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A FACTORIZATION THEOREM WITH

APPLICATIONS TO INVARIANT SUBSPACES

AND THE REFLEXIVITY OF ISOMETRIES

Hari Bercovici

A b st ract . We prove a factorization result for spaces of vector-valued
square integrable functions, and give two applications. The first one in-
volves factorization results related to invariant subspaces of the Hardy space
of the unit ball in C

d. The second application is a proof of the fact that
arbitrary commutative families of isometries on a Hilbert space generate
reflexive algebras.

1. Factorization results

Let (Ω,Σ, µ) be a measure space, and let F be a complex Hilbert space.
We denote by L2(µ,F) the Hilbert space of all Bochner measurable, square
integrable (classes of) functions f : Ω → F . For x, y ∈ L2(µ,F) we denote
by x · y ∈ L1(µ) the function defined by the pointwise scalar product:

(x · y)(ω) = (x(ω), y(ω)), ω ∈ Ω.

A problem of interest in operator theory is that of factoring a given function
f ∈ L1(µ) as f = x·y, with at least one of the vectors x, y belonging to some
prescribed closed subspace H of L2(µ,F); of course factorization is always
possible with x, y ∈ L2(µ,F) unless F = {0}. Conditions were given in [1]
which imply the possibility of approximate factorization. For the purposes
of this paper it will be convenient to say that a subspace H of L2(µ,F) has
the approximate factorization property if for every nonnegative function
h ∈ L1(µ) and every ε > 0 there exists a vector x ∈ H such that

‖h − x · x‖1 < ε.

The main result of this section is that the function x in an approximate
factorization of h can be chosen so that ‖x(ω)‖2 ≥ h(ω) almost everywhere.
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We conclude the section by applying the factorization results to invariant
subspaces in the Hardy space of the unit ball in C

d. Another application
is given in the second section of the paper, where it is shown that any
commuting family of isometries on a Hilbert space generates a reflexive
algebra. This result was proved by Deddens [3] for a single isometry, and
by Li and McCarthy [6] for finite families of isometries.

We state now the main result.

1.1. Theorem. Assume that H ⊂ L2(µ,F) is a closed subspace with the
approximate factorization property. Then for every nonnegative function
h ∈ L1(µ) and every ε > 0 there exists a vector x ∈ H such that ‖x(ω)‖2 ≥
h(ω) almost everywhere, and ‖x‖2 < ‖h‖1 + ε.

Proof. We start by observing that the result is invariant under a change
of measure. More precisely, assume that ϕ : Ω → (0,+∞) is a measurable
function, and a measure µ′ is defined by dµ′ = ϕ dµ. There is a unitary
operator U : L2(µ,F) → L2(µ′,F) given by Uf = ϕ−1/2f , f ∈ L2(µ,F),
as well as an isometry V : L1(µ) → L1(µ′) given by V h = h/ϕ. The space
H′ = UH is closed in L2(µ′,F), and for every x, y ∈ L2(µ,F) we have
V (x · y) = (Ux) · (Uy). Thus both the hypothesis and the conclusion of the
theorem are unaffected by substituting H′ for H.

This being said, fix a nonnegative function h ∈ L1(µ), and observe that
the conclusion of the theorem is true with x = 0 if ‖h‖1 = 0. We assume
therefore that ‖h‖1 = 0. Upon replacing h by h/‖h‖1 we may actually
restrict ourselves to the case when ‖h‖1 = 1. Denote σ = {ω : h(ω) = 0 },
and set ϕ = h + χΩ\σ. The function V h = h/ϕ coincides with χσ, and
µ′(σ) = ‖h‖1 = 1. We conclude that there is no loss of generality in
assuming that h = χσ and µ(σ) = 1 to begin with. Fix a number α ∈ (0, 1),
and set δ = α2/4. Since H has the approximate factorization property, we
can find x1 in H such that ‖(1 + α)χσ − x1 · x1‖1 < δ. If we set

σ1 = {ω ∈ σ : ‖x1(ω)‖2 ≤ 1 + α/2 }

then µ(σ1) ≤ 2δ/α = α/2. Observe also that we have

‖x1‖2 ≤ ‖h‖1 + α + δ ≤ ‖h‖1 + 2α = 1 + 2α.

We will construct by induction vectors xn such that
(a) µ(σn) ≤ α/2n, where σn = {ω ∈ σ : ‖xn(ω)‖2 ≤ 1 + α/2n }, and
(b) ‖xn+1 − xn‖ ≤ (α/2n−4)1/2.

