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MINIMAL DISCRETE ENERGY ON THE SPHERE

E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou

Abstract. We investigate the energy of arrangements of N points on the
surface of a sphere in R3, interacting through a power law potential V =
rα, −2 < α < 2, where r is Euclidean distance. For α = 0, we take V =
log(1/r). An area-regular partitioning scheme of the sphere is devised for
the purpose of obtaining bounds for the extremal (equilibrium) energy for
such points. For α = 0, finer estimates are obtained for the dominant terms
in the minimal energy by considering stereographical projections on the
plane and analyzing certain logarithmic potentials. A general conjecture
on the asymptotic form (as N → ∞) of the extremal energy, along with
its supporting numerical evidence, is presented. Also we introduce explicit
sets of points, called “generalized spiral points”, that yield good estimates
for the extremal energy. At least for N ≤ 12, 000 these points provide
a reasonable solution to a problem of M. Shub and S. Smale arising in
complexity theory.

1. Introduction

Let N ≥ 2 be a positive integer and ωN = {x1, . . . , xN} be a set of N
points on the unit sphere S2 := {x ∈ R3 : |x| = 1 }. We use |x − y| to
denote the Euclidean distance between two points x, y ∈ S2. For each real
α, the α-energy associated with ωN is defined by

E(α, ωN ) :=




∑
1≤i<j≤N

log
1

|xi − xj | , if α = 0

∑
1≤i<j≤N

|xi − xj |α, if α �= 0.
(1.1)
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Our concern is with the extremal energy for N points on the sphere:

E(α, N) :=




inf
ωN⊂S2

E(α, ωN ), if α ≤ 0

sup
ωN⊂S2

E(α, ωN ), if α > 0.(1.2)

The determination of E(α, N) is an important and active research area
(see the survey paper by Melnyk et al. [19]).

For example, determining the exact value of E(1, N), is, except for cer-
tain small values of N , a long-standing open problem in discrete geome-
try, which was initiated by L. Fejes Tóth [14]. Several authors, including
Alexander [1], Stolarsky [26, 27] and Beck [2] have made significant con-
tributions; see Stolarsky [27] for history.

The determination of E(−1, N) is called J. J. Thomson’s Problem.
Föppl [16], at the suggestion of Hilbert, made a rigorous examination of
Thomson’s arrangements; see L. L. Whyte [33] for history. Partly due to
the recent discovery of carbon fullerenes ( C60 , C70, etc.), see [9], [25],
this problem has again attracted the attention of researchers in chemistry,
physics and crystallography. There are hundreds of references to Thom-
son’s Problem and its applications. Here we cite only a few recent ones (of
more mathematical content): [11], [13], [17], [32], and [34].

We remark that for α = 2 it is easily verified that E(2, N) = N2 and
that for α > 2, N even, it is known that the points of a maximal distri-
bution must all lie in two diametrically opposite points; see [4]. It is also
interesting to note that as α → −∞, the minimal discrete energy problem
tends to the Best Packing Problem on the sphere (also known as Tammes’
Problem), which asks for the largest spherical radius of N identical spheri-
cal caps that can be packed onto the surface of the unit sphere; see Conway
and Sloane [7], Coxeter [8] and Fejes Tóth [15].

For α = 0, a related problem was conveyed to the second author by
S. Smale; namely the problem of finding explicit sets of points ωN =
{x1, . . . , xN} ⊂ S2 such that, for some constant C0, we have

E(0, ωN ) − E(0, N) ≤ C0 log N, ∀ N ≥ 2.(1.3)

Such points serve as good starting values for Newton’s method (cf. Shub
and Smale [22, 23, 24]).

