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ELECTROMAGNETIC SCATTERING ON NONSMOOTH
DOMAINS

Marius Mitrea

Abstract. We initiate the study of the boundary value problems for
Maxwell equations in arbitrary Lipschitz domains by means of layer po-
tential techniques.

1. Introduction

The central problem in direct (classical) electromagnetic scattering the-
ory, i.e. describing the wave propagation of the the electric and magnetic
fields (E, H), is of fundamental importance both from a theoretical and
a practical point of view. Over the years the subject has continuously
received a great deal of attention; detailed accounts on these matters can
be found in [6],[4].

The boundary value problems for the time-independent form of Maxwell
equations in smooth domains have been solved for the first time in the early
1950’s [2],[13],[15] in terms of singular layer potential integral operators.
Due to the smoothness of the boundary of the domain, these integrals
are actually only weakly singular, hence giving rise to compact operators
for which the Fredholm theory is readily applicable. More recently, these
techniques have been refined to treat C 1 domains, too ([12]).

This note reports on progress made in the direction of employing the
layer potential techniques for solving boundary value problems related to
the Maxwell system on Lipschitz domains. In the time-independent case
we shall treat the Dirichlet problem on arbitrary Lipschitz domains in three
space dimensions and even in the higher dimensional setting, as well as the
more general case of first order elliptic complexes satisfying certain symme-
try conditions. The parabolic form of the Maxwell equation on Lipschitz
cylinders is also considered. An immediate difficulty is that compactness
arguments are no longer directly applicable on Lipschitz boundaries.
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This effort builds on the fundamental work of Dahlberg, Fabes, Jerison,
Kenig, Verchota for the Laplacian and its further refinements to the sys-
tem of elastostatics and to the linearized Stokes system. One of the key
ingredients of this approach is establishing the relevant Rellich identities
for the Maxwell system.

A distinct characteristic of the problems at hand is that the boundary
data (necessarily) exhibit regularity properties of a fairly intricate geo-
metric nature (as opposed to other cases mentioned above). In particular,
arguments involving flattening the boundary of the domain, as in [14] or
[5], are not suited for the problems under discussion. We overcome this
difficulty by making a careful analysis of the spectrum of the Maxwell
boundary integral operator. Among other things, we are able to relate
its spectral radius to that of the classical double layer harmonic potential
operator.

More applications and details of the results announced here will appear
elsewhere. Part of them have been obtained in collaboration with other
people and will be published as joint work.

2. Statement of main results.

For the sake of brevity we shall not attempt to give complete definitions
unless absolutely necessary. For more information we refer the reader to
e.g. [9],[10] whose notation and terminology we shall employ in the sequel.

Let Ω be a bounded Lipschitz domain in R3. The boundary value
problem for the Maxwell system, in the strong sense of Calderón [2], resides
in finding a pair (E, H) of vector fields which are smooth inside Ω and
satisfy

(M)




curl E − ikH = 0 on Ω,
curl H + ikE = 0 on Ω,
E∗, H∗ ∈ L2(∂Ω),
n × E|∂Ω = A.

Here k ∈ C depends solely on the electric and magnetic characteristics of
the medium in R3. For simplicity, throughout the paper we shall assume
that Im k > |Re k|. Also, n is the unit normal defined a.e. on ∂Ω, ∗ is the
non-tangential maximal operator and the boundary trace is taken in the
non-tangential limit sense (see [9],[10]).

Let L2,Div
tan (∂Ω) be the space of all tangential vector fields on ∂Ω such

that

‖A‖L2,Div
tan (∂Ω) := sup

{∣∣∣∣
∫

∂Ω

|A|ϕ dσ

∣∣∣∣ +
∣∣∣∣
∫

∂Ω

〈∇tanϕ, A〉 dσ

∣∣∣∣
}

< +∞,
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where the supremum is taken over all scalar-valued functions ϕ ∈ C1(R3)
with ‖ϕ‖L2(∂Ω) = 1, and ∇tan is the usual tangential gradient on ∂Ω.

Theorem 1. For any A ∈ L2,Div
tan (∂Ω) the problem (M) has a unique

solution. This solution also satisfies

‖E∗‖L2(∂Ω) + ‖H∗‖L2(∂Ω) ≤ C‖A‖L2,Div
tan (∂Ω),

and
‖E‖W 1/2(Ω) + ‖H‖W 1/2(Ω) ≈ ‖A‖L2,Div

tan (∂Ω).

For (M) to be solvable, A ∈ L2,Div
tan (∂Ω) is a necessary condition, too.

One can actually solve a somewhat more general problem which we now
describe.