Assume that xn has been constructed, and define gn ∈ L1(µ) by gn = 9χσn .
By (a), we have ‖gn‖1 ≤ 9α/2n. Let δn be a small positive number, subject
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to certain conditions to be specified shortly (in fact δn = α3/10n will satisfy
all the requirements). The approximate factorization property shows that
there exists yn ∈ H such that ‖gn − yn · yn‖1 < δn. Observe that

‖yn‖2 ≤ ‖gn‖1 + δn ≤ 9α/2n + δn,

so that ‖yn‖ ≤ (α/2n−4)1/2 if δn is chosen sufficiently small. Define xn+1 =
xn +yn, and note that condition (b) is satisfied. To complete the inductive
process we must show that (a) is satisfied with n+1 in place of n, provided
that δn is chosen sufficiently small. Consider a point ω ∈ σ such that∣∣gn(ω) − ‖yn(ω)‖2

∣∣ < (α/2n+3)2. If ω /∈ σn this means that ‖yn(ω)‖ <

α/2n+3. If ‖xn(ω)‖ > 2 then certainly ‖xn+1(ω)‖ ≥ 3/2 and ‖xn+1(ω)‖2 ≥
1 + α/2n+1. If ‖xn(ω)‖ ≤ 2 then

‖xn+1(ω)‖2 ≥ (‖xn(ω)‖ − ‖yn(ω)‖)2

≥ ‖xn(ω)‖2 − 2‖xn(ω)‖ ‖yn(ω)‖
≥ 1 +

α

2n
− 4

α

2n+3
= 1 +

α

2n+1
.

On the other hand, if ω ∈ σn, then ‖yn(ω)‖2 ≥ 9 − (α/2n+3)2 ≥ 8 and
‖xn(ω)‖2 ≤ 2. Therefore

‖xn+1(ω)‖2 ≥ (‖yn(ω)‖ − ‖xn(ω)‖)2

≥ (2
√

2 −
√

2)2 = 2 ≥ 1 +
α

2n+1
.

We conclude that

σn+1 ⊂
{

ω :
∣∣gn(ω) − ‖yn(ω)‖2

∣∣ ≥ ( α

2n+3

)2
}

,

and therefore µ(σn+1) ≤ δn(2n+3/α)2. It is easy to choose now δn in order
to satisfy (a).

Denote by x the limit of the sequence {xn}∞n=1. Since
∑

n µ(σn) < ∞,
it follows that ‖xn(ω)‖2 ≥ h(ω) almost everywhere. Moreover,

‖x‖ ≤ ‖x1‖ +
∞∑

n=1

‖xn+1 − xn‖ ≤ (‖h‖1 + 2α)1/2 +
∞∑

n=1

( α

2n−4

)1/2

,

and therefore ‖x‖2 < ‖h‖1 + ε for sufficiently small α. The theorem fol-
lows. �

Assume that x ∈ H is such that ‖x(ω)‖2 ≥ h(ω) almost everywhere,
and g ∈ L1(µ) satisfies an inequality of the form |g(ω)| ≤ kh(ω) almost
everywhere, with k a constant. Then the function y ∈ L2(µ,F) defined
by y(ω) = g(ω)x(ω)/‖x(ω)‖2 if x(ω) = 0, y(ω) = 0 if x(ω) = 0, satisfies
the equality x · y = g. This observation immediately implies the following
factorization result.
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1.2. Corollary. Assume that H ⊂ L2(µ,F) has the approximate factor-
ization property.

(1) For every f ∈ L1(µ) and every ε > 0 there exist x ∈ H and y ∈
L2(µ,F) such that x · y = f and ‖x‖ · ‖y‖ < ‖f‖1 + ε.

(2) For every sequence {fn}∞n=1 ⊂ L1(µ) there exist vectors x ∈ H and
{yn}∞n=1 ⊂ L2(µ,F) such that x · yn = fn for all n ≥ 1.

In order to see how this result can be applied, we recall a result proved
in [1] and [2].

1.3. Theorem. Assume that H ⊂ L2(µ,F) is a separable subspace such
that for every set σ ∈ Σ with µ(σ) > 0 there exists a sequence xn ∈ H such
that

(i) ‖xn‖ = 1 and xn tends to zero weakly as n → ∞, and
(ii) ‖χΩ\σxn‖ → 0 as n → ∞.

Then H has the approximate factorization property.

Fix now an integer d ≥ 2, denote by Bd the Euclidean unit ball in
C

d, and let µ be normalized area measure on ∂Bd. We denote, as usual,
by H2(Bd) the closure in L2(µ) of all polynomials. The space H∞(Bd)
of all bounded holomorphic functions defined on Bd can be viewed as an
algebra of multiplication operators on L2(µ) which leaves the space H2(Bd)
invariant. A closed subspace H ⊂ H2(Bd) will be said to be invariant if
ux ∈ H for every u ∈ H∞(Bd) and x ∈ H.