Our goal is to provide bounds for the discrete extremal energy E(α, N)
when −2 < α < 2 and to present a simple explicit formula for N points
on the sphere that yields good estimates for E(α, N). The paper is orga-
nized as follows. In Section 2 we describe a general method for obtaining
such bounds, provided that we can partition the sphere into N parts of
equal areas and small diameters. We present a scheme for this Partition
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Problem which yields nearly optimal rectangular zones. In Section 3, we
develop an identity for E(0, ωN ) and use this to obtain upper bounds for
E(0, N). We also improve on a lower bound for E(0, N) obtained by the
late G. Wagner [29]. In Section 4, we formulate a general conjecture on
the asymptotic form of E(α, N) and discuss our numerical experiments
that support the conjecture. In Section 5, we also describe a set of points,
called generalized spiral points, that are extremely easy to construct and
provide very good estimates for E(α, N). Although for α = 0 these points
do not appear to solve the Shub and Smale problem, they do yield good
estimates; see (5.3).

2. Energy Estimates and Partitions of the Sphere

Our goal is to obtain bounds for the extremal energy by constructing
suitable partitions of S2. If D ⊂ S2, we denote by

o

D the interior of D
with respect to S2, and we denote by A(D) the area of D:

A(D) :=
∫
D

dσ(x),

where dσ is the surface area measure on S2.

Definition 2.1. A collection D = {Di}N
i=1 of N closed subsets of S2 is

said to be an area-regular partition of S2 into N parts if

(i)
⋃N

i=1 Di = S2;
(ii)

o

Di ∩
o

Dj= ∅, i �= j, 1 ≤ i, j ≤ N ;
(iii) A(

o

Di) = 4π/N, i = 1, . . . , N.

For D ⊂ S2, the diameter d(D) of D is defined by

d(D) := sup{ |x − y| : x, y ∈ D }.

Later in this section we show how to construct area-regular partitions
for which all regions

o

Di have small diameters. The usefulness of such
partitions is made clear by the following simple result.

Theorem 2.2. Let K(r) be a lower semi-continuous decreasing function
for 0 < r ≤ 2 and suppose

β(K) :=
1

(4π)2

∫∫
S2×S2

K(|x − y|) dσ(x) dσ(y) < ∞.(2.1)



650 E. A. RAKHMANOV, E. B. SAFF, AND Y. M. ZHOU

If D = {Di}N
i=1 is an area-regular partition of S2 into N parts, then there

exist points {x̂i}N
i=1 with x̂i ∈ Di, i = 1, . . . , N, such that

∑
1≤i �=j≤N

K(|x̂i − x̂j |) ≤ N2β(K) −
N∑

i=1

K(d(
o

Di)).(2.2)

Remark. If K is increasing and upper semi-continuous, then (2.2) is true
with the inequality sign reversed.

Proof. Let f(x1, x2, . . . , xN ) :=
∑

i �=j K(|xi − xj |) and set

I := inf{ f(x1, x2, . . . , xN ) : xi ∈
o

Di, i = 1, . . . , N },(2.3)

dσ∗ :=
N

4π
dσ, dσ∗

i := dσ∗| o

Di

, i = 1, . . . , N,(2.4)

so that σ∗
i (

o

Dj) = δij . Then integrating the inequality I ≤ f(x1, . . . , xN )
with respect to dσ∗

1(x1) dσ∗
2(x2) · · · dσ∗

N (xN ) we get

I ≤
∫

· · ·
∫ ∑

i �=j

K(|xi − xj |) dσ∗
1(x1) dσ∗

2(x2) · · · dσ∗
N (xN )

=
∑
i �=j

∫
o

Di

∫
o

Dj

K(|x − y|) dσ∗
i (x) dσ∗

j (y)

=
∫∫

K(|x − y|) dσ∗(x) dσ∗(y) −
N∑

i=1

∫∫
o

Di×
o

Di

K(|x − y|) dσ∗
i (x) dσ∗

i (y),

(2.5)

where in the last equality we used the fact that the boundary of each Di

has area measure zero. Since K is decreasing, we obtain from (2.5) and
(2.1) that

I ≤ N2β(K) −
N∑

i=1

K(d(
o

Di)),

which yields (2.2) for suitable x̂i ∈ Di.

We remark that the above proof is similar to that of Lemma 4 in [1]
and that Theorem 2.2 immediately extends to partitions of the unit sphere
Sn−1 ⊂ Rn.

