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VASSILIEV KNOT INVARIANTS AND LIE S-ALGEBRAS

Arkady Vaintrob

Abstract. The goal of this work is to explain the appearance of Lie alge-

bras in the theory of knot invariants of finite order (Vassiliev invariants).
As a byproduct, we find a new construction of such invariants. Namely,
we show that the theory of Vassiliev invariants leads naturally to the no-
tion of S-Lie algebra, where S is an involutive solution of the quantum

Yang-Baxter equation. For each S-Lie algebra L with an L-invariant S-
symmetric non-degenerate bilinear form b and an invariant functional on
its universal enveloping algebra, we construct a sequence of Vassiliev knot

invariants.

Introduction

The Jones polynomial and its generalizations were constructed by com-
binatorial methods motivated by statistical physics. Witten in [15] gave
a heuristic path integral interpretation of these invariants. Bar-Natan [2]
found that perturbative approach to Witten’s integrals is related to Vas-
siliev’s theory of knot invariants of finite type. Therefore, there is an
indirect connection between models of statistical physics and Vassiliev in-
variants. In this paper we will give a direct combinatorial construction of
Vassiliev invariants. The idea is to adopt to the case of Vassiliev diagrams
the Yang-Baxter models for the Jones polynomial and its relatives [5, 10].

The works of Birman-Lin [1], Bar-Natan [2, 3] and Kontsevich [5] show
that Vassiliev invariants (with values in Q) can be described by combi-
natorial objects called weight systems. Weight systems of order n form a
finite-dimensional vector space Wn. To describe this space, we just need
to solve a system of linear equations. But the numbers of unknowns and
equations in this system grow extremely fast. For example, to find that
dimW9 = 44, Bar-Natan [2] had to work with a linear system of 5,056,798
equations and 644,808 unknowns, and it took 10 days of computer time.
There is absolutely no hope of computing dimW10 using this approach.
Taking into account a relatively small number of independent solutions for
a system of so huge a size, we need to look for a better way to describe
Wn.

Bar-Natan in [2] gave a construction of weight systems using a Lie
algebra L with an invariant inner product and a module. These invariants
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of finite type appear as coefficients of the perturbative expansion of the
corresponding Chern-Simons-Witten invariant.

The appearance of Lie algebras in the knot-theoretic situation looks
slightly mysterious since there seem to be no direct links between knots
and Lie algebras. We will discuss such relation here.

Specifically, we take the idea of operator-valued invariants of knots and
links (see [11, 16], for example) and apply it to the case of weight systems
and chord diagrams. We show that this path naturally leads to the notion
of Yang-Baxter Lie algebra. These algebraic structures generalize both Lie
algebras and Lie superalgebras. They appeared earlier in the literature
on the quantum Yang-Baxter equation and quantum groups (cf. [4, 6]),
but only in the language of chord and Feynman diagrams do they obtain
a natural pictorial interpretation. As a byproduct, we will find a more
general construction of weight systems. Our main result can be formulated
as follows.

Let S be an involutive solution of the quantum Yang-Baxter equation.
For each S-Lie algebra L with an L-invariant S-symmetric non-degenerate
bilinear form b on L and an invariant functional on its universal enveloping
algebra, we construct a sequence of Vassiliev knot invariants.

Bar-Natan conjectured that the space of Vassiliev invariants is spanned
by the invariants coming from Lie algebras. If confirmed, this conjecture
would contradict Vassiliev’s completeness conjecture that invariants of fi-
nite order are able to distinguish all different knot types.

Our construction is a priori more general than Bar-Natan’s. It has not
yet brought us new invariants. However, even if Bar-Natan’s conjecture is
true, many interesting knot invariants will appear only as linear combina-
tions of invariants coming from several Lie algebras and modules. A typical
example is the Alexander-Conway polynomial ∆(z) = a0+a1z+a2z

2+. . ..
Each coefficient an is a knot invariant of finite order, but no Lie algebra can
produce the whole sequence a0, a1, . . . , an, . . . by Bar-Natan’s construction.
This can be achieved if we use weight systems coming from Yang-Baxter
Lie algebras.

1. Vassiliev invariants

Here we summarize results of Vassiliev [13, 14], Birman–Lin [1], Kont-
sevich [5], and Bar-Natan [3] on Vassiliev knot invariants.