1.4. Theorem. Let H ⊂ H2(Bd) be a nonzero invariant subspace.

(a) For every f ∈ L1(µ), and every ε > 0, there exists x ∈ H and
y ∈ L2(µ) such that x · y = f and ‖x‖ · ‖y‖ < ‖f‖1 + ε.

(b) For every sequence {fn}∞n=1 ⊂ L1(µ) there exist vectors x ∈ H and
{yn}∞n=1 ⊂ L2(µ) such that x · yn = fn for n ≥ 1.

Proof. By Theorem 1.1 it suffices to show that H has the approximate
factorization property. Hence it suffices to show that H satisfies the hy-
potheses of Theorem 1.3. Let indeed σ be an arbitrary subset with posi-
tive measure of ∂Bd, and let z ∈ H be a nonzero function. Of course, z
is almost nowhere equal to zero. Choose open subsets Gn ⊃ σ such that
µ(Gn) → µ(σ) as n → ∞. By virtue of Theorem 4.1 in [9], there exist func-
tions un ∈ H∞(Bd) such that |un| = χGn + 1/n almost everywhere. Then
the unit vectors yn = unz/‖unz‖ ∈ H satisfy the condition ‖χBd\σyn‖ → 0
as n → ∞. Choose now a nonconstant inner function v ∈ H∞(Bd) (i.e.,
|v| = 1 a.e.; see again Theorem 4.1 in [9]), and observe that vNy tends to
zero weakly as N → ∞ for every y ∈ L2(µ). We conclude that a sequence
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of the form xn = vNnyn will satisfy conditions (i) and (ii) of Theorem
1.3. �

2. Commuting families of isometries

Let A be a collection of operators on a Hilbert space H. Recall that
AlgLat(A) denotes the algebra of all operators on H which leave invari-
ant all the invariant subspaces of A. The set A is said to be reflexive if
AlgLat(A) coincides with the weakly closed unital algebra generated by A.
In this section we prove that any collection A of commuting isometries is
reflexive; in fact any subset of the weakly closed algebra generated by A
is reflexive. In the case of a single isometry the result was proved by Ded-
dens [3]. Earlier, Sarason [10] proved that any collection of analytic Toeplitz
operators, in particular the unilateral shift, is reflexive. For families of two
or more isometries there were several partial results [8], [7]. Most recently,
a proof for a finite number of isometries was given by McCarthy and Li.
For arbitrary families of isometries, Horák and Müller [5] proved recently
that AlgLat(A) is contained in a certain commutative algebra. Since our
proof depends on this result, we would like to formulate it in more detail.

Fix a commuting set A of isometries on a Hilbert space H, and denote
by S the multiplicative semigroup generated by A, i.e., the set of all finite
products of elements in A. Clearly, A is reflexive if and only if S is reflexive
since S ⊂ AlgLat(A) = AlgLat(S). The simultaneous unitary extension of
the isometries in S will be considered next. We will recall briefly how this
extension is obtained; this construction is somewhat different from the one
given in [11] and [5]. Define a relation ρ on S×H by setting (V, h) ρ (W, k)
if V k = Wh. It is easy to see that ρ is an equivalence relation. Denote
by [V, h] the equivalence class of (V, h), and observe that S ×H/ρ becomes
a pre-Hilbert space with the operations [V, h] + [W, k] = [V W, Wh + V k],
λ[V, h] = [V, λh], and the norm ‖[V, h]‖ = ‖h‖. Let K be the completion
of S × H/ρ, and note that H can be embedded isometrically in K if we
identify h ∈ H with [V, V h] ∈ K. Each isometry W ∈ S can be extended
to a unitary W̃ on K satisfying

W̃ [V, h] = [V, Wh].

We denote S̃ = { W̃ : W ∈ S }. More generally, every operator T commut-
ing with S, i.e., T ∈ S′, has a unique extension T̃ on K commuting with
S̃, such that

T̃ [V, h] = [V, Th], V ∈ S, h ∈ H.

The map T → T̃ is an isometry of S′ onto the collection of those operators
in S̃′ which leave H invariant.

We have now the necessary notation to state the main results of [5].
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2.1. Theorem. Every operator T ∈ AlgLat(S) belongs to S′. Moreover,
the operator T̃ (which is defined since T ∈ S′) is in the double commutant
S̃′′ of S̃.

In order to explain our approach to proving reflexivity, recall that a
linear space B of linear operators is said to be elementary if for every
weak operator continuous functional ϕ on B there exist x, y ∈ H such that
ϕ(T ) = (Tx, y) for all T ∈ B. The following result was proved in [4].

2.2. Lemma. Let A be a set of operators on a Hilbert space. If AlgLat(A)
is contained in an elementary linear space B then A is reflexive.