Theorem 2.3. For any N ≥ 2, there exists an area-regular partition of
S2 into N parts with the diameter of each part ≤ 7/

√
N .
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Remark. The existence of an absolute constant C such that, for all N ≥ 2,
the sphere can be partitioned into N parts of equal area with the diameter
of each part ≤ C/

√
N is well known and is used in Alexander [1], Bourgain

and Lindenstrauss [5, 6], Beck and Chen [3]. Necessarily, C ≥ 4 since
among all the subsets of S2 with fixed area 4π/N , the spherical cap has
minimal diameter, which equals 4

√
N − 1/N. For large N the constant

7 in Theorem 2.3 can be improved; for example, if N ≥ 3100, we can
find an area-regular partition with each piece having diameter ≤ 6/

√
N .

Furthermore, if we only insist that most of the parts have small diameters,
then it is possible to partition the sphere into nearly spherical square
pieces, as described in the following result.

Theorem 2.4. Given 0 < ε ≤ 1, there exist k0, N0 such that if N ≥ N0,
an area-regular partition D = {Dj}N

j=1 of S2 exists satisfying

d(Dj) ≤
{

2
√

2π(1 + ε)/
√

N, if k0 + 1 ≤ j ≤ N − k0;
2
√

k0/
√

N otherwise.

Since the proofs of Theorems 2.3 and 2.4 are similar, we sketch only the
proof of Theorem 2.4. For convenience, we will call a sequence {yk}n

k=1 of
real numbers symmetric if yk = yn−k+1 for all 1 ≤ k ≤ n, and we make
use of following lemma, which can be proved by mathematical induction.

Lemma 2.5. If n is an odd positive integer, and {yi}n
i=1 is a symmetric

sequence of real numbers with the property that
∑n

i=1 yi is an integer, then
there exists a symmetric sequence of integers {mi}n

i=1 such that

i)
n∑

i=1

mi =
n∑

i=1

yi;

ii) |y1 − m1| = |yn − mn| ≤ 1
2
; |yi − mi| ≤ 1, i = 2, . . . , n − 1;

iii)

∣∣∣∣∣
k∑

i=1

(yi − mi)

∣∣∣∣∣ ≤ 1
2
, ∀ k = 1, 2, . . . , n.

Let (θ, φ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, denote the spherical coordinates
on S2. For any partition of the integer N , say γ = (m1, . . . , mn), we
associate an area-regular partition D = {Dk,j} of the sphere as follows:

Dk,j := [θk−1, θk] ×
[
2π(j − 1)

mk
,
2πj

mk

]
, j = 1, . . . , mk, k = 1, . . . , n,

where θk := arccos
(

1 − (2/N)
k∑

i=1

mi

)
, k ≥ 1, and θ0 := 0. We call this

area-regular partition a γ-partition.
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Proof of Theorem 2.4. Given 0 < ε ≤ 1, define η := 1 − (1 + ε)−1/2,

k0 :=
[
(
√

π + η)2

2η2

]
+ 1, N0 :=

[
16πk0

η2

]
+ 1,

n :=
{

the greatest odd integer ≤
√

πN/2
}

,

θ0 := arccos(1 − 2k0

N
); ∆θ :=

π − 2θ0

n
,

θ
′
k = θ0 + k · ∆θ, 0 ≤ k ≤ n, θn+1 := θ

′
n+1 := π;

yk =
N

2
(cos θ

′
k−1 − cos θ

′
k), k = 1, 2, . . . , n.

Then
∑n

k=1 yk = N − 2k0 and {yk}n
k=1 is symmetric. Let {mk}n

k=1 be the
symmetric sequence of integers that satisfies (i), (ii) and (iii) of Lemma 2.5.
Then the γ-partition corresponding to γ = (k0, m1, . . . , mn, k0) can be
shown to satisfy the conclusion of the theorem. The details of this verifi-
cation will appear in [35].