1.1. Definition of Vassiliev invariants. Denote by K the space of all
oriented knots in R

3. By K̄ we denote the space of immersions of S1 into
R

3, the only possible singularities of which are simple double points (i.e.
self-intersections with distinct tangents). Elements of K̄ are called singular
knots. Let Kp be the subspace of K̄ consisting of singular knots with not
more than p self-intersections. It is clear that K̄ =

⋃
p Kp and K0 = K.
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The starting point of Vassiliev’s theory is a simple observation that any
numerical knot invariant can be naturally extended to the set of singular
knots.

Proposition 1.1.1. Let I : K → k be a knot invariant with values in an
Abelian group k. There exists an extension of I to K̄ such that

(1)
I(K+) − I(K−) = I(K0),

where K+, K− and K0 are three singular knots identical every-
where except the interior of a small ball in R

3 where they look
like
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(2)

I(K) =
∑

α∈(Z2)p

sgn(α)I(Kα),

where for α = (α1, . . . , αp), αi ∈ Z2 = {±1}, we denote by sgn(α)
the product

∏
αi and by Kα the knot obtained from a singular knot

K ∈ Kp \Kp−1 with exactly p double points x1, . . . , xp by resolving
the point xi in a positive (resp. negative) direction if αi = +1
(resp. αi = −1).

Corollary 1.1.2. [1]

(1) Value of the extended invariant on a singular knot like

r
is equal to zero.
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(2) The extension of a knot invariant I satisfies the so-called four-term
relation
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Definition 1.1.3. An oriented knot invariant I is called an invariant of
order (less than or equal to) p if its extension to K̄ vanishes on all singular
knots with more than p double points, i.e. I(K) = 0 for K ∈ Kp+1.
Invariants of finite order are called Vassiliev invariants.

Denote by Vp the space of invariants of order ≤ p, and by V the space
of all Vassiliev invariants. We have a filtration

V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vp ⊂ Vp+1 ⊂ . . . ⊂ V.

If k is a ring, it is easy to see that Vp ·Vq ⊂ Vp+q, i.e. V is a filtered algebra.
All known knot polynomials are related to Vassiliev invariants. For

example, let ∆(K) = c0 + c1z + c2z
2 + . . . be the Alexander–Conway

polynomial of the knot K. Then it is easy to see [3] that the coefficient cn

is a Vassiliev invariant of order ≤ n. Birman and Lin [1] showed that after a
change of variable in the Jones (or HOMFLY, or Kauffman) polynomial it
becomes a formal power series whose n-th coefficient is a Vassiliev invariant
of order ≤ n.

Similarly, if R is a deformation of the trivial solution of the quantum
Yang-Baxter equation, then the R-matrix invariants of Turaev [10] corre-
spond to sequences of Vassiliev invariants (cf. [3]).

1.1.4. Triple intersections. Triple intersections are not allowed in singular
knots, but we may use 1.1.2.(2) to show that each invariant I can be
extended to the set of immersions S1 → R

3 with transversal double and
triple intersections by means of the following three-term relation
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This relation obviously implies the four-term relation 1.1.2.(2). (Here
and in the drawings that follow, we omit I in front of diagrams.)

Remark 1.1.5. Vassiliev defined his invariants in terms of a natural strati-
fication of the discriminant in the space of maps R

1 → R
3. The axiomatic

approach we are using here belongs to Birman and Lin [1]. It allows us to
extend the whole theory to invariants of links, and also of framed knots
and links.
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1.2. Chord diagrams and weight systems.

Definition 1.2.1. A chord diagram of order n is an oriented circle with
n non-intersecting pairs of points (chords) on it, up to an orientation pre-
serving diffeomorphism of the circle.

Denote by Dn the set of all chord diagrams of order n. There exists a
natural forgetting of knottedness map ch : Kn → Dn: for every singular
knot K with n double points, ch(K) is the chord diagram order n, where
the chords are the inverse images of double points under the map K :
S1 → R

3.
Drawing chord diagrams we assume that the circle is oriented counter-

clockwise. The intersection points of chords on these drawings are irrel-
evant. The only thing that matters is the way the chords combine their
endpoints into pairs.

