, W t).

Since the term Ḧy(x; 0, W t) is a second-order integral in W t, the scaling
of (2.2) can be reversed as in the work term. We get exactly (1.1), (1.2),
and (1.3). Reviewing our arguments, we also can now explain more clearly
the similarity of (1.1) and (1.2), respectively, to Jacobi fields and the index
form. Jacobi fields and the index form arise in studying the second variation
of the energy of curves; (2.7) can be viewed as a perturbation of the energy
functional, and the third exponential term Gy in (1.3) is essentially given
by the second variation of Hy in

√
ε.
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3. Completion

Thus far we have a general guess at the short-time asymptotics of the
solution of (0.1), namely

P̂y(t, x) = exp
[
−d2(x, y)

2t
−

∫ t

0

(
γ̇t,x

y (s), σ(γt,x
y (s))

)
◦ dWs

+ Gy(t, x;W )
]
Θy(x)(2πt)−d/2,

t > 0, y ∈ M, x ∈ M ∼ Cut(y).

What remains is to show that this guess is correct. It turns out that some
of the technicalities of anticipative stochastic calculus preclude standard
parametrix-type calculations (or at least they make such calculations much
more demanding). What we can do, however, is to write an SPDE for P̂y.
The completion of the proof comes from using SPDE methods to study the
error between py and P̂y. These calculations, which are carried out in [18],
are somewhat lengthy.

To get a better feel for the complexity of things, let’s see why standard
parametrix calculations are inapplicable. We can extend the definition of
P̂y by setting

P̂ (t, x; s, y)

�
= exp

[
−d2(x, y)

2(t − s)
−

∫ t

s

(
γ̇t−s,x

y (r − s), σ(γt−s,x
y (r − s))

)
◦ dWr

+ Gy(t − s, x;W ◦ θs)
]
Θy(x)(2π(t − s))−d/2,

t > s ≥ 0, y ∈ M, x ∈ M ∼ Cut(y)

where for each s ≥ 0, W ◦θs is the Wiener process defined by (W ◦θs)(r)
�
=

Wr+s − Ws for all r ≥ 0. Then for each s ≥ 0 and y ∈ M , { P̂ (t, x; s, y) :
t > s, x ∈ M ∼ Cut(y) } is the natural approximation for the solution of
the SPDE

dps,y =
1
2
∆ps,y dt + (σ,∇ps,y) ◦ dWt, t > 0; lim

t→s
ps,y(t, ·) = δy.

The parametrix method then suggests that we look for the solution of (0.1)
in the form

(3.1) py(t, x) = P̂y(t, x) +
∫ t

0

∫
M

P̂ (t, x; s, z)g0
y(s, z)V(dz) ds

+
∫ t

0

∫
M

P̂ (t, x; s, z)g1
y(s, z)V(dz) ◦ dWs, t ≥ 0, x ∈ M
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for some functions g0
y and g1

y, where V is the Riemannian volume measure
on (M,B(M)) (here we have ignored problems arising from cut-loci). It
turns out that the gi

y’s should be adapted to the filtration generated by
W ; however, for any 0 ≤ s ≤ t, the function P̂ (t, x; s, ·) is measurable with
respect to the future sigma-field σ{Wr − Ws : s ≤ r ≤ t }; this puts the
parametrix procedure suggested by (3.1) outside the framework of classical
Ito-based stochastic calculus. Unless there are some delicate integrability
calculations one could use, this more or less precludes the whole parametrix
approach.

There are, fortunately, several ways to resolve this difficulty. In [18], we
follow an approach which appears to give final results which very closely
parallel those of deterministic kernels like qy of (0.2) (see Theorem 2 below).
We find an SPDE for P̂y. This allows us to write down an SPDE for the
difference

(3.2) py − P̂y.

Suppose that, purely by SPDE methods, we can show that this SPDE (for
the difference random field (3.2)) has a solution ry which is in some sense
“small”. Then the random field P̂y + ry satisfies the same SPDE (0.1) as
py, so necessarily py = P̂y +ry; since ry is small, we would have shown that
P̂y is indeed a good approximation of py.

Actually, the arguments of [18] are even a bit more complex. As a pre-
liminary to the arguments just outlined, we carry out a Minakshisundaram-
Pleijel-type expansion. This involves defining

(3.3) P̂ ∗
y (t, x)

�
= P̂y(t, x)

{
1 + α0

y(t, x) +
∫ t

s=0

α1
y(t, x; s) ◦ dWs

+
∫ t

s1=0

∫ s1

s2=0

α2
y(t, x; s1, s2) ◦ dWs2 ◦ dWs1 + · · ·

+
∫ t

s1=0

∫ s1

s2=0

. . .

∫ sk−1

sk=0

αk
y(t, x; s1, s2, . . . sk) ◦ dWsk

◦ · · · ◦ dWs2 ◦ dWs1

}
,

t > 0, x ∈ M ∼ Cut(y)

for some well-chosen positive integer k and some collection of deterministic
integrands α0

y, α1
y, . . . αk

y . These αk
y ’s are some form of “polynomials”, which

may be thought of as following some generalized Minakshisundaram-Pleijel
recursion. Replacing P̂y by P̂ ∗

y in (3.2) and the succeeding arguments, we
can more easily show that the difference random field of (3.2) is small. In
the end, we get
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Theorem 2. We have that for any integer l ≥ 1, if k is large enough in
(3.3), there is a constant K > 0 such that

py(t, x) = P̂ ∗
y (t, x) + P̂y(t, x)O(tl) + O(e−K/t)

P-a.s. as t tends to zero, for y ∈ M and x ∈ M ∼ Cut(y).
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