Remark. Without the area-regular requirement, the sphere can be parti-
tioned into N parts with the diameter of each part less than

dN :=
4√
N

·
√

2π√
27

(1 + εN ), εN > 0, εN → 0 as N → ∞.(2.6)

Indeed, as a consequence of a result due to van der Waerden [28], the sphere
can be covered by N identical (overlapping) spherical caps of diameter dN

given in (2.6). Then the Dirichlet cells corresponding to the centers of these
N caps form a partition of the sphere into N parts with each part having
diameter ≤ dN . Although this does not yield an area-regular partition, it
is tempting to conjecture that for

γN := inf
{

max
1≤j≤N

d(Dj) : {Dj}N
j=1 is an area-regular partition of S2

}
,

we have limN→∞
√

N γN = 4
√

2π/
√

27 = 4.39854 . . . .
Using the fact that a zonal cut of the sphere has an area equal to

2π times the height of the cut, it is easy to verify that for the kernel
K(r) = rα, −2 < α < 2, α �= 0, we have

1
4π

∫
S2

|x − y|α dσ(x) =
2α+1

2 + α
, y ∈ S2;

hence β(K) = 2α+1/(2 + α) (cf. (2.1)), and so from Theorems 2.2 and 2.4
we deduce
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Corollary 2.6. Given −2 < α < 2, α �= 0, and ε > 0, there exists an
N0 = N0(ε, α) such that for any N ≥ N0,

E(α, N) ≤ 2α

2 + α
N2 − 1

2
(2
√

2π)α(1 − ε)N1−α/2, if −2 < α < 0,

E(α, N) ≥ 2α

2 + α
N2 − 1

2
(2
√

2π)α(1 + ε)N1−α/2, if 0 < α < 2.

See Section 4 for a discussion of bounds in the opposite directions for
E(α, N).

3. Logarithmic Equilibrium Points on the Sphere

Here we consider the case α = 0 in more detail. Since e−E(0,ωN ) =∏
1≤i<j≤N |xi − xj |, the minimization of the discrete energy E(0, ωN ) is

the same as the maximization of the Vandermonde. Such extremal points
are called logarithmic equilibrium points on S2.

Elkies (cf. [18, p. 150]) describes a general method for obtaining lower
bounds for minimal logarithmic energy that is valid over more general
Riemann surfaces. His method shows, for example, that in the case of the
sphere we have

E(0, N) ≥ −1
4

log
(

4
e

)
N2 − 1

4
N log N + O(N).

Our main concern is to obtain explicit estimates for the O(N) term.
G. Wagner [29] proved that, for any ωN = {x1, x2, . . . , xN} on S2,

∏
i<j

|xi − xj | ≤ 2N(N−1)/2

[
N−1∏
k=1

k!
kk

]1/2

.(3.1)

Here we present a modification of Wagner’s proof that enables us to im-
prove (3.1). The proof lends itself to further improvement and may ulti-
mately lead to an asymptotically sharp upper bound for

∏
i<j |xi − xj |.

Theorem 3.1. For any ωN = {x1, x2, . . . xN} on S2, there holds

∏
1≤i<j≤N

|xi − xj | ≤ 2N(N−1)/2

[
N−1∏
k=1

k!
kk

]1/2 (
1 − e−a + εN

)bN/4

≤ (4/e)N2/4NN/4(π/2)N/4(1 − e−a + εN )bN/4,(3.2)

where

a :=
2
√

2π√
27

(
√

2π +
√

2π +
√

27), b :=

√
2π +

√
27 −√

2π√
2π +

√
27 +

√
2π

,
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and εN > 0, εN → 0 as N → ∞. Thus, defining CN by

E(0, N) = −1
4

log
(

4
e

)
N2 − 1

4
N log N + CNN,(3.3)

there holds

lim inf
N→∞

CN ≥ −1
4

log
(π

2
(1 − exp(−a))b

)
= −0.112768770 . . . .(3.4)

We remark that the coefficient −(1/4) log(4/e) of the N2 term in (3.3)
is just half of the average of K(|x − y|) = log |x − y|−1 over S2 × S2 as in
Theorem 2.2.