An immediate corollary from the definition of Vassiliev invariants is
that the value of an invariant of order ≤ n on a singular knot K with
n self-intersections depends only on the diagram ch(K) of K, not on its
knottedness (i.e. on combinatorics rather than topology of K).

Proposition 1.2.2. If I ∈ Vn and K1,K2 ∈ Kn such that ch(K1) =
ch(K2), then I(K1) = I(K2).

In other words, I descends to a function C(I) on Dn.

1.2.3. Vassiliev-Birman-Lin relations for chord diagrams. The properties
(1) and (2) of 1.1.2 translate into the following relations between restric-
tions of I ∈ Vn onto Dn [1].

(1) Isolated chord relation: r r = 0

(2) Four-term relation for chord diagrams:

r r
r r−

r r
r r =

r
r

r r
−

r
r

r r
(There may be other chords attached to dotted arcs on these drawings,

but there are no other points on the solid arcs.)

1.3. Kontsevich–Bar-Natan’s theorem.

Definition 1.3.1. A function W : Dp → k satisfying the conditions (1)
and (2) of 1.2.3 is called a weight system of order p. If W satisfies only
the 4-term relation (2), then we call it a weak weight system.

Denote by Wp the set of all weight systems of order p, and by Ŵp the
set of all weak systems of order p.
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The conditions 1.2.3 imply that there is a natural map Vp/Vp−1 → Wp.
It is easy to see that this is a monomorphism: if I1, I2 ∈ Vp and C(I1) =
C(I2), then I1 − I2 ∈ Vp−1. The remarkable fact is that this map is also
an epimorphism (at least in the case when k is a field of characteristic
zero). In other words, each weight system of order p is a restriction to Dp

of some Vassiliev invariant. Let Ap (resp. Âp ) be the space generated by
Dp modulo relations (1) and (2) (resp. (2) only), and

A = ⊕pAp, Â = ⊕pÂp.

Denote by V̂p the space of Vassiliev invariants of order ≤ p of framed
knots.

Theorem 1.3.2. [3, 5]

(1) Vp/Vp−1 ≃ Wp ≃ A∗
p.

(2) V̂p/V̂p−1 ≃ Ŵp ≃ Â∗
p.

(3) Operation of connected sum of diagrams induces on A and Â struc-
tures of commutative graded k-algebras. The comultiplication dual
to this product makes the graded algebras W = ⊕pWp ≃ A∗ and

Ŵ = ⊕pŴp ≃ Â∗ commutative and co-commutative Hopf algebras.

(4) Â = A[Θ], where Θ is the primitive element in Â1 represented by
the only chord diagram of order 1, i.e.

Âp = A0 ⊗ Θp + A1 ⊗ Θp−1 + . . .Ap ⊗ 1.

Part (4) of the theorem shows that there is a canonical projection Ŵp →
Wp. Therefore, to get a weight system of order p, it is enough to construct
a function on Dp satisfying only four-term relations. We will not consider
one-term relations in the rest of the paper.

2. Feynman diagrams and graphs

Now we want to find a way to construct (weak) weight systems, that is
to assign a number to each chord diagram such that these numbers satisfy
the four-term relations. It seems natural to use the idea of locality that
underlies all recent applications of physics to low-dimensional topology
(and, in the case of knots and links, is realized in the usage of tangles in
works of Reshetikhin, Turaev, Yetter, e.a.). But this idea does not apply
immediately to our situation since the four-term relations are not local. A
natural way out is to replace the set of chord diagrams by a larger set that
allows local relations. Such extension exists and these objects are called
Feynman diagrams.
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2.1. Feynman diagrams. The three-term relation on the level of chord
diagrams can be drawn as

r r
rb

b
"

"
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r
r

r r
−

r
r

r r
This, in turn, leads to the following generalization of the notion of chord

diagram [2].

Definition 2.1.1. A Feynman diagram of order p is a graph with 2p
vertices of degrees 1 or 3 with cyclic orders on the set of its univalent
(external) vertices and each set of 3 edges meeting at a trivalent (internal)
vertex.

We draw Feynman diagrams by placing their external vertices on a circle
(Wilson line) with the counterclockwise orientation. We assume that the
edges meeting at each internal vertex are also oriented counterclockwise.