Theorem 2. The following boundary value problem has a unique solution:


(� + k2)E = 0 on Ω,
‖|E‖| := ‖E∗‖L2(∂Ω) + ‖(curl E)∗‖L2(∂Ω) + ‖(div E)∗‖L2(∂Ω) < +∞,

n × E|∂Ω = A ∈ L2,Div
tan (∂Ω),

(div E)|∂Ω = f ∈ L2(∂Ω).

This solution also satisfies ‖|E‖| ≤ C(‖A‖L2,Div
tan (∂Ω) + ‖f‖L2(∂Ω)).

In addition, (∇(div E))∗ ∈ L2(∂Ω) if and only if f ∈ L2,1(∂Ω). In this
latter case, ‖(∇(div E))∗‖L2 ≤ C(‖f‖L2 + ‖∇tanf‖L2).

The problem (M) generalizes to higher dimensions as follows. Given a
Lipschitz domain Ω in Rm and 0 ≤ l ≤ m− 1, determine a (l + 1)-form E
and a l-form H having smooth coefficients in Ω and such that

(Mm)




δE − ikH = 0 on Ω,
dH + ikE = 0 on Ω,
E∗, H∗ ∈ L2(∂Ω),
n ∨ E|∂Ω = A.

Here d is the usual exterior derivative operator, δ stands for its formal
transpose, n, the outward unit normal, is canonically identified with a 1-
form, and ∨ is the interior product of forms. For (Mm) to be solvable,
the l-form A must be tangential, i.e. n ∨ A = 0 a.e. on ∂Ω, have square
integrable coefficients on ∂Ω, and satisfy

‖|A|‖2 := sup

∣∣∣∣
∫

∂Ω

〈dψ, A〉 dσ

∣∣∣∣ < +∞,

where the supremum is taken over the set of all (l − 1)-forms ψ with
coefficients in C1(Rm) normalized so that ‖ψ‖L2(∂Ω) = 1.
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Theorem 3. For any A as above, the problem (Mm) has a unique solu-
tion. Moreover, this solution satisfies

‖E∗‖L2(∂Ω) + ‖H∗‖L2(∂Ω) ≤ C(‖A‖L2(∂Ω) + ‖|A|‖2).

Another problem of interest is that of determining a harmonic field
in a Lipschitz domain having a prescribed tangential component on the
boundary. In concrete terms, one looks for a (l + 1)-form E so that

(Dm)




dE = 0 = δE on Ω,
E∗ ∈ L2(∂Ω),
n ∨ E|∂Ω = A.

Theorem 4. Assume that Ω is a special Lipschitz domain in Rm. Then
(Dm) is uniquely solvable if and only if A is a tangential l-form with square
integrable coefficients on ∂Ω and such that

∫
∂Ω

〈dψ, A〉 dσ = 0

for any (l − 1)-forms ψ with coefficients in C1
0 (Rm).

A similar result, this time prescribing the normal component of E on the
boundary, is also valid. In fact, these two boundary value problems are
dual to each other via the Hodge ∗-isomorphism. It is interesting to note
that these results naturally extend those of Dahlberg, Jerison, Kenig and
Verchota concerning the L2-Dirichlet and Neumann problem for harmonic
functions. Moreover, results of this type can also be obtained for harmonic
tensors, i.e. differential forms such that dδE = 0 = dE or δdE = 0 = δE.

We now describe the parabolic version of the Maxwell equations in Lip-
schitz cylinders. Let D

1/2
t , I1/2 stand, respectively, for the half-order frac-

tional derivative and fractional integration operators in the time variable.
The boundary value problem for the diffusion equation of the electromag-
netic fields (E ,H) = ((Ei(x, t))3i=1, (Hi(x, t))3i=1) in the domain Ω × R in
R4 is (cf. [6])

(Mpar)




E , H ∈ C∞(Ω × (0,∞)),
E|t=0 = H|t=0 = 0 on Ω,

E∗, (D1/2
t H)∗ ∈ L2(∂Ω × (0,∞)),

curl E − ∂tH = 0 on Ω × (0,∞),
curlH + E = 0 on Ω × (0,∞),
n × E|∂Ω×(0,∞) = A.
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Theorem 5. A necessary and sufficient condition for the problem (Mpar)
to be uniquely solvable is that A is a tangential, square integrable vector
field on ∂Ω × (0,∞) for which

sup

∣∣∣∣
∫ ∞

0

∫
∂Ω

〈∇tanψ, I1/2A
〉
dσ

∣∣∣∣ < +∞,

with supremum taken over all functions ψ ∈ C1
0 (R4) with

‖ψ‖L2(∂Ω×R) = 1.