Proof of Theorem 3.1. Let S : S2 → C be the stereographical projection
of S2 onto the complex plane C. Let zi = S(xi), i = 1, 2, . . . , N . Then
we have ∏

i<j

|xi − xj | =
∏
i<j

2|zi − zj |√
(1 + |zi|2)(1 + |zj |2)

=
2N(N−1)/2∏N

k=1 (1 + |zk|2)(N−1)/2

∏
i<j

|zi − zj |,

and so

∏
i<j

|xi − xj | = 2N(N−1)/2
N−1∏
k=1

(
N−1

k

)−1/2 · |det(ξ1, ξ2, . . . , ξN )| ,(3.5)

where

ξk :=
1

(1 + |zk|2)(N−1)/2

(√(
N−1

0

)
,
√(

N−1
1

)
zk, . . . ,

√(
N−1
N−1

)
zN−1
k

)
,

k = 1, . . . , N.

Using the fact that
N−1∏
k=0

(
N−1

k

)
=

N−1∏
k=1

kk

k!
,

we get

∏
i<j

|xi − xj | = 2N(N−1)/2

[
N−1∏
k=1

k!
kk

]1/2

· |det(ξ1, ξ2, . . . , ξN )| .(3.6)

Notice that each ξk regarded as a vector in CN has l2-norm equal to one;
consequently, from Hadamard’s inequality, we deduce (3.1).
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To improve the estimate (3.1), we shall (for many indices i) subtract
from the vector ξi its projection on a nearby neighbor ξj . For this pur-
pose, we recall from (2.6) that, for λ > 1 (to be chosen later), we can
partition the sphere into [N/λ] parts with the diameter of each part less
than

dN,λ :=
(
4
√

λ/
√

N
)
·
√

2π/
√

27 (1 + εN ) , εN > 0, εN → 0 as N → ∞.

Let us now consider a selection process in which we pair off points {xi, xj},
i �= j, if xi, xj belong to the same part of this partition. Since there are
[N/λ] parts, it can be seen that there exist at least (1− 1/λ)N/2 pairwise
disjoint sets of points {xi, xj}i �=j with |xi −xj | ≤ dN,λ. For these sets, the
corresponding vector sets {ξi, ξj} satisfy

|〈ξi, ξj〉|2 =
(

1 − |xi − xj |2
4

)N−1

≥
(

1 − d2
N,λ

4

)N−1

.(3.7)

Since d2
N,λ/4 = (8πλ/

√
27)(1+εN )2/N and (1+x)N−1 ≥ exp((N−1)x/(1+

x)) for any x > −1, x �= 0, inequality (3.7) implies that

|〈ξi, ξj〉|2 ≥ exp

(
− (8πλ/

√
27)(1 + εN )2(N − 1)

N − (8πλ/
√

27)(1 + εN )2

)

≥ exp
(
−8πλ/

√
27

)
− ε̂N ,

where ε̂N > 0, ε̂N → 0 as N → ∞. Hence,

|ξi − 〈ξi, ξj〉ξj | =
√

1 − |〈ξi, ξj〉|2 ≤
(
1 − exp

(
−8πλ/

√
27

)
+ ε̂N

)1/2

.

(3.8)

Subtracting the projections for the above pairs and applying Hadamard’s
inequality, we deduce from (3.8) and (3.6) that

(3.9)
∏
i<j

|xi − xj |

≤ 2N(N−1)/2

[
N−1∏
k=1

k!
kk

]1/2

·
(
1 − exp

(
−8πλ/

√
27

)
+ ε̂N

)(1−1/λ)N/4

.

Next we want to minimize the upper bound in (3.9) with respect to λ.
Since exp

(−8πλ/
√

27
)

is very small, we have

log
(
1 − exp

(
−8πλ/

√
27

)
+ ε̂N

)(1−1/λ)

≈ −(1 − 1/λ) exp
(
−8πλ/

√
27

)
,
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and the minimization of the last term gives λ = (
√

2π+
√

2π +
√

27)/2
√

2π.
Plugging this value for λ into (3.9) we obtain the first part of (3.2). Then,
the second part of (3.2) and (3.4) follow (after some calculations) by Stir-
ling’s formula. (We remark that the explicit choice of λ in the preceding
proof is not optimal; a slightly smaller choice for λ leads to a slight im-
provement in the upper bound in (3.2).)