Denote by Fp the set of all Feynman diagrams with 2p vertices (up to
the natural equivalence of graphs with orientations). The set Dp of chord
diagrams with p chords is a subset of Fp. Here is an example of a Feynman
diagram from F4

Definition 2.1.2. Denote by Bp the vector space generated by Feynman
diagrams of order p modulo relations

= -

DY DII DX

More precisely, Bp =< Fp > / < DY −DII−DX >, where diagrams DII

and DX are obtained from the diagram DY by replacing its Y -fragment
by the II- and X- fragments respectively. This gives another description

of the space (V̂p/V̂p−1)
∗ = Âp.

Proposition 2.1.3. [3]
(1) Bp ≃ Ap.
(2) The following local relations hold for internal vertices in Feynman

diagrams:
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=  - and =             -

2.2. Feynman graphs: the idea of locality. By analogy with the role
played by tangles for knots and links (cf. [11, 16, 8]), we introduce Feyn-
man graphs as objects that can be sewn to produce Feynman diagrams.

A Feynman graph is a graph with 1- and 3-valent vertices such that
the set of its univalent vertices is a disjoint union of two linearly ordered
sets: incoming and outgoing vertices; and the edges meeting at each of its
trivalent (internal) vertex have a cyclic order.

We denote by Fa,b the set of Feynman graphs with a incoming and b
outgoing vertices and by F∗ the set of all Feynman graphs.

We draw Feynman graphs by putting all the incoming vertices on a hor-
izontal line, outgoing vertices on a parallel line below, and all the internal
vertices between these two lines (with the counterclockwise orientation at
each vertex). For example, the following graph is in F4,2

2.2.1. Algebraic operations on F∗. There are two natural operations on
F∗: composition and tensor product. If A ∈ Fb,c and B ∈ Fa,b, then their
composition A ◦ B ∈ Fa,c is the Feynman graph obtained by attaching
outgoing vertices of B to the corresponding incoming vertices of A.

The tensor product of A ∈ Fa,b and C ∈ Fc,d is the graph A ⊗ C ∈
Fa+c,b+d obtained by placing C to the right of A.

For example, if A = and B = ,
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then AB = and A⊗B =

Remark 2.2.2. These operations become “true” compositions and tensor
products if we view elements of F∗ as morphisms in the category FG with
objects 0, 1, 2, . . .. With respect to these operations, FG is a symmetric
monoidal category (cf. [7]).

2.2.3. Generators of F∗. With respect to the two operations, F∗ is gen-
erated by the following elementary graphs:

I = ∈ F1,1, b = ∈ F2,0, c =

∈ F0,2,

f = ∈ F2,1, g = ∈ F1,2, S =

∈ F2,2.

Now we have to describe relations between these generators.
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Theorem 2.2.4. The algebra F∗ = Mor(FG) is generated by the elemen-
tary graphs and the following defining relations

(1) I = id

(2) S2 = I ⊗ I or =

(3) bS = b or
=

(4) (S⊗I)(I⊗S)(S⊗I) = (I⊗S)(S⊗I)(I⊗S) or = ,

the quantum Yang-Baxter equation,

(5) S(f ⊗ I) = (I ⊗ f)(S ⊗ I)(I ⊗ S) or =

(6) (I ⊗ b)(c ⊗ I) = I = (b ⊗ I)(I ⊗ c) or = =

(7) g = (I ⊗ f)(c ⊗ I) or =

(8) (b ⊗ I)(I ⊗ S) = (I ⊗ b)(S ⊗ I) or =

(9) b(f ⊗ I) = b(I ⊗ f) or =

(See [11] for the precise definition of generators and relations in mon-
oidal categories.)

