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ISOSPECTRAL CONVEX

DOMAINS IN EUCLIDEAN SPACE

Carolyn S. Gordon and David L. Webb

0. Introduction

Mark Kac’s question “Can one hear the shape of a drum?” [K] asks
whether the eigenvalue spectrum of the Laplace operator on a domain in
the Euclidean plane determines the domain up to congruence. Urakawa
[U] constructed examples of isospectral domains in Rn for n ≥ 4. Kac’s
original question was answered negatively in [GWW]; see [BCDS] for many
other examples. Thus far, all examples of noncongruent isospectral do-
mains in Euclidean space are nonconvex. Thus the following question has
remained open: are there pairs of convex domains in Euclidean space which
are isospectral but not congruent? In this note, we show that one can mod-
ify slightly Urakawa’s construction to obtain a pair of convex domains in
Euclidean n-space for n ≥ 4 which are noncongruent yet isospectral for
both Dirichlet and Neumann boundary conditions. The proof of Neumann
isospectrality uses very recent results of Hubert Pesce; we wish to thank
him for discussing his work with us, for reading and commenting on a
preliminary version, and for furnishing references.

1. Urakawa’s isospectral domains in Rn

Consider a root system in a Euclidean space Rn+1, and let C be a
closed Weyl chamber. In [BB] (see also [B1]), P. Bérard and G. Besson
determined the spectra of spherical domains of the form C ∩Sn in terms of
the Weyl group exponents. Urakawa [U] noticed that if one chooses two root
systems R1 and R2 whose sets of Weyl group exponents coincide, then the
corresponding closed Weyl chambers C1, C2 give rise to isospectral domains
D1 = C1 ∩ Sn, D2 = C2 ∩ Sn in the sphere; moreover, he showed that for
0 < ε < 1, the truncated cones Ω1(ε) = {tp ∈ Rn+1 : p ∈ D1, ε < t < 1}
and Ω2(ε) = {tp ∈ Rn+1 : p ∈ D2, ε < t < 1} are isospectral domains in
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Rn+1. (His argument breaks down for ε = 0 due to the presence of the
radial variable t in the denominator.) In what follows, we show:

Theorem. The convex domains Ω1 = Ω1(0) and Ω2 = Ω2(0) in Rn+1 are
isospectral for both Dirichlet and Neumann boundary conditions.

It is not difficult to see that the domains Ω1 and Ω2 are Dirichlet isospec-
tral, using the mini-max characterization of eigenvalues: the kth Dirichlet
eigenvalue of Ωi(ε) is given by

λi
k(ε) =

inf
V

sup
f ∈ V

∫
|df |2∫
|f |2

where the infimum is taken over all k-dimensional subspaces V of the
space C∞

0 (Ωi(ε)) of smooth functions compactly supported in the interior
of Ωi(ε). Since Ωi(ε) ⊇ Ωi(ε′) for ε > ε′, and since the domains Ωi(ε) ex-
haust Ωi, one can easily argue that λi

k(0) = lim
ε→0+ λi

k(ε). Since λ1
k(ε) = λ2

k(ε)
for each ε > 0, it follows that λ1

k(0) = λ2
k(0), so Ω1 and Ω2 are Dirichlet

isospectral.
The Neumann isospectrality is more interesting; the mini-max charac-

terization of Neumann eigenvalues involves the space C∞ rather than C∞
0 ,

so functions on subdomains can no longer be extended by zero, and hence
questions of convergence of Neumann eigenvalues as the domain varies are
more delicate. Instead, we note that the Neumann isospectrality of Ω1 and
Ω2 is equivalent to their isospectrality as orbifolds, as in [GWW]; we then
use an interesting partial converse to Sunada’s Theorem recently discovered
by H. Pesce [P2].

2. Sunada’s Theorem; Pesce’s
strengthening and partial converse

In [S], T. Sunada introduced a systematic method for constructing isospec-
tral manifolds. Many interesting examples have been constructed using
this method, and some examples constructed prior to [S] are in retrospect
best understood via Sunada’s theorem. Recently, Pesce [P2] strengthened
Sunada’s theorem and gave a partial converse. In order to state Pesce’s
version of Sunada’s theorem, we fix some notation and recall some prelim-
inaries, following [P1].

Given a compact Lie group G, let Irr(G) denote the set of isomorphism
classes of irreducible unitary representations of G. Denote by 1G the trivial
one-dimensional representation of G. Let R(G) denote the Grothendieck
group of G, so R(G) is a free abelian group with basis Irr(G). Let Γ < G
be a subgroup. Given a unitary representation W of Γ, let W↑G

Γ denote



ISOSPECTRAL CONVEX DOMAINS 541

the induced representation of G from Γ; for V ∈ R(G), let V ↓G
Γ denote the

restriction of V to Γ. The group R(G) has a natural symmetric bilinear
form 〈, 〉G relative to which the basis Irr(G) is orthonormal. If σ ∈ Irr(G)
and V is a representation of G, then 〈σ, V 〉G is just the multiplicity of the
irreducible representation σ as a constituent of V ; for any V ∈ R(G), we
have V =

∑
σ∈Irr(G)

〈σ, V 〉
G

σ. Recall also that Frobenius reciprocity asserts

that induction and restriction are adjoint: if W ∈ R(Γ) and V ∈ R(G),
then 〈W↑G

Γ , V 〉G = 〈W, V ↓G
Γ 〉Γ.