In the opposite direction, we have

Theorem 3.2. With CN defined as in Theorem 3.1,

lim sup
N→∞

CN ≤ −1
4

log
π
√

3
2

− π

8
√

3
= −0.0234973 . . . .(3.10)

The proof of Theorem 3.2 requires much more effort. Here we present
only a sketch; details will appear in [21]. The idea is to construct an
explicit set of points whose energy is easy to estimate yet provides a good
upper bound for CN . For this purpose it is convenient to first define points
in the plane and then take their projections on S2.

Proof. Given N and any partition of N , say {m1, m2, . . . , mn}, where∑n
k=1 mk = N and mk > 0, k = 1, . . . , N , let αk ∈ [0, 1), k = 1, . . . , n.

Define, for 1 ≤ k ≤ n,

ξk := 1 − 1
N


k−1∑

j=1

mj +
mk

2


 , rk :=

√
1
ξk

− 1,

zk,j := rk exp
(

2πi

mk
(j + αk)

)
, j = 1, 2, . . . , mk.

Let dσ∗ := (N/4π)·dσ, where dσ is the surface area measure on S2, and set
dτ :=

∑n
k=1 dτk, where dτk := mk(dϕ/2π) with dϕ denoting angular mea-

sure on the circle |z| = rk. As before, we let S denote the stereographical
projection and we consider the point set

ωN := { S−1(zk,j) : 1 ≤ j ≤ mk, 1 ≤ k ≤ n }.

Then we have the following representation.
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Lemma 3.3. Let Dk := { z ∈ C : rk−1 ≤ |z| ≤ rk }, r0 := 0 and let
dλ = dσ∗(S−1) and dλk := dλ|Dk

. Then

(3.11) − E(0, ωN ) =
1
4

log
(

4
e

)
N2 +

1
2

n∑
k=1

mk log
mk

2
√

ξk(1 − ξk)

+
1
2

n∑
k=1

∫
V λk−τkd(λ + τ)

+
∑

1≤l<k≤n

dl,k log

∣∣∣∣∣1 −
(

rl

rk

)mlmk/dl,k

exp
(

2πi
αlmk − αkml

dl,k

)∣∣∣∣∣ ,

where dl,k is the greatest common divisor of ml and mk and V λk−τk(z),
z ∈ C, is the logarithmic potential of λk − τk, i.e.,

V λk−τk(z) :=
∫

log
1

|x − z|d(λk − τk)(x).

Remark. The term in (3.11) involving the integral of the potential can be
represented as

n∑
k=1

1
2

∫
V λk−τkd(λ + τ) =

1
24N

n∑
k=1

m3
k

(
1
ξk

+
1

1 − ξk

)

+ O

[
1

N2

n∑
k=1

m4
k

(
1
ξ2
k

+
1

(1 − ξk)2

)]
.

Notice that the last term in (3.11) is the only term that involves the
“angular adjustments” αk. If we integrate this term with respect to
dα1dα2 · · · dαn for 0 ≤ αk ≤ 1, we get zero, which means there is at
least one set of angular adjustments with the property that the last term
in (3.11) vanishes. With this choice of αk’s we select n and {mk}n

k=1 ex-
actly as in the proof of Theorem 2.4. After substantial calculations, it can
be shown that (3.10) is true.

The next result shows that logarithmic equilibrium points are well-
separated on the sphere; its proof will appear in [20].

Theorem 3.4. If {x(N)
i }N

i=1 ⊂ S2 maximizes the product
∏

1≤i<j≤N

|xi−xj |
for {xi}N

1 ⊂ S2, then

|x(N)
i − x

(N)
j | ≥ 3

5
1√
N

, for i �= j.
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Elkies [12] also has observed that in the logarithmic equilibrium case
(α = 0), the order of separation is O(1/

√
N). For α = −1, Dahlberg has

proved in [10] the well-separatedness of the minimum energy points.