It is clear that F∗ is generated by the elementary graphs and that the
relations 1–9 hold true in it. The proof that no extra relations are needed
is similar to the proofs of the corresponding Reidemeister type results for
categories of tangles [8, 11, 16].
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2.2.5. Category of pictures. Theorem 2.2.4 asserts that two syntactically
correct words in elementary graphs are equal if and only if they can be
transformed to each other by a sequence of transformations 2–9 and their
inverses. Another way of expressing this is to consider “pictures” — flat
graphs with four types of vertices: univalent vertices (incoming and out-
going vertices of Feynman graphs); bivalent vertices (maxima and minima
of the edges); 3-valent vertices (internal vertices of Feynman graphs); and
4-valent vertices (intersection points of edges). All univalent vertices of a
picture belong to two parallel horizontal lines, and the rest of the picture
is located strictly between these lines. We assume that the edges of the
picture do not have horizontal tangents other than at bivalent vertices;
that each trivalent vertex has at least one descending and one ascending
edge; and that at each four-valent vertex exactly two edges go up and two
edges go down. We also assume that all the interior vertices of the picture
have different height.

It is clear that each picture corresponds to a Feynman graph and that
each Feynman graph can be represented by a picture. Thus the pictures
are analogous to knot diagrams for Feynman graphs. The above relations
play the role of the Reidemeister moves in this situation.

3. Operator invariants of Feynman graphs

3.1. Yang-Baxter algebras. By analogy with the case of tangles and
links, let us fix a vector space L and try to assign an operator I(Γ) : L⊗a →
L⊗b to each Feynman graph Γ ∈ Fa,b, such that the map Γ 7→ I(Γ) respects
composition and tensor product in F∗. In other words, we are trying to
construct a representation of the monoidal category FG in the monoidal
category T (L) of the tensor powers of L.

Since F∗ is generated by elementary graphs, a representation of FG is
uniquely specified by choice of a vector space L and a set of homomor-
phisms (operators):

b : L ⊗ L → k

c : k → L ⊗ L

f : L ⊗ L → L

g : L → L ⊗ L

S : L ⊗ L → L ⊗ L

By rewriting the relations 2.2.4 (1) – (9) in terms of operators b, c, f, g, S,
we can find out when this data gives a representation of the category FG.
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Proposition 3.1.1. A set of operators b, c, f, g, S gives a representation
of the category FG in the vector space L if and only if it satisfies the
following conditions:

(1) The operator S is a symmetry, i.e. S2 = idL⊗L.
(2) S satisfies the quantum Yang-Baxter equation:

S12S23S12 = S23S12S23.

(3) Multiplication f is compatible with symmetry S: Sf = f23S12S23.
(4) Bilinear form b is S-symmetric: bS = S.
(5) b is compatible with S: b12S23 = b23S12.
(6) b23c12 = idL = b12c23, i.e. b is a non-degenerate bilinear form and

c is its inverse.
(7) Comultiplication g is a conjugate of the multiplication: g = c12f23.

(Here we used the standard notation: if T ∈ Hom(V ⊗ V,W ), then T12

denotes the operator T ⊗ id : V ⊗ V ⊗ U → W ⊗ U , etc.)

In particular, relations 6 and 7 show that we do not have any freedom in
choosing c or g. Rephrasing this Proposition, we see that representations
of FG are described by the following algebraic objects.

Definition 3.1.2. A vector space L with an operator S : L ⊗ L → L ⊗ L
and a multiplication f : L ⊗ L → L satisfying conditions 3.1.1.(1-3) is
called a Yang-Baxter algebra or, simply, an S-algebra. If, in addition, L
is finite-dimensional and is equipped with a non-degenerate inner product
b : L ⊗ L → k satisfying 3.1.1.(4-5), it is called a Euclidean S-algebra.

Therefore, every Euclidean S-algebra L gives a representation of the
category FG.

3.2. Yang-Baxter Lie algebras. Now, when can these operator-valued
invariants of Feynman graphs be used to produce weight systems (and
ultimately, Vassiliev invariants)?

Denote by Ga,b the quotient space of the space < Fa,b > of formal linear
combinations of elements of Fa,b by the three-term and skew-commuta-
tivity relations 2.1.3.(2) for internal vertices.

It is clear that F∗ induces on G∗ =
⋃
Ga,b a structure of a monoidal

category with operations extended by linearity. To obtain a representation
of the category G∗, we have to reformulate conditions 2.1.3.(2) in terms of
the tensors S, f and b from 3.1.2. Thus, we come to the following notions.

Definition 3.2.1. A Yang-Baxter Lie algebra is an S-algebra L, such that
the multiplication f : L ⊗ L → L is S-skew-commutative f ◦ S = −f and
satisfies the S-Jacobi identity f ◦ f12 = f ◦ f23 − f ◦ f23 ◦ S12.