Returning now to the setting of a semigroup S of commuting isometries,
let us denote by B the algebra of all operators T ∈ S′ for which T̃ belongs
to S̃′′. Our main result is as follows.

2.3. Theorem.
(1) For every weak* continuous functional ϕ on B, and every ε > 0,

there exist x, y ∈ H such that ϕ(T ) = (Tx, y) for all T ∈ B, and
‖x‖ · ‖y‖ < ‖ϕ‖ + ε.

(2) For every sequence {ϕn}∞n=1 of weak* continuous functionals on B
there exist vectors x, yn ∈ H such that ϕn(T ) = (Tx, yn) for all
T ∈ B and all n ≥ 1.

An immediate consequence of the preceding results is as follows.

2.4. Theorem. Every commuting set A of isometries is reflexive. More-
over, every subset of AlgLat(A) is reflexive.

Proof. We would like to restrict ourselves to the case in which S̃ has a
countable *-cyclic set contained in H, i.e., there is a countable subset C ⊂ H
such that the linear span of { Ṽ ∗W̃x : V, W ∈ S, x ∈ C } is dense in H. To
show that this is possible, let {ϕn}∞n=1 be a sequence of weak* continuous
functionals on B. Each ϕn can be written as ϕn(T ) =

∑∞
j=0(Txjn, yjn) for

T ∈ B. Let C denote the collection of all the vectors xjn, yjn, and denote by
K0 the *-cyclic space of S̃ generated by C. Denote by H0 the intersection of
K0 with H. Further, set S0 = {V |H0 : V ∈ S } and S̃0 = { Ṽ |K0 : Ṽ ∈ S̃ }.
Finally, denote by B0 the algebra of all operators T0 ∈ S′

0 for which there
exists T ′ ∈ S̃′′

0 such that T ′|H0 = T0. Observe that the subspace K0 is
reducing for S̃ and therefore it reduces S̃′′ as well. It follows that every
operator T ∈ B leaves H0 invariant, and T |H0 ∈ B0.

With these observations, remark that one can define functionals ϕ0n

on B0 by setting ϕ0n(T0) =
∑∞

j=0(T0xjn, yjn) for T0 ∈ B0. If the conclusion
of Theorem 2.3 were true for the algebra B0, it would follow at once from
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the preceding remarks that the conclusion of Theorem 2.3 would hold for
the original functionals ϕn.

Observe also that
⋃

V ∈S Ṽ ∗H0 is dense in K0. This shows that there is
no loss of generality in assuming that H0 = H and K0 = K to begin with.
Under this additional assumption, spectral theory implies the existence of
a probability space (Ω,Σ, µ) (Ω can be taken to be T

S), of measurable
unimodular functions fV , V ∈ S, on Ω, of measurable sets σ1 = Ω ⊃
σ2 ⊃ · · · and of a unitary operator U : K →

⊕
j≥1 L2(µ|σj) such that

UṼ U∗ is the operator of multiplication by fV for every V ∈ S. In order
to simplify notation, we will assume that K =

⊕
j≥1 L2(µ|σj) so that U is

just the identity operator. Observe that K can be identified as a subspace
of L2(µ,F) (with a separable space F). We claim that the subspace H has
the approximate factorization property. Assume indeed that h ∈ L1(µ) is
a nonnegative function. Then there exists y ∈ K such that h = y ·y; indeed
y can be chosen in the first component of the direct sum decomposition of
K. Clearly we have h = Ṽ y · Ṽ y for every V ∈ S. Now, there are vectors
of the form Ṽ y which are as close as we want to H, and therefore if we set
x = PHṼ y, then x · x will be as close as we want to h.

We are now ready to prove the first assertion of Theorem 2.3. Fix a
weak*-continuous functional ϕ on the algebra B and a number ε > 0. ϕ can
be written as ϕ(T ) =

∑∞
n=0(Txn, yn), T ∈ B, where the vectors xn, yn ∈ H

satisfy
∑∞

n=0 ‖xn‖ · ‖yn‖ < ‖ϕ‖ + ε/2. Denote f =
∑∞

n=0 xn · yn, and
observe that ‖f‖1 < ‖ϕ‖ + ε/2. By Corollary 1.2, we can choose vectors
x ∈ H and z ∈ K such that x·z = f and ‖x‖·‖z‖ < ‖f‖1+ε/2 < ‖ϕ‖+ε. If
we denote y = PHz then we have (Tx, y) = (Tx, z) for every T ∈ B. Since
every operator T in B is the restriction to H of a multiplication operator
by some function u in L∞(µ) we deduce that

ϕ(T ) =
∞∑

n=0

(uxn, yn) =
∫

Ω

uf dµ = (ux, z) = (Tx, z),

we conclude that ϕ(T ) = (Tx, y), as desired. The second part of the
statement of the theorem follows in an analogous manner. �
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