4. Conjectures for Asymptotics of E(α, N)

Several conjectures already exist concerning the asymptotic behavior
of E(α, N) for special values of α: see Alexander [1], Stolarsky [26, 27]
and Beck [2] for α = 1; Glasser [17] and Erber [13] for α = −1. Here
we formulate a general conjecture for E(α, N) and discuss our numerical
experiments for the cases N ≤ 200, α = 0,±1, that support it.

Conjecture 4.1. For −2 < α < 2 there exist absolute constants Bα, Cα,
depending only on α, such that

(4.1) E(α, N)

=



−1

4
log

(
4
e

)
N2 − 1

4
N log N + BαN + Cα log N + O(1) if α = 0,

2α

2 + α
N2 + BαN1−α/2 + CαN−α/2 + O

(
N−1−α/2

)
if α �= 0.

Assuming the validity of this conjecture, it follows from (3.4) and (3.10)
that, for α = 0,

−0.1127688 ≤ B0 ≤ −0.0234973.(4.2)

For α �= 0, Corollary 2.6 yields an upper bound for Bα if −2 < α < 0
and a lower bound for Bα if 0 < α < 2. We can also obtain (after some
calculations) a lower bound for Bα when −2 < α < 0 using the results of
[30]. Combining these estimates we get

−5 + 2α

4 + 2α
≤ Bα ≤ −1

2

(
2
√

2π
)α

, if −2 < α < 0;(4.3)

−1
2

(
2
√

2π
)α

≤ Bα < 0, if 0 < α < 2.(4.4)

The upper bound in the last inequality is proved in [31].
We did massive high precision computer experiments to find the ex-

tremal points and determine E(α, N) for α = 0,±1 and N ≤ 200. An
ad hoc algorithm was designed for the case α = 0. We also tried several
known algorithms and found that the quasi-Newton algorithm works quite
well for general α. Because of the presence of local extrema, care had to
be taken to ensure that the extrema we found were indeed global extrema.
For the cases we investigated, the extremal configurations on the sphere
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demonstrate a rich set of symmetries and principles. We also observed
that all the local extrema have very close energies.

Fitting the conjectured formulas (4.1)† to the data obtained for α =
0,±1, by minimizing the absolute l1-deviation (for N ≤ 200), leads to the
following formulas for the approximations f(α, N) to the actual values of
E(α, N):

f(−1, N) =
N2

2
− 0.55230N3/2 + 0.0689N1/2,(4.5)

f(0, N) = −1
4

log
(

4
e

)
N2 − 1

4
N log N − 0.026422N + 0.13822,(4.6)

f(1, N) =
2
3
N2 − 0.40096N1/2 − 0.188N−1/2.(4.7)

In Figure 1 we plot the difference E(0, N) − f(0, N). Notice from the
enlarged scale that the fit is quite good. The graphs for α = ±1 are
similar.

-0.06

-0.04

-0.02

0

0.02

25 50 75 100 125 150 175 200

N

Figure 1. Error in Approximating Extremal Logarith-
mic Energy

†For the case α = 0, the log N term did not appear to be significant and was ignored
in the fitting algorithm.
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5. Generalized spiral points

From numerical experiments, it appears that the logarithmic equilib-
rium points try to distribute themselves over a nearly regular spherical
hexagonal net. We devised a simple scheme for imitating this behavior for
any given N . To describe these points we use the spherical coordinates
(θ, φ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. Let

hk := −1 + 2(k − 1)/(N − 1), 1 ≤ k ≤ N ; θk := arccos(hk);
(5.1)

φ1 := φN := 0,

φk :=

(
φk−1 +

C√
N

1√
1 − h2

k

)
(mod 2π), 2 ≤ k ≤ N − 1,(5.2)

where the constant C is chosen so that successive points will have ap-
proximately the same (Euclidean) distance apart on S2. The point set
ω̂N = {(φk, θk)}N

k=1 is called a generalized spiral on S2. If we choose
C = 3.6 and plot the difference E(0, ω̂N ) − f(0, N) for N ≤ 12, 000, we
get Fig. 2. This figure shows that the generalized spiral points have, for
large N , energy that agrees with (4.1) to within O(N). In fact, although
ω̂N does not appear to solve the Shub and Smale Problem (cf. (1.3)), nu-
merically it gives E(0, ω̂N ) − f(0, N) ≤ (5/2) log N for 2 ≤ N ≤ 12, 000.
Furthermore, from the estimate (3.2) and the computed values of E(0, ω̂N ),
we find

E(0, ω̂N ) − E(0, N) ≤ 114 log N for 2 ≤ N ≤ 12, 000.(5.3)

For −2 < α < 2, α �= 0, computations indicate that these same spiral
points have α-energy that agrees with (4.1) to within O(N1−α/2).