Now let K be a closed subgroup of the Lie group G, and let V be a
unitary representation of G. Let V K denote the subspace of K-invariant
elements of V (i.e., the vectors fixed by every element of K), and let VK

denote the smallest closed G-invariant subspace of V containing V K .

Remark 2.1. Suppose that the direct sum decomposition of V into irre-
ducibles is given by V =

∑
σ∈Irr(G)

nσσ (here nσ = 〈σ, V 〉G is the multi-

plicity of σ as a constituent of V ). Then the irreducible decomposition of
VK is given by VK =

∑
σ∈IrrK(G)

nσσ, where IrrK(G) denotes the subset of

Irr(G) consisting of irreducible unitary representations σ of G such that
the trivial representation of K occurs as a constituent of V ↓G

K , i.e., such
that 〈1K , V ↓G

K〉K �= 0. Indeed VK is generated as a G-space by the irre-
ducible subrepresentations σ containing nontrivial K-fixed vectors, so this
is clear.

Pesce declares two representations V1, V2 of G to be K-equivalent if
(V1)K and (V2)K are unitarily equivalent representations of G; by the re-
mark above, this means that all irreducible representations of G which
contain K-fixed vectors occur with the same multiplicities in V1 and V2.

Now let M be a connected smooth manifold with a smooth proper action
by a Lie group G. Then (see [Bo]) there is a compact subgroup K which is
subconjugate to all isotropy subgroups and is actually conjugate to most:

(1) For any x ∈ M , there is a g ∈ G such that Gx ⊇ gKg−1;
(2) There is a dense open subset U of M such that for all x ∈ U , K is

conjugate to Gx.

The subgroup K is called the generic stabilizer or the principal isotropy
subgroup of the G-action.

Theorem 2.2 (Pesce [P2]). Let (M, g) be a complete Riemannian mani-
fold, G < Iso(M, g) a Lie subgroup of the isometry group, Γ1, Γ2 discrete
subgroups of G such that the orbit spaces Γ1\M and Γ2\M are compact
manifolds. Let K be the generic stabilizer of the G-action, and suppose
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that the induced representations (1Γ1)↑G
Γ1

and (1Γ2)↑G
Γ2

are K-equivalent.
Then Γ1\M and Γ2\M are isospectral.

Remarks.

(1) If M is a manifold with boundary, then either Dirichlet or Neumann
boundary conditions can be imposed.

(2) In Sunada’s original formulation, G was a finite group, and the
induced representations were required to be equivalent. The the-
orem was strengthened to permit G to be a Lie group in [DG].
Pesce’s insight [P1] that the induced representations need only be
K-equivalent affords much greater flexibility, and permits an under-
standing of isospectral manifolds such as those of Ikeda [I] which
formerly did not appear to fit into Sunada’s framework.

(3) One can relax the requirement that Γ1 and Γ2 act freely. In this
case, the conclusion is that Γ1\M and Γ2\M are isospectral as orb-
ifolds, as in [GWW]. A representation-theoretic proof of Sunada’s
theorem permitting the extension to orbifolds was first given by
Bérard [B2]; his proof furnishes an explicit combinatorial “trans-
plantation” of eigenfunctions on Γ1\M to eigenfunctions on Γ2\M .

We now turn to a special case of Pesce’s converse to Sunada’s theorem.

Theorem 2.3 (Pesce [P2]). Let G = O(n + 1) and K = O(n), so M =
G/K is the n-sphere Sn. Let Γ1,Γ2 < G be discrete subgroups. Suppose
that Γ1\M and Γ2\M are isospectral orbifolds. Then (1Γ1)↑G

Γ1
and (1Γ2)↑G

Γ2

are K-equivalent.