3. Sketch of proofs and further results

. The problem (M) essentially reduces to proving that ± 1
2 + M are

isomorphisms of L2,Div
tan (∂Ω), where the principal value singular integral

operator M is given by MA := n × curl SA with S standing for the
simple-layer acoustic-potential operator on ∂Ω. Since, clearly, λ + M has
index zero for λ sufficiently large, the main idea of proof is to show that
λ+M is a semi-Fredholm operator on L2,Div

tan (∂Ω) for each λ ∈ R\(− 1
2 , 1

2 ).
Let us briefly indicate how this can be done for the critical values λ =

± 1
2 . The key step is establishing the estimate

‖(−1/2 + M)A‖L2,Div
tan (∂Ω) ≈ ‖(1/2 + M)A‖L2,Div

tan (∂Ω).(1)

In doing so, the main ingredient is a suitable Rellich type identity. More
specifically, for any smooth vector fields E, Θ, we have

Re

(∫
∂Ω

1
2
|E|2 〈Θ, n〉 dσ −

∫
∂Ω

〈
Ē, Θ

〉 〈E, n〉 dσ

)
(2)

= Re

(∫∫
Ω

1
2
|E|2div Θ − 〈

Ē, Θ
〉
div E − 〈

Ē, (∇Θ)E
〉

+
〈
curl E, Ē × Θ

〉)
.

Here (∇Θ)E is the matrix {∂iΘj}i,j acting on E. For (E, H) as in (M),
this amounts to

‖n × E‖L2,Div
tan (∂Ω) ≈ ‖n × H‖L2,Div

tan (∂Ω).(3)

Expressing E, H as appropriate layer potentials, (1) follows. Note that
(3) is the Lipschitz domain version of the fact that the so called voltage-
to-current map Λ : n × E �→ n × H is an isomorphism.

Let us point out that our approach also gives that the spectral radius
of M on L2,Div

tan (∂Ω) is < 1
2 provided the spectral radius of the classical

double layer harmonic potential operator acting on the space of square
integrable functions with zero integral mean is so. While still open for
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general Lipschitz domains, this latter fact is known to be true for bounded
convex domains or Lipschitz domains with small Lipschitz constant ([7]).
Therefore, whenever this holds true, we have

(
±1

2
+ M

)−1

= ±2
∞∑

j=0

(∓2M)j

with convergence in the strong operator norm.
As in the case of the heat equation ([1]), taking a partial Fourier trans-

form in the time variable essentially reduces (Mpar) to the study of a
family of elliptic boundary value problems with one parameter. Then the
main difficulty lies in obtaining estimates with adequate control on the
parameter. Theorem 5 is new even on cylinders with smooth profile. Cer-
tainly, it would be of interest to analyze the corresponding problem in
time-varying domains.

The higher dimensional analogue of (2) is

Re

∫∫
Ω

1
2
|E|2div Θ +

〈
δE, Θ ∨ Ē

〉
+

〈
dE, Θ ∧ Ē

〉−∑
j

〈
dΘj ∨ E, ej ∨ Ē

〉

=
∫

∂Ω

1
2
|E|2 〈Θ, n〉 − Re

∫
∂Ω

〈
Θ ∨ Ē, n ∨ E

〉
.

Here {ej}m
j=1 is the standard basis in Rm, E is a differential form on Ω

and Θ = {Θj}m
j=1 vector field in Rm, with smooth, real-valued components.

Note that, in the particular case when E = du, with u a harmonic function,
this identity reduces to the one used by Jerison, Kenig and Verchota.
Furthermore, it also has important connections with the Clifford algebra
formalism (cf. [11]) and problems arising in spectral geometry.

As for Theorem 4, let us remark that the above identity also implies

‖E‖L2(∂Ω) ≤ C min
{‖n ∧ E‖L2(∂Ω), ‖n ∨ E‖L2(∂Ω)

}

+C

∣∣∣∣
∫

∂Ω

〈
δE, n ∨ Ē

〉∣∣∣∣ + C

∣∣∣∣
∫

∂Ω

〈
dE, n ∧ Ē

〉∣∣∣∣ .(4)

Now, if E is a harmonic field (i.e. dE = 0 = δE), then (4) reduces to
‖Etan‖L2(∂Ω) ≈ ‖Enor‖L2(∂Ω) which, for the harmonic case, plays a role
analogous to that of (3).

Finally, let us note that our main identities continue to hold on man-
ifolds, too. In fact, they also carry over to the more general setting of
first-order, linear elliptic complexes satisfying certain symmetry condi-
tions. More concretely, if (σ(dj ; ·))j is the sequence of associated symbols
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of a first order elliptic complex (dj)j , then the required assumption is that,
for each j, the bilinear form

Πj(ξ, µ) := σ(dj−1; ξ)σ(dt
j−1; µ) + σ(dt

j ;µ)σ(dj ; ξ)

is symmetric in ξ and µ. This is for instance the case for the usual de
Rham or Dolbeault complexes.
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