0

4

8

12

16

20

24

0 2000 4000 6000 8000 10000 12000

E(0, ω̂N ) − f(0, N)

N

Figure 2. Behavior of Energy for Generalized Spiral
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16. L. Föppl. Stabile Anordnungen von Elektronen im Atom. J. Reine Angew. Math.

141 (1912), 251–301.
17. L. Glasser and A. G. Every. Energies and spacings of point charges on a sphere.

Journal of Physics A: Mathematical and General 25 (1991), 2473–2482.
18. S. Lang. Introduction to Arakelov theory. Springer-Verlag, New York, 1988.
19. T. W. Melnyk, O. Knop, and W. R. Smith. Extremal arrangements of points and

unit charges on a sphere: equilibrium configurations revisited. Can. J. Chem. 55
(1977), 1745–1761.

20. E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou. Electrons on the sphere. In: Pro-
ceedings of Conference on Computational Methods and Function Theory, Malaysia,
1994 (to appear).

21. E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou. Bounds for the product of distances
between points on a sphere. (to appear).

22. M. Shub and S. Smale. Complexity of Bezout’s theorem I: geometric aspects.
preprint.

23. M. Shub and S. Smale. Complexity of Bezout’s theorem II: volumes and probabili-
ties. preprint.

24. M. Shub and S. Smale. Complexity of Bezout’s theorem III: condition number and
packing. preprint.



662 E. A. RAKHMANOV, E. B. SAFF, AND Y. M. ZHOU

25. R. E. Smalley. Great balls of carbon: the story of buckminsterfullerene. The Sciences
31 (1991), 22–28.

26. K. B. Stolarsky. Sums of distances between points on a sphere. Proc. Amer. Math.
Soc. 35 (1972), 547–549.

27. K. B. Stolarsky. Sums of distances between points on a sphere. II. Proc. Amer.
Math. Soc. 41 (1973), 575–582.

28. B. L. van der Waerden. Punkte auf der Kugel. Drei Zusätze. Math Ann. 125 (1952),
213–222.

29. G. Wagner. On the product of distances to a point set on the sphere. J. Austral.
Math. Soc. (Series A) 47 (1989), 466–482.

30. G. Wagner. On the means of distances on the surface of a sphere (lower bounds).
Pacific J. Math. 144 (1990), 389–398.

31. G. Wagner. On the means of distances on the surface of a sphere, II (upper bounds).
Pacific J. Math. 153 (1992), 381–396.

32. J. B. Weinrach, K. L. Carter, D. W. Bennett, and H. K. McDowell. Point charge
approximations to a spherical charge distribution. J. Chem. Educ. 67 (1990), 995–
999.

33. L. L. Whyte. Unique arrangements of points on a sphere. Amer. Math. Monthly 59
(1952), 602–611.

34. B. L. Zhang, C. Z. Wang, Ho K. M., C. H. Xu, and C. T. Chan. The geometry of
small fullerene cages: C20 to C70. Journal of Chemical Physics. 97 (1992), 5007–
5011.

35. Y. M. Zhou. Arrangements of points on the sphere. Ph.D. thesis, University of
South Florida, Tampa, FL, 1995.

E. A. Rakhmanov, Steklov Institute, 42 Vavilova St., Moscow, Russia.
E-mail address: rakhman@mph.mian.su; rakhmano@math.usf.edu.

E. B. Saff, Y. M. Zhou, Institute for Constructive Mathematics, Depart-
ment of Mathematics, University of South Florida, Tampa, FL 33620.

E-mail address: esaff@math.usf.edu; zhou@math.usf.edu.