For the reader’s convenience, we briefly record the proof. Let Γ denote
Γ1 or Γ2. Viewing functions on Γ\M as Γ-invariant functions on M , it
is clear that spec(M) ⊇ spec(Γ\M). Now G acts on the space LL2(M,C)
of complex-valued square-integrable functions on M , and for each λ ∈
spec(M), the λ-eigenspace Eλ(M) is G-invariant. The multiplicity of λ ∈
spec(M) as an eigenvalue of Γ\M is just the dimension dim(Eλ(Γ\M)) =
dim(Eλ(M)Γ) of the λ-eigenspace of Γ\M , i.e., the multiplicity of the trivial
representation of Γ in Eλ(M)↓G

Γ . Thus

dim(Eλ(Γ\M)) = 〈1Γ, Eλ(M)↓G
Γ 〉Γ = 〈1Γ,

( ∑

σ∈Irr(G)

〈σ, Eλ(M)〉
G
σ
)
↓G
Γ 〉Γ

=
∑

σ∈Irr(G)

〈σ, Eλ(M)〉
G
〈1Γ, σ↓G

Γ 〉Γ

=
∑

σ∈Irr(G)

〈σ, Eλ(M)〉
G
〈(1Γ)↑G

Γ , σ〉
G
,
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by Frobenius reciprocity. Since Γ1\M and Γ1\M are isospectral, it follows
that

(2.4)
For all λ ∈ spec(M),
∑

σ∈Irr(G)

〈σ, Eλ(M)〉G
{
〈(1Γ1)↑G

Γ1
, σ〉G − 〈(1Γ2)↑G

Γ2
, σ〉G

}
= 0.

It is a classical fact [BGM] that the eigenspaces Eλ(M) of the sphere are
all absolutely irreducible, so exactly one of the 〈σ, Eλ(M)〉G is 1, while all
others are 0, and hence the condition (2.4) becomes:

(2.4′)
For all irreducible representations σ of G occurring in L2(M,C),

the multiplicities of σ in (1Γ1)↑G
Γ1

and in (1Γ2)↑G
Γ2

coincide.

But L2(M,C) = (1K)↑G
K , so 〈σ, L2(M,C)〉G = 〈σ↓G

K , 1K〉K ; thus the σ
occurring in L2(M,C) are precisely those containing nontrivial K-fixed
vectors, i.e., those σ ∈ IrrK(G). By Remark 2.1, this asserts precisely that
(1Γ1)↑G

Γ1
and (1Γ2)↑G

Γ2
are K-equivalent.

Remark. The above argument can be reversed to yield a proof of Theo-
rem 2.2 in the special case of M a homogeneous space.

We now turn to the proof that the convex domains Ω1 and Ω2 of §1 are
Neumann isospectral. The group G = O(n + 1) acts on Rn+1. Let Γ1, Γ2

be the two Coxeter groups associated with the root systems R1 and R2 in
Rn+1. Then by [U], the spherical domains D1 = C1∩Sn and D2 = C2∩Sn

are Neumann isospectral, hence isospectral as orbifold quotients of Sn, as
in [GWW], since a Γi-invariant eigenfunction on Sn is one which extends by
reflection across walls of the Weyl chamber Ci and hence has zero normal
derivative on the boundary of Di. By Theorem 2.3, (1Γ1)↑G

Γ1
and (1Γ2)↑G

Γ2

are K-equivalent, where K = O(n).
Now consider the action of G on the unit ball Bn+1 in Rn+1. The generic

stabilizer is K = O(n) (indeed, this is the isotropy group at every point
except the origin). By the above, (1Γ1)↑G

Γ1
and (1Γ2)↑G

Γ2
are K-equivalent,

so by Theorem 2.2, Γ1\Bn+1 and Γ2\Bn+1 are isospectral orbifolds with
boundary: for each domain, the singular locus is the union of the walls of
the Weyl chambers, and the boundary is the intersection of the domain
with Sn (here we impose Neumann boundary conditions on the orbifold
boundary, that is, on Sn). But the orbifold isospectrality of Γ1\Bn+1 and
Γ2\Bn+1 is precisely the Neumann isospectrality of the underlying domains
Ω1 and Ω2. This completes the proof.
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Remark. Urakawa’s examples of isospectral domains occur in all Euclidean
spaces of dimension at least 4; thus there exist pairs of isospectral convex
domains in Rn for each n ≥ 4. One of the simplest examples of [U] is
given by the root systems A3 × A1 and I2(3) × I2(4). The domains are
described explicitly as follows. Let e1, . . . , e4 denote the standard basis of
R4. Let u1 = e3, u2 = e1 − e2 + e3, u3 = e1 + e2 + e3, u4 = e4, v1 = e1,
v2 = e1 +

√
3e2, v3 = e3, v4 = e3 + e4. Then a Weyl chamber for A3 × A1

is given by C1 =
{ 4∑

i=1

aiui : ai ≥ 0, i = 1, . . . , 4
}
, while a chamber for

I2(3) × I2(4) is given by C2 =
{ 4∑

i=1

aivi : ai ≥ 0, i = 1, . . . , 4
}
.

Added in proof. Lizhen Ji has recently shown that the Neumann isospec-
trality can be established by passage to the limit, as in the Dirichlet ar-
gument above; Hubert Pesce has recently given a representation-theoretic
argument for the Dirichlet isospectrality, in the spirit of the Neumann ar-
gument above.
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