A Euclidean S-algebra L with a bilinear form b is called a Euclidean
Yang-Baxter Lie algebra if b is f -invariant, i.e. b ◦ f12 = b ◦ f23.
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Summing up, we have established a one-to-one correspondence between
representations of the category G∗ and Euclidean Yang-Baxter Lie alge-
bras.

3.3. Weight systems from Yang-Baxter Lie algebras. Given a Eu-
clidean Yang-Baxter Lie algebra L, for each Feynman graph Γ ∈ F0,n we
constructed a tensor I(Γ) ∈ L⊗n. To be able to obtain a weight system
we have to take into account the relations 2.1.2 for the exterior vertices of
Feynman diagrams.

Translating this relation into our tensor notation, we obtain the relation

f(a, b) = a ⊗ b − S(a ⊗ b)

on the tensor algebra T ∗(L). Thus, we come to the following notion.

Definition 3.3.1. The universal enveloping algebra US(L) of the S-Lie
algebra L is the quotient algebra of the tensor algebra T ∗(L) by the ideal
generated by the expressions a ⊗ b − S(a ⊗ b) − f(a, b) for a, b ∈ L.

Universal enveloping algebras of S-Lie algebras are completely analo-
gous to universal enveloping algebras of ordinary Lie algebras. In particu-
lar, there is a version of the Poincaré-Birkhoff-Witt theorem for them and
a natural action of L on US(L).

Thus, we have a homomorphism WL from the algebra G∗ to US(L). The
following fact makes it possible to pull WL down to the space of Feynman
diagrams modulo 3-term relations.

Proposition 3.3.2. The elements WL(Γ) ∈ US(L) are invariant with
respect to the canonical L action. (In other words, they belong to the S-
center of US(L).)

Summing up, we arrive to our main result.

Theorem 3.3.3.

(1) For every Euclidean Yang-Baxter Lie algebra L there exists a nat-

ural homomorphism of algebras ρL : Â → US(L).
(2) The image of ρL belongs to the S-center of US(L).
(3) Every linear functional φ on the center ZS(US(L)) provides se-

quences of weight systems φ̂n : Ân → k and φn : An → k. The
sequence φn is non-trivial if L is not S-commutative.

4. Concluding remarks and examples

4.1. Lie algebras. If the symmetry operator S is the standard permu-
tation S(u⊗ v) = v ⊗ u, then S-Lie algebras are just Lie algebras. In this
case our construction of Vassiliev weight systems becomes Bar-Natan’s
construction [2].

A source of central functions on U(L) in this case is provided by traces
tr(ρ(a)), where a ∈ U(L) and ρ is a finite-dimensional representation of
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L. If L is a semisimple (or reductive) Lie algebra over C, then all central
functions are linear combinations of traces in irreducible representations.
As it is explained in [3], the corresponding knot invariants of a knot and
of the same knot with the opposite orientation always coincide. Therefore,
if Vassiliev’s completeness conjecture is correct, there should be weight
systems which are not linear combinations of weight systems coming from
semisimple Lie algebras.

4.2. Modules and S-traces. To generalize the construction of weight
systems using representations of Lie algebras, we need to define corre-
sponding notions for S-Lie algebras.

The three-term relation in 2.1.2 gives us the definition of a module.

Definition 4.2.1. A module over S-Lie algebra L is a vector space M
with a homomorphism m : L ⊗ M → M such that

m(f ⊗ idM ) = m(idL ⊗ m) − m(idL ⊗ m)(S ⊗ idM ).

As usual, modules over S-Lie algebra L are the same as modules over
the associative algebra US(L).

In order to produce invariant functionals on US(L) we need one more
definition.

Definition 4.2.2. Let M be a module over S-Lie algebra L. A functional
φ ∈ Hom(M,M)∗ is called an S-trace on M if φ(m(f(a, b))) = 0 for all
a, b ∈ L. (Here f is the multiplication on L and m is considered as
homomorphism L → Hom(M,M).)

There is no trace on a module a priori, but usually modules come
equipped with one.

4.3. Lie superalgebras. Let L = L0̄ ⊕ L1̄ be a Z2-graded vector space
and S be the standard super-permutation

S(u ⊗ v) = (−1)|u||v|v ⊗ u,

where u ∈ L|u| and v ∈ L|v|.

Proposition 4.3.1. If S is the super-permutation, then S-Lie algebras
are Lie superalgebras.

The only non-obvious thing here is that the multiplication f respects
the Z2-grading which is required by the definition of Lie superalgebras.
It follows from the consistency of f and S (condition 3.1.1.3). Similarly,
condition 3.1.1.5 shows that the bilinear form b in a Euclidean Lie super-
algebra must be even.

Let M be an L-module. In general, there is no Z2-grading on M ,
therefore M is not necessarily a representation of the Lie superalgebra L.
In the case when M is a Lie superalgebra module (i.e. M = M0̄ ⊕ M1̄

and LaMb ⊂ Ma+b), there is a natural S-trace on M — the supertrace
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str(h) = tr(h0̄)−tr(h1̄), where h ∈ Hom(M,M) and ha is the composition
Ma → M → M/Ma+1̄ ≃ Ma.

In the case of Lie superalgebras not all central functionals are linear
combinations of supertraces. For example, all supertraces in non-trivial
irreducible representations M of the Lie superalgebra L = Gl(n|n) vanish
on Z(U(L)). But a central element c ∈ U(L) acts on M as a scalar op-
erator. Let this operator be λM (c)idM . Then the functional λM gives an
example of a central function which is not a combination of supertraces.

In the simplest case when L = Gl(1|1) and M is its standard (1|1)-
dimensional module, the sequence of weight systems constructed by 3.3.3
for the functional λM coincides with the sequence of weight systems of
coefficients of the Alexander-Conway polynomial.

Even the vanishing supertraces can provide some valuable information.
For example, in the standard (2n|2n)-dimensional representation of the
Lie superalgebra L = OSp(2n|2n), the supertraces of central elements of
U(L) vanish and so do the corresponding weight systems. However, in
terms of the even subalgebra L0̄ = O(2n) ⊕ Sp(2n) ⊂ L, this translates
into a relationship between the weight systems given by the standard rep-
resentations of the Lie algebras O(2n) and Sp(2n). This relationship was
found by Bar-Natan [3] by direct computations. (The details will appear
in [12].)

4.4. Other S-Lie algebras. There are many examples of Euclidean
Yang-Baxter Lie algebras other than Lie algebras and Lie superalgebras.
For each involutive solution S of the quantum Yang-Baxter equation there
are several series of Euclidean Yang-Baxter Lie algebras, analogues of the
classical Gl, O and Sp series (cf. [4, 6, 12]). There is no obvious reason
to believe that the corresponding Vassiliev invariants belong to the space
generated by the invariants coming from Lie algebras. Already in the case
of Lie superalgebras, we have more algebras, more representations and
more central functionals to work with.

On the other hand, the notion of the Yang-Baxter Lie algebra turned out
to be intrinsically related to Vassiliev-Birman-Lin diagrams. This allows
us to expect that all Vassiliev invariants can be obtained by working with
Yang-Baxter Lie algebras.

4.5. Yang-Baxter Chern-Simons models. Vassiliev invariants com-
ing from Lie algebras appear as coefficients of perturbative expansions of
the corresponding Chern-Simons-Witten invariants. One may ask if there
exists such a correspondence for Vassiliev invariants coming from Yang-
Baxter Lie algebras.

For each S-Lie algebra L we can define principal L-bundles over man-
ifolds and develop a formalism of L-connections parallel to the standard
one. In particular, given an invariant inner product on L we construct an
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analogue of the Chern-Simons 3-form [12]. This may lead to new invariants
of 3-manifolds of Reshetikhin-Turaev-Witten type. The relation between
the corresponding knot invariants and the Vassiliev invariants constructed
from the same data must be similar to the relationship between the two
constructions of knot invariants based on ordinary Lie algebras. The work
of Rozansky and Saleur [9] found that the Alexander-Conway polynomial
is the Chern-Simons-Witten invariant for the standard representation of
the Lie superalgebra Gl(1|1). This matches our computations of the cor-
responding weight systems and supports this conjecture.
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